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Phase retrieval is at the heart of adaptive optics and modern high-resolution imaging. Without phase information, opti-
cal systems are limited to intensity-only measurements, hindering full reconstruction of object structures and wavefront
dynamics essential for advanced applications. Here, we address a one-dimensional phase problem linking energy and
time, which arises in X-ray scattering from ultrasharp nuclear resonances. We leverage the Mössbauer effect, where
nuclei scatter radiation without energy loss to the lattice and are sensitive to their magneto-chemical environments.
Rather than using traditional spectroscopy with radioactive gamma-ray sources, we measure nuclear forward scattering
of synchrotron X-ray pulses in the time domain, providing superior sensitivity and faster data acquisition. Extracting
spectral information from a single measurement is challenging due to the missing phase information, typically requiring
extensive modeling. Instead, we use multiple energetically overlapping measurements to retrieve both the transmission
spectrum and the phase of the scattering response, similar to ptychographic phase retrieval in imaging. Our robust
approach can overcome the bandwidth limitations of gamma-ray sources, opening new research directions, to the best of
our knowledge, with modern X-ray sources and Mössbauer isotopes.
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1. INTRODUCTION

A fundamental challenge in photon science is the loss of phase
information of the electromagnetic wavefield during measure-
ment. This phase problem plagues the study of light–matter
interactions across various energy scales and disciplines, e.g., in
radar imaging [1,2], astronomy [3,4], microscopy [5–8], and
crystallography [9]. It also appears in imaging methods using
electrons [10] and neutrons [11]. It arises because no detector can
directly sample the electromagnetic field oscillations of optical
and X-ray light. For instance, even the most advanced X-ray detec-
tors, such as microchannel plates, can only capture the intensity
of the wavefield averaged over time windows greater than 10 ps
[12,13]. Meanwhile, reliable algorithms have been developed to
retrieve the phase in two dimensions (e.g., diffraction imaging
[14–16]) and higher dimensions (e.g., crystallography [17]). The
one-dimensional phase problem is highly ill-posed and inherently

more challenging to solve due to multiple non-trivial ambiguities
[18]. The mathematical proof is derived from D’Alembert’s funda-
mental theorem of algebra, which states that, unlike single-variable
polynomials, multidimensional polynomials are generally not
factorable [19]. Unlike higher-dimensional problems, it is typically
not possible to uniquely solve a one-dimensional phase problem
using only one measurement, even when prior information such as
non-negativity is assumed [20].

One-dimensional phase problems arise, for example, in ultra-
fast laser pulse diagnostics [21,22]. The laser pulse is only a few
femtoseconds long, and its temporal response cannot be measured
directly. Instead, the pulse is gated with itself in time with the
help of a non-linear optical medium, and its frequency spectrum
is measured for different time delays. The temporal shape and
length of the pulse are then retrieved from this two-dimensional
dataset, which is called the frequency-resolved optically gated
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(FROG) trace [23], using a phase retrieval algorithm based on
the short-time Fourier transform [24]. Another example is the
Griffin–Lim algorithm, which is used to separate speech
signals from background noise in two-dimensional audio
spectrograms [25].

An analogous problem arises in Mössbauer physics, when the
nuclear forward scattering (NFS) signal of an object is measured.
The recoilless scattering of X-ray photons by nuclei, known as the
Mössbauer effect [26], offers unique insights [27–30] into the
magnetic and electronic structure of materials. The sharp natural
linewidth of the nuclear transitions allows for extraordinary energy
resolutions (10−13

−10−8 eV) compared to electron spectroscopy
methods (10−2

−10−1 eV) [31,32]. For example, the 14.4 keV
transition in the iron isotope 57Fe has an extremely narrow natu-
ral linewidth 0 = 4.7 neV, corresponding to a quality factor of
∼1012. Conventional lab-based methods for measuring the energy
spectrum of these sharp transitions are unsuitable for materials
with unavailable or short-lived radioactive sources [30,33] and
for experiments requiring a small focused beam [34,35]. For the
energy-resolved study of 57Fe-containing materials, synchrotron
Mössbauer source (SMS) setups [36,37] that use pure nuclear
Bragg reflections from a 57FeBO3 crystal have been developed.
This technique enables 57Fe Mössbauer spectroscopy at syn-
chrotrons but introduces other challenges. The Doppler motion
of the crystal to tune the energy often causes fluctuations in the
reflected beam due to crystal imperfections. Moreover, maintain-
ing the temperature stability of the setup is critical for achieving
high energy resolution (3− 6 0). In addition, high resolution
reduces photon flux, resulting in a trade-off between resolution and
intensity [38].

Instead, the sub-100 ps X-ray pulses from advanced syn-
chrotron sources can be used directly to study nuclear transitions
in the time domain. These pulses, with energy bandwidths
monochromatized to approximately 1 meV (≈ 104 times the
hyperfine splitting of the resonances), contain fewer than 0.01
resonant photons per pulse. As the synchrotron pulse traverses an
object, the entire nuclear ensemble coherently scatters a single reso-
nant X-ray photon, forming a nuclear exciton–polariton [39–41].
Following this excitation, the exciton undergoes collective evolu-
tion and spontaneous decay, resulting in the emission of photons at
delayed times. The linear response of the object to the weak driving
field is described in the energy domain as Ê s(ω)= Ô(ω)Ê in(ω),
where Ê in and Ê s represent the energy spectra of the input and
scattered X-ray fields, respectively, and Ô(ω) is the transmission
function of the object. For X-rays of wavelength 2π/k passing
through an object of thickness z, the transmission function is given
as follows:

Ô(ω)= e−iχ0(ω)kz. (1)

It is inherently complex due to the complex susceptibility χ0

of the nuclear transition [39,42]. We can assume that all spec-
tral components Ê in of the input synchrotron pulse have an
equal magnitude E0 within the narrow energy bandwidth of the
monochromatization. The scattered field E s is then related to the
object’s transmission function Ô as

E s(t)∝F{Ê s(ω)} = E0F{Ô(ω)}, (2)

whereF denotes the Fourier transform from the energy to the time
domain. In the timing mode of operation, the filling pattern of

the electron storage ring is chosen such that synchrotron pulses
are temporally spaced at intervals longer than the lifetime of the
nuclear transitions. Avalanche photodiodes detect delayed photons
as a function of time after excitation, and the measured signal is
proportional to the intensity of the scattered field |E s(t)|2. The
hyperfine structure of the object manifests itself in the beating
patterns of this temporal response.

Despite advances in data analysis software and modeling
[43,44], interpreting the time-domain response of NFS to extract
the different hyperfine parameters remains challenging. On the
other hand, if phase information of the photons is available, the
inverse Fourier transform can yield the complex energy spectrum
of an object from NFS measurements without relying on a fit
model or SMS setups. Furthermore, the energy resolution is not
limited by the bandwidth of the crystal reflection in the SMS
setup. However, the phase shift experienced by the scattered X-ray
wavefield is lost in these measurement techniques, presenting a
one-dimensional phase problem.

Various methods have been developed to tackle this phase prob-
lem in nuclear resonant scattering. For example, interferometry
has been attempted to measure the phase shifts of a nuclear for-
ward scattering object using a triple Laue interferometer [45,46].
However, the short wavelengths and near-unity refractive indices
of most materials in the X-ray regime make designing and stabi-
lizing such interferometers highly challenging. Contemporary
approaches substitute the interferometer with a probe sample
mounted on a Doppler drive, where the Doppler drive serves as
the phase shifter, and the object and probe samples act as interfer-
ometer arms. Techniques such as heterodyne phase reconstruction
(HPR) [47] and frequency–frequency correlation [48] are based
on this setup, but are only applicable when the nuclear resonances
of the probe and the object samples are so detuned in energy that
their radiative coupling [41,49,50] can be neglected. Additionally,
these methods require a probing beam with a narrow single-energy
line, which is scanned in small detuning steps across the object
to improve energy resolution. The probe beam can be generated
using a nuclear scattering sample that acts as a two-level quantum
system. However, to achieve this, it is difficult to eliminate the
residual hyperfine interaction in quasi-single-line absorbers such as
57Fe-based stainless steel [51].

In this paper, we propose performing ptychography to retrieve
the one-dimensional phase of an object. Ptychography is a scan-
ning technique that uses multiple overlapping measurements to
constrain the phase problem, and is commonly implemented in
the field of X-ray diffraction imaging [52]. It is a mathematical
cousin of the short-time Fourier transform, but has less stringent
scanning requirements. For nuclear ptychography, the probe has a
broad energy spectrum and can illuminate a wide energy range on
the object, allowing the scanning of the object spectrum with fewer
measurements. The overlap between the measurements is set by the
energy detuning of the probe with respect to the object.

Early conceptual work on a phase-sensitive ptychographic
method for nuclear resonant systems by Haber [53] recognized its
potential in the emerging field of hard X-ray quantum optics with
nuclear exciton polaritons, which exhibit long coherence times
and unique quantum behaviors [54–57] and inspire research in
fundamental physics [58,59] and quantum information [60,61].
Accessing the spectral phase provides insight into the coherence
properties of the excitonic state, which is key to its manipulation
and control [62–64]. For example, the phase can help distinguish
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between incoherent line-broadening due to thickness effects and
coherent features due to hyperfine distributions in the transmission
spectrum.

In two-dimensional phase problems, blind ptychography
approaches [65,66] are widely used to simultaneously retrieve
both the object and probe. A recent publication by Yuan et al.
[67] extends this idea to nuclear resonant systems using blind and
partially blind algorithms with a thin (1 µm) K2Mg57Fe(CN)6
analyzer as the probe. However, these blind methods are reported
to not outperform the fixed probe method in terms of reconstruc-
tion quality. In contrast, our experiment uses a ∼20 µm thick,
57Fe-enriched stainless-steel foil as the probe, with dynamical
beats [68] in its time response. This thickness was deliberately
chosen to maximize the nuclear resonant signal of the probe. The
object transmission spectrum contained six well-separated 57Fe
resonances, which was too sparse to support reliable simultaneous
probe retrieval. Instead, we fixed a physics-informed model of
the probe, including hyperfine splittings, into our reconstruction
algorithm. This fixed-probe approach enables a more interpretable
and stable inversion by allowing us to isolate and examine core
aspects of signal formation and reconstruction limits and reflects
our focus on experimental realism and robustness.

Similarly to how ptychographic imaging has advanced spatial
resolution in diffraction-limited systems [69–71], we propose that
the development of a ptychographic spectroscopy method could
unlock new resolution regimes for Mössbauer science.

2. PTYCHOGRAPHY USING RESONANT
SCATTERING BY A TWO-SAMPLE SYSTEM

The goal of ptychography is to retrieve the complex object trans-
mission function Ô(ω). To achieve this, a probe sample is placed
in front of the object sample in the X-ray beam path (Fig. 1). In
imaging setups, the probing beam is shaped by a lens or aperture
that spatially restricts the illumination to a localized spot on the
object. In our setup, the probe transmission function P̂ (ω) must
have a spectral width comparable to that of the hyperfine splittings
of nuclear levels in the X-ray regime. A suitable choice is a quasi-
single-line absorber, such as stainless steel, whose thickness can be
adjusted to achieve the desired spectral width.

Next, a mechanism is required to energetically detune the
probe with respect to the object, so that a different energy range in
the object spectrum is illuminated for each ptychographic mea-
surement. This can be achieved via the Doppler effect if either
the object sample or the probe sample is moved with respect to
the other along the direction of beam propagation. This motion
induces an additional time-dependent phase shift in the radiation
scattered by the probe sample:

ϕ(D, t)=
2π

λ
|Ev|t = Dt, (3)

where λ is the wavelength of the X-rays, and D= 2π |Ev|/λ is
the Doppler shift (in angular frequency) induced by the relative
motion with velocity Ev. The combined transmission function of
the probe–object sample system is given as

Ẑ(D, ω)= P̂ (ω+ D) · Ô(ω). (4)

Assuming that all detected photons are coherently scattered, the
intensity at the detector at any time is equal to the squared magni-
tude of the scattered wavefield and can be modeled as

I (D, t)∝
∣∣∣F{ P̂ (ω+ D) · Ô(ω)}

∣∣∣2. (5)

This is the one-dimensional continuous ptychographic for-
ward model. It is non-linear due to the presence of the modulus
squared | · |2 operator. Inverting Eq. (5) to obtain the complex
object function Ô(ω) is impossible using only one measurement.
Even by imposing prior constraints on Ô(ω), such as compact
support or sparsity, the one-dimensional phase problem can have
an infinite number of solutions and is unstable [72,73]. However,
it is possible to use data diversity to impose the overlap constraint
[65] in Eq. (5). Multiple related measurements are taken by chang-
ing the detuning D so that the probed parts of the object overlap
in energy, as shown in Fig. 1. This scheme of time- and energy-
resolved measurement of the scattering process encodes the phase
of the one-dimensional object in a two-dimensional ptychographic
dataset called a “ptychogram” [74] and may be recovered using a
decoding algorithm. It is analogous to a traditional spectrogram
that encodes the variation in a signal’s frequency content with time.

Fig. 1. Ptychography scheme for nuclear forward scattering: pulsed X-ray radiation is generated from the synchrotron source with wave vector Ek and
linear polarization along Eσ . It is monochromatized by a high-resolution monochromator (HRM) to a bandwidth of 1 meV around the nuclear resonance
(~ω0 = 14.4 keV). A probe sample is mounted in front of an object sample and either of the two is moved with respect to the other with a velocity Ev ‖ Ek
using a Doppler drive. The X-ray pulses are scattered by the nuclei in the two samples. The magnitude of the transmission spectrum of the probe P̂ and
object Ô is shown in the insets. The detector measures the combined response of the samples as counts of photons scattered over time. Changing the velocity
of the Doppler drive changes the relative detuning of the samples in the energy domain and leads to a different temporal response at the detector. This allows
multiple intensity measurements (shown for different velocities v1, v2, v3, ...) to be collected.
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In ptychographic imaging setups, smaller spatial features in a
sample result in larger scattering angles in detected diffraction pat-
terns. The largest scattering angle that the detector can capture sets
the minimum achievable spatial resolution for the reconstruction.
In the nuclear ptychography setup, an analogous constraint arises
due to the maximum acquisition time Tmax at the detector, which is
determined by the finite time interval between synchrotron pulses.
This imposes a limit on the maximum achievable energy resolution
of the reconstructed object spectrum (in units of0):

~1ω′ =
2π

Tmax
·
~
0
= 2π ·

τ

Tmax
, (6)

where τ = ~/0 is the lifetime of the excited nuclear state. Because
nuclear transitions are extremely sharp in energy, their time
response can extend beyond Tmax, fundamentally limiting the
energy resolution of this technique. This contrasts with imaging
experiments in which the resolution is typically constrained by
factors such as the radiation dose on the sample [75], decoherence
effects [76], and Poisson noise, rather than detector size.

3. DECODING SCHEME

The ptychogram can be inverted using numerical algorithms, for
which we discretely approximate the continuous phase problem
in Eq. (5). The discrete object and probe functions are expressed
as one-dimensional arrays Ô ∈CN , P̂ ∈CN on an energy grid of
length N and resolution 1ω. We take j = 1, 2 · · ·M measure-
ments corresponding to different probe detunings D j and detuned
probe functions P̂ j ,i = P̂(ωi , D j ). The intensity in the time
domain is measured and binned into N time points with a fixed
interval1t and modeled as I j ∈RN . The phase problem can now
be formulated as an optimization problem to solve for an object Ô
that minimizes a cost functionρ : X →[0,∞) given by

ρ(Ô)=
M∑

j=1

∥∥∥√I j −

√
b j

∥∥∥2

=

M∑
j=1

∥∥∥∣∣∣F{ P̂ j ◦ Ô
}∣∣∣−√b j

∥∥∥2
, (7)

where F represents the discrete Fourier transform, ◦ denotes
pointwise multiplication, and ‖ · ‖ denotes the `2 norm. The cost
function represents the distance between the measured intensities
b j and the modeled intensities I j of the ptychogram and is based
on the Poisson likelihood model for noise in the ptychogram
([77], Section 4 of Supplement 1). In Eq. (7), we optimize an
object of grid size N ∼ 103, where global optimization methods
struggle due to the curse of dimensionality [78,79]. Therefore,
a local search with gradient descent is performed to minimize ρ
by using its local gradient with respect to the object [80]. Owing
to the non-convexity of the cost function ρ, the gradient descent
algorithm may converge to local minima, and the uniqueness of
the solution is not guaranteed. To mitigate slow convergence,
we incorporate a stochastic gradient descent (SGD) algorithm
where the ptychogram dataset is shuffled and divided into random
“mini-batches” whose gradients are used to update the object [81].
In our case, we observe that SGD converges noisier than the classic
gradient descent, but it achieves an optimum with an order of
magnitude fewer iterations. We implemented the reconstruction

algorithm for nuclear ptychography in a software package, which
we call NuPty [82]. All NuPty algorithms were implemented using
PyTorch [83]. This enables a flexible and faster analysis of the
phase problem because PyTorch uses its automatic differentiation
capabilities to efficiently compute gradients and supports GPU-
accelerated computations. The NuPty reconstruction scheme takes
into account two key nuances of the ptychography experiment:

A. Multimodal Ptychography Model

Thickness variations in the transmitting probe sample may intro-
duce several incoherent scattering paths into the setup. To account
for this, the intensity at the detector is modeled as an incoherent
superposition of the intensities of the scattered fields correspond-
ing to different probe modes m illuminating the object [84,85],
i.e., in Eq. (7):

I j =
∑

m

wm

∣∣∣F { P̂
(m)
j ◦ Ô

}∣∣∣2, (8)

where wm is a scalar denoting the relative weight of each probe

mode P̂
(m)
j .

B. Time Window

Nuclear resonant scattering occurs with a delay (ns timescale)
compared with prompt electronic scattering (ps timescale). The
time-resolving detector is synchronized to the synchrotron bunch
clock and resets to zero when a new X-ray pulse hits the sample.
To prevent the prompt signal from saturating the detection sys-
tem, a veto interval is set around the bunch clock, establishing a
data acquisition time window from Tmin to Tmax for the nuclear
scattered signal. To ensure that the reconstruction result is scale-
independent with respect to the number of photons Nph detected
in the time window, the algorithm uses a normalized form of the
cost function:

ρ̃(Ô)=
1

B · fph · L

B∑
j=1

∥∥∥∥∥√W ◦ I j −

√
M· ‖ F‖2

Nph/ fph
· b j

∥∥∥∥∥
2

. (9)

Here, B is the batch-size, i.e., the number of measurements
used at a time to update the gradient, M is the total number of
measurements, and L = (Tmax − Tmin)/1t . To speed up the cal-
culations of the ptychogram and the cost function, we use the fast
Fourier transform (FFT) with the operator norm ‖ F ‖= N. The
symbol fph denotes the probability of photon scattering within the
time window:

W(ti )=
{

1 Tmin ≤ ti ≤ Tmax,

0 otherwise.
(10)

This probability can be calculated through simulations of
the experimental setup, and an order-of-magnitude estimate is
sufficient for practical purposes.

4. SIMULATION

To benchmark the phase retrieval algorithm, a simulation of the
experiment was performed using the NEXUS software pack-
age [44] and is shown in Fig. 2(a). A stainless-steel foil with an
enrichment 95% 57Fe and a thickness 20 µm was taken as the
probe sample. As shown in Fig. S2 of Supplement 1, this thickness

https://doi.org/10.6084/m9.figshare.29967931
https://doi.org/10.6084/m9.figshare.29967931
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(a) (b) (c)

(d) (e)

Fig. 2. Phase retrieval from simulation: (a) ptychogram simulated as described in Section 4. The dotted white line marks τ = 141 ns, which is the life-
time of the 14.4 keV energy level of the 57Fe nucleus. The magnitude (b) and phase (c) of the probe spectrum are shown. (d) The magnitude of the transmis-
sion spectrum of the reconstructed object is plotted for Tmax = 200 ns (orange) and Tmax = 1000 ns (green). The reconstructed spectrum in green overlaps
perfectly with the true object spectrum (dotted black line). For lower Tmax, artificial peaks appear in the reconstructed spectrum. (e) Reconstructed phase
spectrum for the two values of Tmax, showing distinct phase shifts at each resonance line. In the plots, ~ω0 refers to the energy of the photons at resonance,
i.e., 14.4 keV.

maximizes the nuclear resonant signal of the foil by balancing
the trade-off between increased number of nuclear scatterers and
electronic absorption. A 95% enriched 57Fe metal foil of thickness
2.5 µm was taken as the object sample. Figures 2(b)–2(e) represent
the simulated energy spectra of the object and the probe samples,
respectively. The magnetic structure of the simulated samples is
based on the foils used in the real experiment, details of which
can be found in Sections 1 and 2 of Supplement 1. The probe
absorption function has an almost Lorentzian line profile with a
full-width at half-maximum (FWHM) of∼100, providing broad
spectral coverage. This ensures sufficient overlap between adjacent
measurements, even for coarsely sampled detunings D.

The object transmission function is Zeeman split into six lines.
The object sample is also modeled after the experimental values
(see Section 5) to contain 94.2(3)% magnetic moments parallel to
the Eσ direction, which coincides with the linear polarization vector
of the incident synchrotron beam, and the remaining 5.8(3)% are
isotropically distributed. For both orientations of the magnetic
moment, the selection rules of the 14.4 keV 57Fe transition pro-
hibit the object sample from being optically active [42]. Therefore,
we only aim to reconstruct the spectrum of the Eσ→ Eσ scattering
channel. All other entries in the scattering matrix are zero.

To simulate the time-domain scattering signal and perform
Fourier transforms efficiently, we used the discrete fast Fourier
transform (FFT). The number of points NFFT used in the fast
Fourier transform (FFT) of the time-domain signal determines its
energy resolution as

~1ω=
2π

NFFT ·1t
·
~
0
, (11)

where1t denotes discretization of the temporal grid. To accurately
compute the linear convolution of the probe and object signals of
length N, NFFT > 2N − 1 to prevent circular convolution errors.

A large NFFT ensures that 1ω is sufficiently small to resolve the
sharp spectral peaks and avoid aliasing errors.

During the experiment, the energy resolution is fundamen-
tally limited by the maximum acquisition time Tmax, as shown
in Eq. (6). However, in the simulation, ~1ω can be improved
indefinitely by choosing larger values of NFFT. For 1t = 0.5 ns,
the probe and object spectra are defined in a NFFT = 4096 point
energy grid from −886.6 0 to 886.2 0 in 0.4 0 steps, where
0 = 4.7 neV. The noiseless ptychogram was simulated by detun-
ing the probe spectrum at M = 512 different Doppler-shifted
energies ~D ∈ (−200,200) 0 with 0.78 0 steps. Due to the broad
probe energy spectrum, this creates an overlap of ∼90% between
consecutive measurements.

To evaluate the performance of the phase retrieval algorithm as
Poisson noise levels increase, we simulated ptychograms by varying
the total delayed photon counts Nph and perform the reconstruc-
tion (see Section 5.A of Supplement 1). We found a roughly linear
dependence of the reconstruction accuracy on Nph, without any
anomalies. Thus, the algorithm is stable with respect to increasing
levels of Poisson noise.

To investigate the impact of the time window, the number
of photons Nph was fixed at 109 for the next set of tests, whereas
only the maximum acquisition time at the detector, Tmax, was
varied (see Section 5.B Supplement 1). The energy discretiza-
tion of the FFT grid was kept constant at ~ω= 0.4 0, and the
time-domain calculations were performed with zero-padding. As
shown in Figs. 2(d) and 2(e), the reconstructed spectra for both
Tmax = 200 ns (orange) and Tmax = 1000 ns (green) show six
inverted peaks at the same positions as the simulated spectrum
(dotted black line). The X-ray scattering probability depends on
the angle between the nuclear magnetic field and X-ray polariza-
tion. The higher intensity of the outermost peaks indicates that

https://doi.org/10.6084/m9.figshare.29967931
https://doi.org/10.6084/m9.figshare.29967931
https://doi.org/10.6084/m9.figshare.29967931
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most of the magnetic moments were aligned parallel to the polari-
zation direction. The outermost peak separation 1E can be used
to calculate the magnetic hyperfine field:

Bhf =
1E

µN ·
(
3|g e| + |g g|

) , (12)

where g g = 0.18121 and g e =−0.10348 are the nuclear g -factors
for the ground and excited states of 57Fe, and µN is the nuclear
magneton (≈ 5.05× 10−27 J/T). The resulting Bhf value for
both the green and orange curves is 32.7(2) T. For Tmax = 200 ns,
which is close to the experimental condition of the bunch spacing
(=192 ns), the short time window causes spectral leakage due
to sinc interpolation artifacts in the reconstruction. This occurs
because zero-padding in the time domain is equivalent to applying
a rectangular time window, whose Fourier transform is a Dirichlet
kernel. To suppress these artifacts, the measurement time win-
dow should extend beyond four nuclear lifetimes between pulses.
Additionally, the shortened time window affects both the relative
phase shifts and the peak intensities of the resonance spectrum.

5. RESULTS AND DISCUSSION

We conducted a proof-of-principle experiment at the high-
resolution dynamics beamline P01 at the PETRA III synchrotron
source, providing X-ray pulses at 192 ns intervals in the timing
mode of operation. X-rays were monochromatized to one meV
bandwidth at the 14.4 keV 57Fe nuclear transition. The probe
and object foils were characterized using NFS measurements. The
probe is given by a stainless-steel foil, enriched to 95% in 57Fe,
with a Lamb–Mössbauer factor of 0.78. The thickness of the foil
approximately follows a normal distribution, centered at 17.8 µm
with an FWHM of 0.7 µm. The object under study is an iron
metal foil, enriched to 95% in 57Fe, with a Lamb–Mössbauer
factor of 0.80 and a mean thickness of 2.4 µm (FWHM 0.3 µm).

The object foil was mounted on a Doppler drive and moved rel-
ative to the probe foil with a sinusoidally changing velocity profile.
The drive velocity was tuned to a maximum of 20.7 mm s−1, to
ensure Doppler detunings in the range ~D ∈ (−210,210) 0. A
0.12 T magnetic field ( EB ‖ Eσ , beam polarization) was applied to
the object. Photons were detected using silicon-based avalanche
photodiodes with a time resolution of ∼0.3 ns and binned into
time channels such that 1t = 0.5 ns. Their arrival times were
recorded together with the Doppler velocity at the moment of
detection using a multichannel data acquisition system. More
details on the samples and setup are available in Sections 1 and 2 of
Supplement 1.

Phase information was captured in the ptychogram [Fig. 3(a)],
with time and Doppler detuning as its axes. The measured dataset
closely resembles the simulated ptychogram [Fig. 2(a)], except
for the experimental data acquisition window from Tmin = 17 ns
to Tmax = 178 ns. This is due to the vetoing of the electronic
scattering signal as described in Section 3. The results of the
ptychographic reconstruction using the experimental measure-
ments are also shown in Fig. 3. According to our simulations,
the majority of the incident photons undergo prompt electronic
scattering within the first few picoseconds. Only a small frac-
tion, fph ≈ 0.019, is scattered within the delayed time window,
resulting in the detection of approximately 2× 108 total delayed
photons. While reconstructing the object, the algorithm can rea-
sonably extrapolate the missing intensities between 0 and 17 ns by

taking advantage of the oversampled measurements. This is also
performed in conventional two-dimensional ptychographic imag-
ing in the presence of a beam stop [86,87]. However, there is no
information in the ptychogram for times beyond Tmax, where the
extrapolation obviously does not work. For a maximum acquisi-
tion time Tmax = 178 ns at the detector, the energies of the nuclear
transitions are convolved with a sinc function with a main lobe
width of 2~1ω′ ≈ 9.3 0, which is roughly 23 times larger than
~1ω. To evaluate the quality of the reconstruction despite the
finite Tmax, we define a filtering window H , which is a discretized
Heaviside step function:

H(ti )=
{

1 ti ≤ Tmax,

0 otherwise.
(13)

Applying this filter to the simulated complex transmission spec-

trum of the object Ô
∗

(from Section 4) yields

Ô
∗

H = F−1
{H ◦ F{Ô

∗

}}, (14)

where F is the FFT. The resulting transmission spectrum, Ô
∗

H ,
accounts for sinc artifacts similar to those caused by the experimen-
tal measurement window. In Figs. 3(b) and 3(c), the reconstructed
object is compared with this filtered object.

The reconstruction of the complex transmission spectrum
from the full data range ~D ∈ (−210,210) 0 (orange) deviates
from the true object, while the limited range ~D ∈ (−70,70) 0
(green) achieves a closer match. We attribute this behavior to
the coupling between the resonance peaks of the probe and
the object in this regime (see Section 5.C of Supplement 1).
This contrasts to the interference signal used in other tech-
niques [47,48] where the probe and object spectra are so tuned
that the scattered field at the detector can be approximated as
Z(D, t)=F{Ẑ(D, ω)} ≈ P (D, t)+ O(t), where P (D, t)
and O(t) are their respective temporal responses. The coupling
signal has a higher information density and is less susceptible to
background noise, velocity drive calibration errors, and incoherent
contributions to the data from thickness variations in the samples.

The reconstructed phase enables the calculation of an energy-
domain spectrum for the object which can then be compared to
its measured synchrotron Mössbauer source (SMS) spectrum.
The positions of the four most prominent Lorentzian lines in
Fig. 3(d) are fitted using a least squares peak finding algorithm and
are listed in Table 1. The four peak positions extracted from the
magnitude of the reconstructed object in green match the SMS
spectrum up to ±0.2 0, which is comparable to the resolution of
the calculation grid (0.4 0). According to Eq. (12), the magnetic
hyperfine field extracted from the reconstructed outer peak posi-
tions is 32.6(2) T, compared to 32.7(2) T extracted from the outer
peak positions of the SMS spectrum. To calculate the preferential
orientation of the magnetic domains in the 57Fe foil, other peak
properties, such as their relative heights and symmetry, are needed.
Our reconstructed transmission spectrum reveals the presence of
a dominant magnetic moment component parallel to the X-ray
polarization direction. In Fig. 3(d), two additional small resonance
peaks appear in the SMS spectrum at roughly ±31.5 0, due to a
minor isotropic nuclear spin component of 57Fe (≈ 5.8(3)% from
nuclear forward scattering measurement). Although these smaller
peaks cannot be distinguished clearly from the artificial peaks in
the reconstructed spectrum, the presence of their subtle signatures
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(a) (b) (c)

(d) (e)

Fig. 3. Phase retrieval from experiment: (a) ptychogram measured in the PETRA III experiment. The dotted white line marks τ = 141 ns, which is the
lifetime of the 14.4 keV energy level of the 57Fe nucleus. (b) Magnitude and (c) phase of the reconstructed object spectra for |~Dmax| = 70 0 (in green) and

|~Dmax| = 210 0 (in orange) shown alongside the simulated object spectrum Ô
∗

H (dotted black line). (d) Intensity spectrum of the reconstructed objects
plotted alongside the measured synchrotron Mössbauer spectrum of the 57Fe foil used in the experiment. The spectra are normalized from 0 to 1. (e) Time
response of the reconstructed objects plotted alongside the measured nuclear forward scattering from the 57Fe foil. The gray-shaded region lies outside the
data acquisition time window of 17–178 ns.

Table 1. Positions of the Peaks Marked in Fig. 3(d),
Determined by a Multi-Lorentzian Peak-Fitting
Algorithm

Peak A B C D

SMS spectrum −54.20 −8.60 8.50 54.40
Reconstruction (green) −54.10 −8.50 8.60 54.20

indicates that nuclear ptychography is already approaching the
sensitivity required to detect such fine features, implying a strong
potential for further improvements in reconstruction accuracy
with longer measurement time windows.

In Fig. 3(e), the time-domain response of the reconstructed
object shows that the algorithm accurately reconstructs the mea-
sured intensities, except for times between 120 and 140 ns. In this
region, “bunch addition” incoherence in the experimental data is
strong due to the finite time gap of 192 ns between the incident
X-ray pulses (see Section 3.B of Supplement 1). The detector
cannot distinguish between photons arriving at t > 192 ns after
the incidence of the current pulse and those arriving from the next
pulse at t − 192 ns, causing systematic errors in the measured data.
This incoherent contribution to the data cannot be taken into
account by the ptychography algorithm while solving the phase
problem and therefore affects the reconstruction.

The transverse coherence length of the setup is only a few
nanometers (see Section 3.A of Supplement 1). The NFS fit on
the stainless-steel probe foil predicts a root-mean-square surface
thickness variation of approximately 0.7 µm. Therefore, to recon-
struct the object spectrum, the multimodal ptychography model
was used, where the complex transmission spectrum of the probe
sample was simulated at eleven distinct points sampled from its
thickness distribution.

The starting object guess was taken as cells with entry “one.”
As shown in Fig. 4, the algorithm converges to a solution in less

Fig. 4. Convergence of the phase retrieval algorithm: reconstruction
cost ρ̃ (solid line) and the norm of its gradient ‖ ∇ρ̃ ‖ (dashed line) as the
iterations increase. The algorithm converges to a solution in 100 iterations
for the reconstruction from experimental data with |~Dmax| = 70 0
[shown in green in Figs. 3(b)–3(e)].

than 100 iterations. The first 50 iterations use stochastic gradient
descent with a batch size of B = 20, leading to rapid improve-
ment within the initial 10 iterations, followed by stagnation at a
local minimum. Due to stochastic noise, the gradient no longer
decreases significantly. To refine the solution, the remaining 50
iterations employ standard gradient descent (B =M), reducing
stochastic noise and enabling further optimization.

6. CONCLUSION AND OUTLOOK

We have demonstrated that ptychography provides a powerful
framework to solve a one-dimensional phase problem and mitigate
its instabilities by redundantly capturing overlapping information
in a two-dimensional dataset. We used the method to reconstruct
the complex energy resolved spectrum of a magnetized 57Fe foil
and calculate its hyperfine parameters. The retrieved values are
in good agreement with the results predicted by the established
measurement techniques of synchrotron Mössbauer source (SMS)
spectroscopy and nuclear forward scattering. Despite the addi-
tional complexity introduced by using a thick multimodal probe,
our reconstruction algorithm achieves stable convergence in less
than 100 iterations. This generalization is especially important
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because, in practice, balancing the signal strengths between the
probe and the object is necessary to achieve strong interference and
clear phase information in the measured ptychogram.

Our analysis shows that the energy resolution of nuclear pty-
chography is fundamentally related to the length of the temporal
detection window. Quantum beats between closely spaced nuclear
energy levels, split by less than 1 0, interfere on timescales longer
than τ = ~/0, the natural lifetime of the Mössbauer nucleus.
For detection windows extending beyond Tmax > 2π~/0, the
energy resolution of sub-1 0 becomes achievable [see Eq. (6)].
Our method can thus surpass the limits set by the linewidth of
the lab source of the gamma ray or the SMS crystal. However, to
realize this improved resolution, increased pulse spacing between
X-ray bunches is required. This, in turn, demands low bunch
synchrotron timing modes, which reduce the overall beam current
and brightness. The 192 ns X-ray pulse spacing in our experiments,
although adequate, was not significantly longer than the lifetime of
57Fe and resulted in reconstruction artifacts. Other synchrotrons,
such as Spring-8 (Japan) and ESRF (France), operate with pulse
intervals more feasible for 57Fe nuclear ptychography (see Table
S3 of Supplement 1). Moreover, Mössbauer isotopes with shorter
lifetimes, such as 119Sn and 151Eu, would particularly benefit from
the high resolution offered by nuclear ptychography, since no
suitable SMS is available for them. Shorter synchrotron pulse inter-
vals can be chosen to maintain the X-ray brilliance while enabling
measurement of delayed responses over multiple lifetimes of these
nuclei.

In conclusion, we have shown that one-dimensional nuclear
ptychography provides a robust and versatile tool for exploring
complex nuclear resonant phenomena. We can retrieve the spectral
phase of the nuclear resonant scattering, which provides direct
insight into how an X-ray pulse is reshaped in time as it passes
through the nuclear system. This phase information is essen-
tial for understanding and engineering coherent phenomena,
such as electromagnetically induced transparency-like behavior
in multilayered X-ray cavities with Mössbauer nuclei [54,88],
where sharp energy-dependent phase shifts from multiple scat-
tering modulate the effective driving field on the nuclei. Beyond
solving the phase problem, nuclear ptychography can enable sub-
linewidth energy resolution and spectroscopic investigation of
Mössbauer isotopes at synchrotrons, offering a pathway to resolve
elusive features in nuclear spectra, such as the debated existence of
magnetic order in hcp-iron [89,90]. Our results pave the way for
advanced implementations of this method in grazing-incidence
and polarization-resolved geometries, enabling the study of nanos-
tructured and anisotropic systems. The extension of the technique
to X-ray free electron lasers, with their exceptional brilliance and
unique time structures, offers exciting opportunities to study
non-linear effects on the phase of the scattering. Together, these
capabilities represent a significant step toward a new era in nuclear
quantum optics.
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