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1 Introduction

The Standard Model (SM) of particle physics has been a cornerstone in understanding
the subatomic world over the past several decades, providing a comprehensive framework
for explaining many observed phenomena. Despite its extensive successes, the SM does
not address certain issues, most notably dark matter [1]. Accumulating indirect evidence
from astronomical and cosmological observations strongly suggests the existence of dark
matter [2, 3], which is invisible in the entire electromagnetic spectrum, and its existence
is inferred via gravitational effects only so far. Studies of invisible decays, where particles
decay into final states that do not produce detectable signals, are therefore important for
the development of SM extensions [4, 5].

Stringent limits on the invisible decays of the Y [6], J/v [7], B® [8], Bs [9], n(n') [10-12],
70 [13], DY [14], w [15], ¢ [15] mesons and the A [16] baryon have already been set by several
experiments. However, no experimental study of fully-invisible decays of kaons has been
performed yet. Within the SM, the branching fraction (BF) of Kg — v decay is predicted
to be extremely small. This process is kinematically forbidden under the assumption of
massless neutrinos due to angular momentum conservation, and remains highly suppressed
in the case of massive neutrinos due to the unfavorable helicity configuration, with a BF
smaller than 10716 [18]. Consequently, the search of the K3 invisible decay offers a sensitive
test of the SM [5].



By summing all the known K9 decay modes reported in PDG [17], an indirect estimation
of the BF allowing K3 to decay invisibly is established at the order of 10~4 [18]. Additionally,
theories like the mirror-matter model [19, 20], which assumes the existence of a mirror world
parallel to our own, suggest that the Kg invisible decay could be interpreted as an oscillation
between normal and mirror particles, and predict the BF of Kg — invisible to be at the
order of 1076, As there has been no experimental exploration of Kg — invisible reported,
the indirect experimental upper limit (UL) and the model prediction both remain unverified.

It’s worth noting that Kg — invisible, also a flavor-changing neutral current kaon
decay with missing energy, can provide complementary probes of new physics in the s — d
transitions [21]. Besides, study of the K2 invisible decay is also essential for testing CPT
invariance [18]. Using the neutral kaon system for such tests offers advantages over the BY or
DY meson systems; specifically, one benefits from the small total decay widths and the limited
number of significant (hadronic) decay modes [22]. The Bell-Steinberger relation (BSR) [23],
derived from the requirement of unitarity, connects potential CPT-invariance violation to
the amplitudes of all decay channels of neutral kaons. Although the BSR provides the most
sensitive test of CPT symmetry, previous BSR tests with neutral kaons have been conducted
assuming that there is no contribution from invisible decay modes.

In this paper, we report the first experimental search for Kg invisible decays via the
J/h — ¢KIK?2 decay, by analyzing (1.0087 & 0.0044) x10'9 J/4 events collected with the
BESIII detector at the BEPCII ete™ storage ring [24]. The usage of J/¢ — ¢ K2 K9, where
one of the Kg is reconstructed through its decay to m 7~ provides a unique advantage for
probing K2 invisible decays. Most J/1 decay modes with K¢ in the final states suffer from
high contamination from K¢ background, which can mimic the signal as they rarely interact.
In contrast, in J/1 — ¢K2K2 decay, with a BF of (5.941.5)x107* [17], one of the dominant
K% backgrounds, J/¢ — qﬁKgKg is forbidden by C-parity conservation. This enables us to
probe the Kg invisible decay signal from a relatively clean Kg sample.

2 BESIII detector and Monte Carlo simulation

The BESIII detector [25] records symmetric eTe™ collisions provided by the BEPCII storage
ring [26] in the center-of-mass energy range from 1.84 to 4.95 GeV, with a peak luminosity of
1.1 x 1033 cm™2s~! achieved at /s = 3.773 GeV. BESIII has collected large data samples
in this energy region [27]. The cylindrical core of the BESIII detector covers 93% of the
full solid angle and consists of a helium-based multilayer drift chamber (MDC), a plastic
scintillator time-of-flight system (TOF), and a CsI(T1) electromagnetic calorimeter (EMC),
which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic
field. The magnetic field was 0.9T in 2012, which affects 11% of the total J/v¢ data. The
solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon
identification modules (MUC) interleaved with steel.

The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the specific ionization
energy loss (dE/dx) resolution is 6% for electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at 1 GeV in the barrel (end-cap) region. The
time resolution in the TOF barrel region is 68 ps, while that in the end-cap region is 110 ps.
The end-cap TOF system was upgraded in 2015 using multi-gap resistive plate chamber



technology, providing a time resolution of 60 ps, which benefits 87% of the data used in
this analysis [28, 29].

Simulated data samples produced with the GEANT4-based [30] Monte Carlo (MC) package,
which includes the geometric and material description of the BESIII detector [31-33] and the
detector response, are used to determine detection efficiencies and to estimate backgrounds.
The simulation models the beam energy spread and initial state radiation in the ete~
annihilations with the generator Kkmc [34, 35]. The inclusive MC sample includes the
production of the J/1 resonance incorporated in KKMC. All particle decays are modeled
with EVTGEN [36, 37] using the BFs either taken from the Particle Data Group (PDG) [17],
when available, or otherwise estimated with LUNDCHARM [38, 39]. Final state radiation from
charged final state particles is incorporated using the PHOTOS package [40]. The signal MC
sample for J/v — qﬁKgKg is generated using a phase space model. To better model the
intermediate resonance contributions to the J/¢ — QSKgKg final state, a multidimensional
re-weighting method as described in ref. [41] is employed. Detailed information about this
re-weighting method is provided in section 4.

3 Analysis method

In this analysis, the Kg sample is selected using the J/v — ¢KgKg process. To study the
Kg — invisible without relying on the BF of J/¢ — qﬁKgK Y, which suffers from significant
uncertainties, a novel method is employed. In this method, we define a normalization sample
first, containing the events that satisfy J/¢ — ¢KIKS, ¢ - KTK~, K3 — nt7~ with the
K g in the recoiling system decaying to processes other than 77 ~. The K g decaying to mT ™
is denoted as Kg(tag) hereafter. Each event in this sample inherently qualifies as a candidate
for the Kg invisible decay, since it only contains four charged particles. Subsequently, we
can probe the Kg — invisible decay using the identical dataset, where the Kg — invisible
candidate is searched for in the system recoiling against a reconstructed qﬁKg candidate.

The yields for the selected normalization sample and the K2 — invisible signal events
are denoted as Nporm. and Nggnal, which are given by:

Nuorm. = 2 % NJ/l/}—ﬂZ)KgKg X B((;5 — K+K7) X B(Kg — 7T+7T7)
X (1= B(K§ = 717)) X enom., (3.1)

and

Nsignal = 2 X Ny g0 k0 X B(¢ — KYK™) x B(K§ — nn")

X B(Kg — invisible) X egignal, (3.2)

respectively. Here, N; b OKY represents the product of the total number of J/v events
and the BF of J/¢ — ¢KYK9, while B(¢ - KTK~) and B(K% — n"n~) are the BFs
of - K"K~ and K} — n'm~ quoted from the PDG [17], respectively. The term
1— B(Kg — mT7~) stands for the probability that Kg decays to processes other than 7tz
which corresponds to our definition of the normalization sample. The efficiencies of selecting
the normalization sample and the signal event are denoted by enorm. and &gignal, respectively.



The BF of the Kg — invisible decay is determined as:

N, signal

B(K?% — invisible) =
( o ) Niorm. (5signal/5norm.)

(1-B(KS — atr)). (3.3)

In this approach, the systematic uncertainties arising from the total number of J/v
events, the BFs of J/v) — ¢KgKg and ¢ — KK~ cancel, and that from the reconstruction
efficiencies mostly cancels. To avoid a possible bias, a semi-blind analysis is conducted using
a randomly selected 10% subset of the full data sample to validate the analysis strategy. The
results presented herein are derived from the full data sample, with the analysis method
predetermined and fixed from the 10% sample.

4 Event selection and data analysis

To select the candidates for the normalization sample, where J/1) — (ngKg, ¢ — K"K,

Tr~, we reconstruct the events with exactly four charged

and only one K2 decays to 7
tracks, ensuring that no additional charged track is present. Charged tracks detected in the
MDC are required to be within a polar angle (6) range of | cosf| < 0.93, where 6 is defined
with respect to the z axis, which is the symmetry axis of the MDC. For charged tracks
originating from ¢ decays, the distance of the closest approach to the interaction point (IP),
|V |, must be less than 10 cm along the z axis and less than 1 cm in the plane perpendicular
to the z axis. Particle identification (PID) for charged tracks is implemented by combining
measurements of the dE/dz in the MDC and the flight time in the TOF to form likelihoods
L(h),h = K,, for each hadron h hypothesis. Charged tracks are identified as kaons by
requiring £(K) > L(7). The ¢ meson is reconstructed through the decay ¢ — K+K~, and
its invariant mass, M (K+K ™), is required to be in the range of [1.00,1.04] GeV /c?.

The Kg (tag) candidates are reconstructed using two oppositely charged tracks, which
are each required to satisfy |V,| < 20cm. Tracks are then identified as pions by requiring
L(m) > L(K). A vertex fit constraints the 777~ pairs are constrained to originate from a
common vertex. A further fit then constrains the momentum of the K2(tag) candidate to
point from the IP to the decay vertex. The measured decay length of the Kg(tag) candidate
ranges from 0 to 20 cm, following an exponential distribution convolved with the resolution.
The ratio of decay length of the K3(tag) candidate to its uncertainty is required to be greater
than two, which maintains an efficiency of approximately 90% while effectively suppressing
the 7t7~ combinatorial backgrounds. The signal region for the 777~ invariant mass is
0.486 GeV/c? < M(nt7m~) < 0.510 GeV/c2.

To further suppress the background from J/¢ — véd, ¢ — KTK~, ¢ — KgKg, the
recoil mass of the selected ¢ candidate is required to be greater than 1.08 GeV/c?, rendering
the contribution from J/¢ — y¢¢ negligible. In addition, we require the cosine of the polar
angle of the ¢ K9 (tag) system to be within the interval [—0.80, 0.80]. This condition ensures
most of the decay products of the recoiling Kg fall within the acceptance region of the barrel
EMC, while a tiny fraction of daughter pions (<4%) may fall outside the acceptance due
to their wider angular distribution. Furthermore, the recoil mass of the selected ¢Kg(tag)
candidate must be within 40 MeV/c? of the known K mass [17].
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Figure 1. Fit to the distribution of M (7™7~). The black dots with error bars represent data and
the red solid line shows the total fit. The blue curve and green dashed area are the fitted signal and
non-peaking background shapes, respectively. Note that the green dashed area does not include the
four-pion and non-¢ backgrounds. The red arrows denote the K9 signal region. The inset of the figure
displays the fit result with a logarithmic vertical scale. The bottom panel shows the fit residuals.

After applying all the above selection requirements, the analysis of the J/v inclusive MC
sample indicates that the primary backgrounds sources affecting Nyorm. can be categorized
into two types: the four-pion and non-¢ background, with the latter dominant. The four-pion
background primarily originates from J/i — ¢KgK Y, with both Kg mesons decaying to

T

7~. The expected yield of the four-pion background in data, as estimated from MC
simulation and normalized to the full data sample, is 1022 + 260. The non-¢ background
is from J/1 — KTK~K2(tag)K? and J/¢ — KT K~ KJ(tag)K3. While the contribution
from the latter decay can be estimated using MC simulation, the contribution from J/v¢ —
KTK~KJ(tag)K? remains uncertain because its BF has not been measured. Therefore, at
this stage, we are unable to directly estimate the contribution from the non-¢ background.

Details about the estimation of this contribution will be discussed in section 5.

To extract the yield of the normalization sample, a binned maximum likelihood fit is
performed on the distribution of M (77 ™), as depicted in figure 1. In the fit, the signal is
modeled using a double Gaussian function, while the non-peaking background is described by
a second-order Chebyshev function. The yield N is determined to be (1.535 + 0.004) x 10°
by integrating the signal function over the KY signal region. It is noted that N represents a
preliminary yield. Given that the four-pion and non-¢ background peak in the signal region
of the M (m 7 ~) distribution, it is necessary to subtract these contributions from N to obtain
the final yield of the normalization sample, Nyorm..

The efficiency of selecting the normalization sample is determined from a MC sample of
J/p — ¢KIK2, with ¢ — KK~ and K3 — inclusive. For this MC sample, the efficiency
is obtained by counting the number of events that survive the selection criteria, and truth
information is employed to identify the events where only one Kg decays to 77~. To



improve the modeling of intermediate resonance contributions to J/¢ — ¢KgKg, the MC
events are corrected based on a multidimensional re-weighting method as described in ref. [41].
A clean control sample of J/v) — qﬁKgK Y% with ¢ — KTK~ and both Kg mesons decaying
to 7T, is selected using the selection criteria similar to that of ref. [42]. Correction factors
are derived from this control sample as a function of the invariant masses of KgKg and qng,
as well as the cosines of the polar angles for the ¢ and Kg, denoted as cos ¢ and cos Kg.
These correction factors are subsequently applied to the MC samples to correct the MC-
simulated shapes, thus enabling accurate determination of the detection efficiencies for both
normalization and signal events. The efficiency is determined to be enorm. = (16.02 £ 0.06)%,
where the uncertainty comes from MC statistics. Note the efficiencies do not include the
BFs of ¢ and Kg subsequent decays.

We search for the Kg — invisible signal using the same selection criteria as those used
for selecting the normalization sample. The detection efficiency egignal is determined to be
(17.14 £ 0.04)% based on the signal MC sample of J/1) — ¢K2(tag) K%, K2 — invisible. As
the Kg invisible decay does not deposit any energy in the EMC, the sum of energies of all
EMC showers not associated with any charged tracks, Ernmc, can be used to distinguish the
signal from background. For the selected showers, we require that they are separated by
more than 10° from other charged tracks, and the difference between the EMC time and the
event start time is required to be within 700 ns. These requirements remove charged-particle
showers and help suppress electronic noise and showers unrelated to the event.

5 Background analysis

The dominant backgrounds affecting the signal side yield, Ngignal, arise from the following
three sources:

o K9 — anything background, which comes from J/i) — ¢K2(tag) K2, with K9 decaying
to visible particles, such as Kg — 7070 and Kg — mt7x~. Notably, the background
from Kg decaying to charged particles, like Kg — ™, is strongly suppressed by
the selection requirements for four-charged tracks and are thus negligible compared to
K% — 7979, Consequently, the energy deposited in the EMC (Egyc) of K& — anything
background is primarily studied using the control sample of J/1 — ¢K2(tag)KY,
Kg — 7979, Good consistency in the Fpyc distributions between data and MC
simulation allows us to model the Kg — anything background using the MC-simulated
shape based on the Kg — 7979 control sample.

o Non-¢ background, which originates from J/¢p — K™K~ K3(tag)K2 and J/¢ —
KTK~KJ(tag)K?. The Egmc of the non-¢ background is characterized by that of
the sideband region of M(K+K~) in data, defined as 1.10GeV/c? < M(KTK~) <
1.14 GeV/c?. The shape remains stable when using alternative sideband region, and the
impact of the sideband choice will be considered as a source of systematic uncertainty.

o Other backgrounds, which arise from J/v decays, such as J/¢ — 7"7r nK*K~, and
from the continuum process, i.e, ete™ — d)KgKg. The former is studied based on
the inclusive MC sample, while the latter is assessed with continuum data collected at

Vs = 3.08 GeV.
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Figure 2. The distributions of Egyc for the accepted candidates in data and the inclusive MC sample.
The black dots with error bars are data, the green shaded histogram shows the non-¢ background,
and the purple shaded histogram shows the other backgrounds in inclusive MC sample. The blue
line shows the K2 — anything background and the red solid line shows the total fit. The red solid
line represents the sum of all the components in the fit, which are stacked together in the plot, while
the individual components are shown unstacked. The gray shaded histogram shows the signal shape,
normalized to a BF of 8.0x1073 (10x the obtained limit). The bottom panel shows the fit residuals.

The Egyc distribution, as shown in figure 2, demonstrates that the total Egyc distribu-
tion from the background model agrees well with the data. A binned maximum likelihood
fit is performed to determine the signal yield. In the fit, the signal is described by the
MC-simulated shape, which is corrected based on the Kg — T~ control sample as detailed
in section 4. The yield of the non-¢ background is a free parameter in the fit, while the total
contribution from both non-¢ and Kg — anything backgrounds is fixed to the preliminary
yield, N. The continuum background is characterized using the shape derived from the
continuum data at /s = 3.08 GeV, with a yield normalized to the J/¢ data sample, after
taking into account different integrated luminosities and center-of-mass energies [24]. The
other backgrounds are modeled using the shape derived from the inclusive MC sample, with
a yield normalized to the total number of J/1 events. No bias is found in the fit procedures
through an input/output check using toy MC samples, which are generated by mixing the
simulated signal and background events. The fit gives the signal yield Ngjgna to be 56 &
201, which is consistent with zero. Additionally, the fit quantifies the contribution from the
non-¢ processes, which allows determination of the final yield for normalization sample by
subtracting the identified non-¢ and four-pion background components from the preliminary
yield N. Specifically, the contributions subtracted for the non-¢ and four-pion backgrounds
are (3.457 4+ 0.049) x 10* and 1022 + 260, respectively. The resulting yield is calculated
to be Nyorm. = (1.179 £ 0.007) x 105.

Since no significant signal is observed, an UL on the BF of KJ — invisible is estimated
after taking into account the systematic uncertainties described in the following section.



6 Systematic uncertainties

The strategy of this analysis effectively cancels many potential systematic uncertainties.
Specifically, the uncertainties related to the total number of J/1 events, B(J/y — ¢ KIK?2)
and B(¢ — KK~ ) completely cancel, and those from the selection criteria and the MC model
of J/¢p — ¢K2KY are greatly reduced by the ratios in eq. (3.3). The remaining systematic
uncertainties on B(KY — invisible), as summarized in table 1, are described below.

e Nporm.- To estimate the systematic uncertainty in the determination of Nporm., we
replace the signal shape of a double Gaussian with a MC-simulated shape convolved with
a Gaussian function, and vary the nominal bin size of 1 MeV/c? to either 0.5 MeV /c? or
2MeV /c?. The maximum change in the signal yield, 0.7%, is assigned as the systematic

uncertainty.
o BF of K% — nt7~. The uncertainty of B(KY — 777~) is 0.1% [17].

o Signal shape. The systematic uncertainty due to the signal shape in the fit to Egyc is
evaluated by replacing the nominal signal shape with two alternative models. The first
model uses the MC-simulated shapes that are re-weighted following the same procedure
as in the nominal analysis. The major difference, however, lies in the derivation of the
correction factors, which are now functions of the momentum of K2 and ¢ (denoted as
Py and Ps), and the cosine of the corresponding polar angles, cos(¢) and cos(K9). The
second model employs the data-driven generator BODY3 [42], which was developed to
model contributions from different intermediate states observed in data for a three-body
final state. The Dalitz plot from data, corrected for backgrounds and efficiencies, is
taken as input for the BODY3 generator.

. Kg — anything background shape. To account for the uncertainty arising from the
background shape of K g — anything in the fit to EFryc, we employ the same alternative
models as used for estimating the uncertainty related to the signal shape.

o Non-¢ background shape. In order to estimate the systematic uncertainty associated with
the background shape of the non-¢ process, alternative sideband regions, specifically
[1.12, 1.16] GeV /c? and [1.08, 1.12] GeV/c?, are taken into consideration.

When estimating the BF of Kg — invisible, the correlations among different systematic
uncertainties are taken into account and varied simultaneously in the likelihood fit.

7 Result

We employ a modified frequentist approach as described in refs. [16, 43, 44], to set the UL of
B(KY — invisible) in eq. (3.3) incorporating all the systematic and statistical uncertainties.
Thousands of toy samples are generated according to the Egye distribution observed in
data. In each toy sample, the number of events is sampled from a Poisson distribution with
a mean value corresponding to the data.



Source Choice or uncertainty

Nnorm. 0.7%

B(K% — ntn™) 0.1%

Signal shape W(ng,pd), cos ¢, cos K9), BODY3 MC
K9 — anything background shape W(ng,p¢, cos ¢, cos K9), BODY3 MC
Non-¢ background shape [1.12, 1.16], [1.08, 1.12] GeV /c?

Table 1. The systematic uncertainties in setting the UL of B(KY — invisible). The nominal analysis
criteria are also included as a choice for the last three rows, but are omitted here to save space.
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Figure 3. The distribution of B(KY — invisible) determined from toy MC samples. The shaded area
corresponds to the 90% coverage in the physical region.

For each toy sample, the same fit procedure used for data is performed, where different
systematic uncertainties are randomly varied. The shapes of signal and backgrounds, as
listed in table 1, are randomly selected during the fit process. The total contributions from
non-¢ and Kg — anything are fixed to the values constrained by a Gaussian distribution,
with the central value of N, and the uncertainty corresponding to the standard deviation.
The uncertainties related to the continuum process and the other background are found to
be negligible. To calculate B(Kg — invisible) in eq. (3.3), the €norm. and gignal are Gaussian-
constrained by their respective statistical uncertainties. Nyorm. is also Gaussian-constrained,
with widths obtained by the quadrature of the statistical and systematic uncertainties, as
detailed in table 1.

The resulting distribution of the calculated B(K2 — invisible) across these toy samples
is shown in figure 3, which follows a Gaussian distribution as expected. By integrating the
Gaussian distribution in the physical region greater than zero, the UL of B(Kg — invisible)
is determined to be 8.4 x 10~* at the 90% confidence level.



8 Summary

Based on (1.0087 =+ 0.0044)x10'° J /4 events collected with the BESIII detector, we search
for Kg invisible decays for the first time. No significant signal is observed. The UL on the
decay BF is set to be 8.4 x 10™* at the 90% confidence level. This work provides the first
direct measurement of the BF of Kg — invisible, with results that are compatible with the
indirect estimation. This search also provides a direct experimental basis to perform CPT
tests with the BSR without assumptions about invisible decay modes.
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