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Strong-field QED (SFQED) probability rates in the locally monochromatic approximation (LMA) have
become an indispensable tool for simulations of processes like gamma-ray emission or electron-positron pair
production in laser-particle collisions. We revisit the LMA derivation and explicitly demonstrate that it is based
on the separation of timescales, neglect of the long-range interference effects, and subsequent averaging over
the cycle scale. Doing so, we obtain unambiguously LMA rates for arbitrary polarizations of the plane-wave
background. Additionally, we partially restore the finite bandwidth effects that are lost in the LMA derivation.
We refer to the bandwidth-restored result as the LMA™ and show that it agrees with the full SFQED predictions
better than the standard LMA. We use LMA™ to address previously inaccessible observables and formulate
an additional limitation on the applicability of locally monochromatic approximations in general. We provide
analytical results for the angular-integrated LMA™ probability rate and the fully differential probability that

account for the finite bandwidth effects.
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I. INTRODUCTION

The dynamics of charged particles in ultrastrong electro-
magnetic fields is characterized by nonlinear effects [1-3].
These nonlinearities can, for instance, substantially alter the
characteristic signatures of the emitted radiation [4-7], facili-
tate radiation backreaction [8—11], or lead to the generation of
copious amounts of matter-antimatter pairs [12]. Such highly
nonlinear regimes have now become experimentally acces-
sible by employing ultrahigh-intensity laser pulses [13,14].
In general, strong-field QED (SFQED) effects are important
for plasmas in extreme-field conditions not only in labo-
ratories but also in astrophysical environments [2,15-17].
Dedicated experiments to study SFQED processes in detail
can be performed by colliding high-intensity laser pulses with
ultrarelativistic electron bunches, either from a laser-plasma
accelerator [7-9] or from a conventional accelerator [18-21].

The strength of laser-matter interaction is usually char-
acterized using two parameters: (i) the classical nonlinearity
parameter a and (ii) the quantum parameter y . The parameter
ap = |e|E /mwc represents the work done by an electric field
with field strength E on a particle with charge e < 0 over
a distance set by the wavelength of the field A = 27c/w in
units of the particle’s rest energy mc>. Alternatively, if one
implies a quantum-mechanical picture, ay tells how many
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field “photons” participated in a SFQED process. Therefore,
if it becomes of the order of 1 or larger, we expect to ob-
serve features of a nonlinear interaction between a charged
particle and a laser field [2,3]. It also serves as the inverse
Keldysh parameter [22], meaning that the process becomes
perturbative as ap — 0 and turns quasistatic as ay — oo. The
quantum parameter is defined as x = efiy/—(F,,p")*/m*c?,
where F,,, is the electromagnetic field strength tensor and p*
is the particle’s four-momentum. Quantum processes become
efficient if x ~ 1 [23]. For an electron emitting a photon,
this means that the latter acquires a significant fraction of the
electron’s initial energy. The photon itself is characterized by
its own y,, and it is efficiently converted into e*e™ pairs if
Xy ~ L

When x exceeds the order of unity one usually has to rely
on computer simulations to describe the outcome of exper-
iments, especially if the emitted photon’s y, exceeds unity,
and it efficiently produces a second generation of charged
particles. These, in turn, keep radiating and produce subse-
quent generations, forming a so-called shower-type cascade
[24,25]. For each subsequent generation the total energy is
shared by more and more particles, and eventually the x
parameter becomes significantly less than 1, and the cascade
stops [26-28], unless there is an efficient reacceleration of the
particles, in which case the cascade growth is self-sustained
[12,29-32].

In particular, shower-type cascades with medium-to-high
multiplicity of final state particles are of great importance for
contemporary experimental campaigns of SFQED [19,20,33].
Unfortunately, a complete analytical treatment of these pro-
cesses is near impossible within the full SFQED framework
due to the complexities of high-order S-matrix calculations
[3]. However, for sufficiently strong and/or long pulses, it
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is possible to split the higher-order processes into first-order
building blocks [34-36], such as nonlinear Compton scat-
tering (NCS) [37] and nonlinear Breit-Wheeler (NBW) pair
production [38]. In doing so, one neglects all contributions
from off-shell intermediate particles [3], but it opens avenues
for numerical simulation frameworks in which the particles
propagate on classical trajectories between the quantum pro-
cesses, described by some probability rates [2].

The rates for the quantum processes in arbitrary field
configurations, such as the ones found in laser-plasma in-
teractions, are the most commonly employed in the locally
constant field approximation (LCFA) [23], or its extensions
[39—44]. The applicability of the LCFA is, however, limited
toap > 1 and ag /x > 1[39,45,46]. Many features like har-
monic and subharmonic structure of the spectra are lost in
the LCFA. Moreover, for the NCS the LCFA overestimates
the low-energy part of the emitted spectrum, even when all
the aforementioned requirements are fulfilled. Despite these
shortcomings, the LCFA is nowadays implemented in many
particle-in-cell simulation codes’ SFQED modules [47-51].

For collisions of a high-intensity laser with a particle beam,
where the laser field can be assigned a distinct wave vector
and pulse envelope, such that the pulse contains many carrier
wave cycles, another approach is the locally monochromatic
approximation (LMA). In contrast to the LCFA, the LMA is
not restricted to large ap, and is able to resolve harmonics
in the emitted spectrum. Incidentally, the LMA was actually
used for the simulations of the SLAC E-144 experiment [18],
by just using the results for the SFQED scattering rates in
infinite monochromatic plane waves modified by a local value
of ap. The LMA was formally derived only relatively recently
by performing a separation of carrier wave and envelope
timescales [52]. Nevertheless, the LMA has already proven
its utility and reliability for numerical simulations, especially
in the transition regime ay ~ 1 [53-58].

In this paper, we revisit the alternative derivation of LMA
and find a procedure to obtain the LMA probability rates
from the full SFQED probability. The essential aspect in our
approach is that a cycle-averaging procedure is necessary for
finding the correct LMA rate. While this seems like a natural
necessity in view of the scale separation, and it was implied
in the application of the LMA in simulation codes [53], it
was never explicitly employed in the derivation of the LMA
rates themselves. By manifestly performing the cycle averag-
ing, we are able to fill several gaps in the LMA derivation
that previously required numerical arguments. In addition, we
propose an extension of the LMA, which we call LMA™, that
restores some bandwidth effects and removes divergencies in
the fully differential LMA rate and probability. We confront
our findings with the standard LMA, the LCFA, and with exact
SFQED S-matrix calculations to demonstrate the validity of
our results and discuss the underlying physics. Our findings
indicate an additional limitation for the applicability of the
LMA for large ap > 1. Moreover, we find analytical results
for both the angularly integrated LMA™ rates, and the LMA™
probabilities when integrated over the complete laser pulse
history.

The paper is organized as follows. In Sec. II we de-
rive the LMA probability rates for arbitrary polarizations
of a plane-wave background, by explicitly employing the

cycle-averaging procedure. In Sec. III we formulate a fully
differential LMA™ probability rate and show how to obtain
analytical expressions for the angular-integrated LMA™ and
fully differential probability that account for the finite band-
width effects. The LMA™ results are then compared with
the standard LMA, the LCFA, and the full SFQED calcula-
tions (Sec. III B), and further analytic results are presented
(Sec. ITC). We conclude in Sec. IV. In Appendix A we
provide a detailed derivation of the series representation of
the floating average, which we use in our LMA derivation.
Finally, in Appendix B we show evaluation of the generalized
Neumann-type integrals that appear in the cycle-averaging
procedure. Throughout this article, we employ Heaviside-
Lorentz natural units with # = ¢ = €y = 1, such that the fine
structure constant reads a = e? /4. Scalar products between
four-vectors are denoted as k - p = k¥ p,,.

II. ALTERNATIVE DERIVATION OF THE LMA

The locally monochromatic approximation (LMA) has
become a cornerstone of numerical simulations of SFQED
processes in collisions of particle beams with high-intensity
lasers, especially in the transition regime ag ~ 1, where the
LCFA is not applicable. However, it is more numerically
expensive and applicable only for the backgrounds with char-
acteristic carrier frequency scale (e.g., laser frequency w) and
which are sufficiently long. For the purpose of the separation
between carrier and pulse envelope scales we later introduce
a dimensionless pulse duration parameter A. With this, the
LMA can be seen as an asymptotic series expansion for
1/A « 1 [3]. For a more detailed discussion of the require-
ments we refer to Ref. [52], where the first formal derivation
of the LMA was presented by approximating on the level of
the strong-field S matrix. As we will see further, the require-
ment for the existence of two different timescales is crucial
in the LMA derivation, since it allows performing the cycle
averaging over the fast component of the field. Even though
the cycle averaging was implied and implemented in numeri-
cal simulations, it has not yet been employed explicitly in the
LMA derivation. Here we will fill this gap in a derivation of
the LMA, which also opens an avenue for extensions of the
LMA.

A. Probability for nonlinear Compton scattering

To demonstrate the alternative derivation of the LMA, we
specifically consider nonlinear Compton scattering (NCS). An
initial electron with four-momentum p* collides with a plane
electromagnetic wave with the normalized vector potential
a,(k-x)=apf  (k-x) and four-wave-vector k*. The sym-
bol “1” stands for the components perpendicular to the
background plane-wave propagation direction. In the course
of interaction, the electron emits a photon with the four-
momentum k* and propagates further with the final four-
momentum p* (see Fig. 1).

The differential probability for the process, averaged over
the initial electron’s spin and summed over the all final spin
and polarization states of the final electron and photon, may
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FIG. 1. SFQED Feynman diagram for nonlinear Compton
scattering.

be written as [59]
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Here, we parametrize the final state photon via the normalized
momentum £ = k - p/k - p that needs to be absorbed from the
background field in order to put all particles on shell, such that
p* + lk* = k* + pt*. Furthermore, we introduce the scaled
transverse momentum o, = (k, — sp,)/ms, where s = « -
k/k - p is alight-front momentum fraction. These dimension-
less variables are related as s = 2n¢/(1 + 2nf + pi), where
n =k -p/m? is an initial electron energy parameter. The
background pulse profile function f | (¢) = g(¢/A)h, (p)isa
product of an envelope g(¢/A) and a carrier ki, (¢), where A
is a pulse duration. The envelope rapidly vanishes at infinity,
g(£00) — 0, and satisfies the condition g(0) = 1.

The probability, Eq. (1), is expressed as a twofold inte-
gral over the average laser phase ¢ = (¢ + ¢’)/2 and the
interference window 6 = ¢’ — ¢ [3], where ¢ and ¢’ are the
phase variables of the strong-field S matrix and its complex
conjugate, respectively. These variables enter the probability
via the floating average of the background profile function,

1 o+6/2
(fo) = 5[ f1(@)do, ®)
»=0/2
where their nontrivial dependencies make an exact analytical
treatment intractable if one accounts for the finite duration
of the background field. Usually, either some numerical ap-
proaches [60—62] or various approximations schemes [63—65]
have to be employed to evaluate the NCS probability, Eq. (1),

further.

B. Definition of a protorate

In this subsection we make the first steps towards the LMA
probability rate, by first deriving a protorate, R(¢), as the
quantity that returns the probability when integrated over the

laser phase ¢,

dP +o0
_— = d .
TVPN /_ _de R (6)

In general, the quantity R(¢) is not strictly positive and
therefore cannot be interpreted as a probability rate directly.
We will demonstrate further below that only under certain
(slowly varying envelope and local) approximations and, most
importantly, a subsequent cycle-averaging procedure, the
protorate R can be converted into a proper positive-definite
probability rate.

The central object for our further analysis is the floating
average, Eq. (5), since it contains all information regarding the
structure of the plane-wave background. To better see how this
information is encoded, we rewrite the integral Eq. (5) using
the following series representation (for detailed derivation, see
Appendix A):

R o\ d> f ,(p)
=Y e 1)!(5> o )

n=0

The main advantage of this representation is that it disentan-
gles the dependency on the variables ¢ and 6 from the integral
limits.

Given that our background profile function is a product
of envelope and carrier functions f | (¢) = g(e/A)hy(¢), we
use the Leibniz rule to write the 2n-th-order ¢ derivative as
follows:

2n

2
R OEDY ( kn>g(k)(%>hf"k)(¢). (8)

k=0

To demonstrate the interplay between the envelope and the
interference window 6, we explicitly write down the result for
the first two terms k = 0, 1 in the sum (8). Substituting (8)
into (7) and exploiting the fact that components of the carrier
h, (p) are sines or cosines, we obtain the first two terms of the
expansion of the floating average (7) in the inverse powers of
the characteristic pulse width A > 1 [3]:

0
0(f ) ~ 2g<§)hmp>sin (5)

+ %g(%)hﬁ_”@)[@ cos % — 2sin g] )
Here we show the result for 6 (f | ), since this quantity enters
the probability (1). The notation hfl)(go) stands for the an-
tiderivative of the carrier, and the prime g’ corresponds to the
derivative with respect to the whole argument.

The second term in the expression (9) contains contribu-
tions with two different scalings: ¢/A and g6/A (we omit
the argument of the envelope’s derivative for conciseness).
The term ~g'/ A is responsible for the local effects, associated
with the gradients of the finite envelope, and can be discarded
if one employs the slowly varying envelope approximation
(SVEA) [66]. However, the SVEA alone is insufficient for
dropping out the term ~6g'/A, which encodes the global
structure of the pulse via coupling between the interference
window 6 and the envelope’s gradient g'. It corresponds to the
interference effects on the scale of the entire pulse and ac-
counts for the fact that the probe particle enters and leaves the
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interaction region at finite times [67,68]. Therefore, to discard
it, we have to neglect the interference on the envelope scale
by imposing a local approximation 8/A < 1. This restriction
ensures the inclusion of the interference effects only on the
scale of one or several cycles, where the background field
deviates insignificantly from the monochromatic plane wave.
Thus, given the SVEA and the local approximation (6/A «
1), we may rewrite floating averages of the background profile
function and its derivative in (1) as

0
0(f ) ~ 2g<%>hm)sin (5)

0
O(f) ~ 2g( A)h;(so)sm (2) (10)

To obtain the result for (f i) in (4) we have to specify the
polarization of the carrier explicitly. Henceforth, h, (¢) =
(cos @, § sing), where § is an ellipticity parameter [§ = 0—
linear polarization (LP); § = Z1—circular polarization (CP)].
Using this definition, we find

0(f1) ~ %f(%)[(l + 856 + (1 — 8%) cos 2¢ sin ].
(11

From (11) we see that for circular polarization the oscillating
term vanishes, leaving only linear dependency on interference
window 6.

To derive our result for the LMA protorate, Ryma, We
substitute all approximations for the floating averages into
Egs. (1) and (4) and apply the generalized Jacobi-Anger ex-
pansion [69] with respect to the interference window 6. We
find

dRima(@)
ded?p |

- ——A Z D, (¢)/ exp [i@(;(cp)— g)}de,

(12)
with
t(p) =€+ %aéi(%), (13)
and
Du(@) = Ju(X,¥) + a—3g2<2>3[1 + 62
2 A

— (1 =85 ¢c0os 2012, — Tuesz — Tus2).  (14)

The functions J, are generalized two-argument Bessel func-
tions [70], which are related to the ordinary Bessel functions
of the first kind via the series representation [69]

~+00
TnX,Y) =" Ty (X)J(Y). (15)

k=—00
The arguments of the generalized Bessel functions are
X =2xcos(p — 1) and Y = 2ycos2¢. Here we introduced
an azimuthal angle in the transverse momentum plane

0.081

0.041

0.001

-D,

—0.041

—0.081

FIG. 2. The first two terms of LMA protorate (n = 1 solid red
and n = 2 solid blue lines) in IPW limit. The dashed lines stand for
the corresponding cycle-averaged values. The other parameters are
chosen as ap =1, n =0.1, p, = (ap,0), £ =5/12 for n =1, and
£=5/6forn=2.

¢ = arctan(d o,/ p,) and shorthand notations,

X=—"T"T"> a8l - ) gz
1~|-,0l A 4(1+p1_)

(16)

For circular polarization, § = £1, the generalized Bessel
functions (15) reduce to the ordinary Bessel functions since
y = 0 in that case. The remaining 6 integral in Eq. (12) can be
performed, resulting in the delta distributions

dRimale) _ 2« ™= o
Tded?p, ;AZDn(qJ)é[mp) 2]. (17)

n=1

We note that contributions with n < 0 drop from the sum-
mation automatically, because of the presence of the delta
distribution and the positiveness of ¢ (¢); see Eq. (13).

Naively, one might expect that Eq. (17) already is the
sought-after LMA probability rate. But it is not. It still al-
ters in sign, as indicated previously at the beginning of the
section. Moreover, Eq. (17) contains contributions from the
half-integer harmonics stemming from the condition ¢ (¢) =
n/2 for odd n. To exhibit this behavior explicitly we plot
in Fig. 2 the quantity —D,(¢) for n = 0, 1, where we also
employ g =1, i.e., the infinite plane-wave (IPW) limit. We
see that both the n = 1 (red solid curve) and the n = 2 (blue
solid curve) contributions become negative for some values
of ¢. The half-integer harmonic, which corresponds ton = 1,
oscillates around zero and vanishes after averaging over the
cycle. Meanwhile, the integer harmonic, n = 2, averages to
some finite positive value which eventually corresponds to
the first harmonic in the IPW probability rate [23]. In the
same manner, all contributions from odd n average to zero,
whereas the terms with even n provide the correct result for
the IPW rate. These examples show the relevance of the cycle-
averaging procedure, which we will demonstrate explicitly for
the LMA rate in the next subsection.

032819-4



EXTENDED LOCALLY MONOCHROMATIC APPROXIMATIONS ...

PHYSICAL REVIEW A 112, 032819 (2025)

C. Cycle averaging of the protorate

In this section, we formally obtain the LMA probability
rate unambiguously for circular and linear polarizations of
the plane-wave background, by cycle averaging the LMA
protorate, Eq. (17), according to

1 ¢+
Riva(0) = o / Rum@)de.  (18)
T Jon

In this procedure we may treat the pulse envelope as a con-
stant, g(¢'/A) ~ g(¢/A), due to the SVEA.

After cycle averaging (18), the protorate (17) turns into the
positive-definite probability rate:

dRLMA _ 2OlA
dtd’p,

+
Y Du(@)ls(p) —nl,  (19)
n=1
with
DI ) = g3+ a3 (4 )B[203 2~ 2] 20)

for circular polarization and

2
D’(qLP)((p) — k7n2(x, y) + a2_0g2<%>B(2\7nz + L7}172‘-7n

+ TnTniz — Ty = 2001 T — Tyy) (21

for linear polarization. The integrals that appear in the cycle
averaging are known as Neumann-type integrals, and details
on their evaluation are presented in Appendix B. Here we
just stress that contributions from the half-integer harmonics,
which plagued Eq. (6), vanish after the cycle averaging. From
now on, the correct numbering of the harmonics is restored;
i.e., n = 1 refers to the first harmonic, etc.

The expressions in Egs. (19)-(21) agree with the known
LMA probability rates for circular and linear polarization
from the literature; see, e.g., Ref. [52]. The textbook result of
the IPW limit can be easily reobtained from these expressions
by just setting g = 1. In contrast to the first derivation of the
LMA in Ref. [52], here we arrived at the same result by ap-
proximating the expression for the probability of the process
and not the S-matrix elements. In contrast to Ref. [52], our LP
case result is not expressed via a double sum over harmonics
that emerged after squaring the S-matrix element. Numerical
studies showed that the contribution of the off-diagonal terms
n # n’ in the double sum is insignificant for the relevant pa-
rameter regime [52], and some authors used this circumstance
for their findings [55,57,58,71]. However, it was not clear why
there should be such a fundamental distinction between the CP
and LP cases.

In our derivation of the LMA rates there are no double
sums at all since we take the probability as a starting point.
However, the cycle-averaging procedure (18) is absolutely
necessary to obtain the LMA probability rates. Incidentally,
the integration over the azimuthal angle ¥ in the transverse
momentum plane in the first derivation of the LMA rate in
Ref. [52] for the CP case technically corresponds to the cycle
averaging, due to the symmetry of the CP background and
the fact that the relevant integrals depend on the laser phase
only in the combination ¢ — ©#. However, this symmetry ar-
gument only applies for circular polarization. Additionally,

we would like to point out that if one performs the cycle
averaging in Eq. (A34) of Ref. [52], the off-diagonal terms
are eliminated, and the result coincides with our Eqs. (19) and
(21). Thus our findings so far are in complete agreement with
Ref. [52].

To summarize this section, we emphasize once again the
assumptions that we made for deriving the LMA. First, it
is necessary to neglect the local gradients of the pulse en-
velope, employing the SVEA. Second, we discarded the
interference effects on the entire pulse scales (local approx-
imation /A < 1). Third, employing once again the SVEA,
we performed the cycle-averaging procedure, which turns the
sign-alternating protorate Eq. (17) into the positive-definite
LMA probability rate Equation (19). The implementation of
the LMA rates in numerical codes for the simulation of laser-
particle collisions is based on splitting the dynamics into
slow and fast timescales, where the particles move on cycle-
averaged ponderomotive trajectories and all information on
the fast quiver oscillations is contained in the LMA probabil-
ity rates [53,56]. Conceptually, the probability rates entering
the simulation should also be the ones taken at the cycle-
averaged particle location. Here, we made explicit use of the
cycle-averaging procedure in the derivation of LMA rates,
rendering the simulation framework more self-consistent.

III. BANDWIDTH-RESTORED LMA

In deriving the LMA probability rate, we employed a local
approximation that effectively discards long-range interfer-
ence effects associated with the finite extent of the plane-wave
background [67,68]. This crucial step is what makes the ap-
proximation monochromatic by removing finite bandwidth
effects usually associated to a finite pulse duration. This
feature formally manifests in the appearance of delta distri-
butions in Eq. (19). As a consequence, the LMA probability,
which is obtained by integrating Eq. (19) over the laser phase
¢ has divergences [3]. Specifically, the triple differential prob-
abilities of the nth harmonic diverge o< 1//€ — ¢, as £ —

£, =n/[l+ Z‘%(IH;)], the locations of the IPW harmonics.
(1+p2)

The underlying reason is that the condition ¢{(¢) = n in the
argument of the delta distribution in (19) becomes station-
ary [i.e., ’(p) = 0], resulting in the fold-type caustic in the
emitted spectrum [3,72-74]. In the following, we introduce
a procedure to “remedy” the LMA probability rate of these
divergencies by reintroducing finite bandwidth effects.

A. Derivation of the LMA™

To obtain a divergence-free fully differential probability,
we address a subtlety in the formal derivation of the LMA,
namely, the evaluation of the € integral in (12) yielding the
delta distribution in (17). This delta distribution is accumu-
lated, when one integrates over the whole range of the 6
variable, including contributions even from the interference
windows 6 that do not formally satisfy the condition 6 /A<1.
The way we resolve this inconsistency is by introducing a
window function W(6) into expression (12), with the pur-
pose of excluding contributions from the 8 regions, where the
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FIG. 3. Fully differential LMA™ probability rate of NCS in a LP pulse as a function of £ and ¢ as a contour plot (left). The location of
the first harmonic’s center, according to Eq. (24), is depicted by the red dashed curve. The right panel shows a lineout at ¢ = 0. The other

parameters are ap = 2, A = 10, n = 0.1, and p, = (ao, 0).

condition 6 /A < 1 is not fulfilled,

ded?p |

oo +o0
=—5A Y Dule) [ WO)exp @0l¢(p) — n)db.

n=-—o0 o0

(22)

This reintroduces a finite bandwidth of the background, that
was neglected due to the local approximation. We denote this
bandwidth-restored LMA as LMA™.

In principle, the window function WW(@) could be chosen
arbitrarily. Hereinafter, we model the envelope of the back-
ground with a Gaussian function g(¢/A) = exp(—¢?/2A?)
and choose our window function to be Gaussian as well. To
find a suitable value for the width of the Gaussian window,
we match the spectra of LMA™ to the exact SFQED result
in the weak field limit a9 < 1. This prescription determines
the window function as W(0) = exp(—62/A?). We note that
to achieve full correspondence of the spectra in the weak
field limit, it is necessary to choose the window function in
accordance with the envelope function. After performing the
integration with respect to 6 in Eq. (22), we obtain the LMA™
rate as

20A 2 2
—n3/2AZD"("’)eXP(_A (£ (@) — n]%).

n=1

dtd?p,

(23)

In the standard LMA, the position of the harmonics is strictly
defined by the delta distribution and the condition ¢ (¢) = n,
yielding a relation between transferred momentum and laser
phase as [64]

n(l1+ p?)
L+ 0%+ Haigi /D)

() = 24)

In the LMA™, the delta distribution is replaced by the Gaus-
sian in Eq. (23). Thus the harmonic lines are rather “smeared”
in the vicinity of the original positions, Eq. (24), and the
width of the harmonic lines is oc A~!. The finite bandwidth
contribution in the harmonics is the consequence of the finite
temporal domain assigned to the 6 integral via the Gaus-
sian window function in Eq. (22). The absence of the delta
distribution in (23) also implies that n could be zero or a
negative integer in the LMA™. However, since A > 1, and
the assigned harmonics bandwidth is small, the contributions
from the zeroth and negative harmonics are negligible [67], so
we will not discuss them any further.

In Fig. 3 we display the distribution of the fully differential
probability rate as a function of the laser phase ¢ and the
transferred momentum £. This distribution tells us how the
harmonic structure of the emitted spectrum is formed through-
out the laser pulse. The red dashed curve in the left panel of
Fig. 3 designates the position of the first harmonic according
to Eq. (24). Each harmonic exhibits phase-dependent redshift
that results in the broadening [75] and the overlapping [61]
of harmonics after integrating over the laser phase ¢. The
maximum redshift takes place in the middle point (¢ = 0) of
the laser pulse [see Eq. (24)], where the field intensity is the
largest. We see that the higher harmonics are emitted closer
to the pulse peak, which agrees with the previous theoretical
studies [65]. To demonstrate the recovered finite bandwidth,
we plot the lineout for ¢ = 0 in the right panel of the Fig. 3.
Due to the specific choice of the window function in (22), the
emitted harmonics have a Gaussian profile.

B. Numerical results for the fully differential LMA™ probability

In this section, we show the numerical results for various
observables and discuss the underlying physics, contrasting
the LMA and LMA™ with calculations of the NCS probabil-
ity calculated by using the exact SFQED S-matrix elements
[60-62], and the angularly resolved LCFA [76].

032819-6



EXTENDED LOCALLY MONOCHROMATIC APPROXIMATIONS ...

PHYSICAL REVIEW A 112, 032819 (2025)

10-3 10-3
0.40 | W X
\ 0.020 | | 1 1 | --- LMA 7.51
\ | | 1 1 | i
4 0.015 4 | | 1 1 | —— LMA
0321 | oyl b — LCFA
0.010 4 : I : : : SFQED 6.0
0.005 1 1 | | | | | 1 |
50.244 121 [ I R { [ 15
o X 1 I | I I 0
3 0 : | 1 | | 1 | 11
5 ] 1 I | a I I
3 1 I ] I I
< 0.16 8 b [ I B
' | | ) I |
| 1 | I |
\ | | 1 1
0.081 44 | !
\ | |
{
0.00 , , T 0 Al
0.00 0.25 0.50 0.75 1.00 1.25 1.50 0 1 5
l

FIG. 4. Fully differential NCS spectra in CP background plotted for the different values of the transverse momentum p, : p, = (0, 0)-left
(on axis), p, = (ap, 0)—center, p, = (2ayp, 0)-right. The classical nonlinear parameter ay = 2, pulse width A = 25, and the initial electron

energy parameter n = 0.1.

We start our investigation by comparing in Fig. 4 the
triple-differential probabilities dIP /dfd*p, as a function of
£ for ap =2 and A = 25, and for fixed values of p, in each
panel. In general, both the LMA and LMA™ are reasonable
approximations of the full SFQED spectra for these parame-
ters. The LCFA, on the other hand, is not capable of correctly
reproducing the harmonic spectra here for ay ~ O(1)—it is
outside the realm of its applicability.

Both the LMA and the LMA™ correctly predict the har-
monic structure of the NCS spectrum. For a finite pulse, the
location of the nth harmonic is approximately given by the
condition [64]

1+ 0%
~ Z\Z\Vl,

(g =0)=n— P
W=0=n o a

(25
with £, (¢) given in Eq. (24). In the LMA, this condition is
strict, while the SFQED result slightly spreads outside this
region due to the finite background pulse bandwidth. This
behavior can be seen particularly well in the inset in the left
panel of Fig. 4. The LMA™ correctly reproduces this behavior
of the SFQED result. More crucially, the LMA diverges at
the lower boundaries of the harmonic ranges, while both the
SFQED and LMA™ results stay finite. Apart from these dif-
ferences at the endpoints of the harmonic ranges, the LMA™
result agrees with the standard LMA.

Neither the LMA nor the LMA™ can reproduce the char-
acteristic subharmonic structure of the full SFQED spectrum
[61,65]; they yield an average over these high-frequency os-
cillations. The subharmonic structure is due to long-range
interference between the two indistinguishable events (e.g.,
emission of the photons of the same energy at the same angle
in different points of a laser pulse), separated by the distance
6 ~ A, and is inaccessible, if one adheres to the local approx-
imation 0/A < 1.

We note that the positions of harmonics maxima in the
LMA™ have a slight offset compared to the SFQED result
(see, in particular, the inset in the right panel of Fig. 4). This
small discrepancy stems from our windowing procedure (22).
Due to the specific choice of the window function W(0), each
harmonic has a Gaussian profile in the vicinity of the cutoff

(see also the lineouts in Fig. 3). In fact, the correct shape of
the harmonic profile is closely related to the Airy function
due to the fold-type caustic structure of the emitted spectrum
[66,72,73,77].

In Fig. 5 we address how the LMA™ works for the different
laser strength ap and pulse durations A. We see that better
agreement is achieved for the smaller ay and the longer pulses.
With the growth of intensity, the overlap of harmonics and
subharmonic structure result into the presence of additional
subpeaks that are even more pronounced than the harmonics
themselves. For smaller values of ag, harmonics do not over-
lap, and the additional peaks are missing, whereas the longer
the pulse, the better LMA™ averages through the subharmonic
structure, which is also true for the larger ay.

Next, we investigate dIP/d€d’p, as a function of p, for
fixed £. In Fig. 6 we compare these angular distributions of
the emitted radiation in the LMA™ with results obtained in
the LCFA and the exact SFQED calculations for the CP case.
We note that this quantity cannot be easily plotted in the
standard LMA due to the occurring delta distributions. The
qualitative difference between the LCFA (first column) and
LMA™ (second column) can be understood from the perspec-
tive of the semiclassical picture. The LCFA predicts radiation
beaming (with a typical width p; ~ 1) along the direc-
tion of the electron instantaneous momentum [53,76], which
follows the laser vector potential in the transverse plane.
Along with that, the radiation forms the characteristic pattern
that imprints the cycle-scale structure of the laser pulse. In
general, for the pulses of finite duration, this structure is not
necessarily azimuthally symmetric. Such symmetry can be
attained only in the limit of very long pulses, the details of
which are discussed below. Meanwhile, the LMA™ manifests
azimuthally symmetric distribution, due to the averaging over
the cycle scale. In the third column in Fig. 6 we compare
lineouts of the LCFA and LMA™ results for p, = 0 with the
exact SFQED calculations. We see that also the SFQED result
has distinct peaks due to the radiation beaming just like the
LCFA (top row), which is not seen in the LMA™ result.

The qualitative agreement is achieved between the LCFA,
LMA™, and SFQED only when the pulse is sufficiently long
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FIG. 5. Fully differential NCS spectra in CP background for the different intensities and pulse durations. The transverse momentum is
always chosen as p, = (ao, 0) and the initial electron energy parameter n = 0.1.

for a given intensity, so the emitted radiation from many
cycles averages to a homogeneous pattern (see the last row
in Fig. 6). To ensure this, we formulate an additional re-
striction on the applicability of the LMA™. Given that the
radiation beaming width in the (o, p,) plane is of the order
of unity [76], we demand ||a (¢ + 27) —a (¢)|| < 1, so the
two neighboring maxima of the background profile would be
close enough, to guarantee overlap of the radiation due to the
beaming. If this is not the case, the exact distribution will
possess an additional structure, which LMA™ is incapable of
reproducing. This yields the condition A 2 2w ay, that limits
the applicability of the LMA™ for large ap much stronger than

the well known criterion A >> 1. Our results here show that
for large ag the LCFA seems to yield better agreement with
SFQED at finite A, compared to the LMA™. These findings
need to be contrasted with the prediction that the (standard)
LMA converges to the LCFA for ap >>> 1 for certain integrated
rates [52].

C. Analytic results for integrated LMA™ rates

In the expression for the standard LMA rate, Eq. (19), the
delta distribution allows for an immediate exact analytical in-
tegration with respect to one of the three dependent variables:
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FIG. 6. Fully differential NCS distributions in CP case for ay = 10, £ = 225, n = 0.1, and different pulse durations: A = 10 (top row),
A = 20 (middle row), and A = 40 (bottom row). The left and right columns show LCFA and LMA™ results, respectively. The right column
demonstrates lineouts at p, = 0 for both approximations and comparison with the full SFQED result.

laser phase ¢, transferred momentum £, or absolute value of
the transverse momentum |p, |. In turn, for the LMA™ (23)
this is not so straightforward. Nonetheless, we may perform
the integration approximately, due to the huge damping factor
~A%> 1 in the exponent of Eq. (23). Below, in Secs. III C 1
and IIIC2 we demonstrate how to approximately perform
analytically the integrations with respect to laser phase ¢ and
the transverse momentum magnitude |p |, respectively.

1. Integration over the laser phase ¢

Here we show how to obtain fully differential probabil-
ity from the probability rate (23), performing approximate
integration over the laser phase ¢. The integrand, Eq. (23),
is suppressed, unless [¢(¢) —n] < 1/A <« 1. Thus the main
contributions to the ¢ integral come from the vicinities of
zeros of ¢(¢) — n. Since ¢{(¢) — n is an even function of ¢,
it has two zeros, which lay symmetrically with respect to the
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FIG. 7. Fully differential NCS spectra in CP background plotted for the different values of the transverse momentum p,: p, = (0, 0)-left
(on axis), p, = (ap, 0)—center, p, = (2ap, 0)-right. The classical nonlinear parameter ay = 2, pulse width A = 25, and the initial electron

energy parameter n = 0.1.

origin,

A 2(1+pi)(§_)
¢ = £Ag \/a%(le) Y (26)

Therefore we expand ¢ (¢) — n in the vicinity of ¢, up to the
fourth order

(£ (@) —n)* = [ (@)@ — 0" + ' (@) (@) (9 — ¢)°

" 2 ’ "
+[<§ (290*)> N c(w*)g (¢*)](¢—¢*)4

+O0l(p — @)1 27)

The inclusion of the fourth-order term is necessary to ensure
the finite result. When the two zeros coalesce, ¢, = 0, the
first derivative, ¢'(¢,) o g (¢s/A), vanishes, and the correct
behavior is controlled by the fourth term in (27). Moreover, we
argue that the second term in the square brackets in (27) may
be also neglected, since the overall contribution of the fourth-
order term is important only when ¢'(¢,) = 0. Otherwise, the
dominant role is played by the lower-order terms [by the same
token, we neglect the term o (g')? in ¢”(¢s), since it plays no
role in the regularization as well]. Thus we can write

Vi 2
[¢(p) —n]* ~ [;”(%)(go — )+ ¢ (z(p*)(w - w*)z} :

(28)

Substituting (28) into (23), approximating the remaining parts
of the integrand by its value at ¢,, and shifting integration
variable ¢ — ¢, = t, we may write

+00

2aA too
~ —7T3/2A2Dn(<p*)/_oo dt

n=1

” 2
X exp |:—A2<§’(<p*)t+§ (%)tz) :| (29)

dPpya+
ded?p |

2

The integral over t may be expressed via the modified Bessel
functions of the first kind [78] and the final analytic expression

for the LMA™ NCS probability is given by

)
)

ded?p,

¢ (s
" (@4

aA +oo
~——=A) Dip.
7 ; (02
x [ (a%1) + 1y (a%h) |exp(-A%0Y), (30)
where 0® = [£(¢.)]*/8[¢" (0.
We note that one can recover the standard LMA fully

differential probability,

dPryva
ded?p |

400
_ _de, 33 Duleo) an
A =AIRCD)]

from (30), as the first term in the asymptotic expansion for
A > 1, given the expression for the modified Bessel function
of the first kind for the large argument [78]: 1, (x) ~ €*/+/2mx
as x — +00.

The advantage of the result (30) is that in contrast to the
expression (31), it stays finite for the vanishing ¢’(¢,). Also,
when the ¢” (¢, ) tends to zero (¢ — 00), the finiteness of (30)
is ensured by the leading asymptotic term of Ii;/4(A%0?).
The expression (30) is a divergence-free result for the fully
differential NCS probability. However, we stress that (30) is
not of a general nature, since it was obtained for the specific
choice of the window function.

In Fig. 7 we now compare the result (30) with curves
obtained by the numerical integration of (23) with respect to
¢ and the full SFQED result. We see that Eq. (30) provides
a finite result at the left edge of the harmonics range, where
standard LMA is divergent (see also Fig. 4). However, due
to approximations performed in the integration over ¢, the
harmonics spreading outside the allowed range, Eq. (25), dis-
appeared. The expression (30) predicts the abrupt edges (see
inset in Fig. 7) for harmonics, likewise the standard LMA.
Apart from that, approximation (30) is in good agreement with
the numerically integrated LMA™ result. This shows that the
analytical result (30) manages to keep the finite bandwidth
effects where needed most: to shield the divergencies.
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2. Integration over the transverse momentum p

Applying the same reasoning as above, we can approx-
imately integrate the LMA™ probability rate (23) over the
transverse momentum magnitude |p, |. Further, we consider
the CP case, since it also permits analytical integration over
the azimuthal angle ¥ in the transverse momentum plane
(d*p, =|p,|d|p, |d®) due to the symmetry of the back-
ground.

To proceed, we make a change of variables in (23) and (20)
and go from the transferred momentum ¢ to the light-cone mo-
mentum fraction s = « - k/k - p = 2n€/(1 + p% + 2n¢), and
use that d€/¢ = ds/s(1 — s). Doing so, (23) turns into

dRLMA+ _ aA N f d2
ds 2?3?21 —s Jpe L

+o0
x Y Du(p]) exp(—A’[¢(p7) —nl”), (32)

n=1

2 22 @ 1 s*
P+ g (z)[z + s _S)}

SCT- Y )

| |
X = ———"-—I|p |a — .
(1 5) 08 A

Exploiting the azimuthal symmetry for integration over ¥ and
introducing a new notation r = pi, we arrive at,

D, (%)
(33)

(34)

dR A too ko9
At _ @A s / dry D, ()
ds 22 /m1—sJg —

As z 2
xexp|:—<2 e )) (r—r*)j|7 (35)

2nn(1—s)|: s ]
re = ——| 1 —

s 51—
2
5= L’ (36)
14+ a?(p/A)
where a(¢/A) = apg(¢/A). The main contribution to the
integral (35) comes from the region where r —r, < 1/A.
Hence, we may approximate (35) as

A oo +00
N ZDn(r*)/
ds 22w 1 —s o 0

As 2 2 37
X exp —(m) (r—ry)°|. (37

Evaluating the integral (37) with respect to r, we obtain a
complementary error function [79], and the final result reads
as

ds

o % 1
~ Z]D),,(r*){l - EErfc(nA[l -

n n=1

s(ls—s)])}’

(38)

with the argument of the Bessel functions in (33) being now

2na(p/A) s

S
= ) 39
ST+ dX(g/A) s(l—s)< 5(1—s)> &9

The first term in the square brackets in (38) gives the standard
LMA expression [52]. In turn, the complementary error func-
tion corresponds to the finite bandwidth corrections. When
the value of s is far from the harmonic edge s, = 5/(1 +
5) = 2nn/[1 + 2nn + a*(¢/A)], the argument of the com-
plementary error function ~nA > 1, and we have a strong
suppression of the second term in (38), since Erfc(x) ~
e /x/m for the large positive x [79]. In other words, the
standard LMA and LMA™ probability rates coincide far from
the harmonics positions. But, when s approaches the harmonic
edge s, the argument of the complementary error function in
(38) becomes of the order of unity, and the second term damps
the probability rate’s magnitude.

Another significant difference between the LMA and
LMA is the allowed range of change for the s variable.
The standard LMA predicts that, for each individual har-
monic n, s is confined 0 < 5 < s, [52]. This condition stems
from the delta distribution (19) and manifests zero bandwidth
of the monochromatic model. However, it is not the case
for the LMA™. The assigned finite bandwidth leads to the
softening of the restriction on the valid range for the s variable.

When s > s, the sign of the complementary error function
argument changes, and since Erfc(—x) = 2 — Erfc(x), we get

dRLMA* ~ n
— —Z( 1)]D>(r*)Erfc(nA[ T 1})
(40)
where
Y A L
o=+ s ]
(212+ n+1 +Ir?—l)’ (41)

B 2na(p/A) K ! 4
r= M+ d(p/A) s(l—s)(s(l—s) ) (42)

To obtain (41), we employed the relation J,(ix) = ¢™"/21,(x)
[78]. We see from (40) and (41) that for s — 1 the modified
Bessel functions tend to infinity; however, this divergence is
suppressed by the faster decay of the complementary error
function, so the overall expression stays finite and, as we will
see, predicts reasonable behavior in the high-energy region of
the emitted spectrum.

In Fig. 8 we compare the exact SFQED results with LMA™
given by Eqgs. (38) and (40); each curve is normalized by
the total pulse duration A. We also included the standard
LMA and LCFA for completeness. As we can see, the stan-
dard LMA is insensitive to the bandwidth features, such as
spreading of the harmonics and damping of the harmonics
peaks. LMA™ reproduces these features to a certain extent: the
harmonics magnitudes are substantially better approximated
even for the relatively short pulses (A }» 1), where SVEA is
not valid anymore. Presumably, inclusion of the higher-order
gradients of the envelope may help to achieve a better agree-
ment with the exact calculations.
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FIG. 8. Angular-integrated spectra of NCS in CP background plotted for ay = 0.5 (left), ap = 2.5 (right). Each curve is normalized by the

total pulse duration A. The initial electron energy parameter n = 0.1.

IV. SUMMARY

In the present paper, we revisited the derivation
of the probability rates in the locally monochromatic
approximation (LMA). Taking the probability of the nonlinear
Compton scattering (NCS) as a starting point, we employed
the slowly varying envelope approximation (SVEA) along
with the local approximation (/A <« 1) to obtain the LMA
protorate. The proper LMA probability rates were then ob-
tained by cycle averaging the protorate. The procedure works
similarly for arbitrary polarization of a plane-wave back-
ground. Our expressions for the obtained LMA rates are in
agreement with the ones from the literature, but do not require
additional numerical arguments. Therefore, our approach em-
phasizes the key concepts behind the LMA: (i) the separation
of timescales by means of the SVEA, (ii) neglect of interfer-
ence effects on the scales of a full pulse length by employing
the local approximation 8/A < 1, and (iii) cycle averaging
over the fast carrier component to arrive at a positive-definite
probability rate.

We were able to restore the bandwidth effects into the
LMA, which we call LMA™. This is achieved in our deriva-
tion of the LMA by introducing a window function in the
protorate. By reintroducing finite bandwidth into the LMA
probability rate, we find that the fully triple-differential prob-
ability within the LMA™ stays finite, in contrast to the analog
expression in the standard LMA. Our numerical comparison
shows that the LMA™ is able to reproduce the spreading of
the emitted harmonics edges, similarly to the exact strong-
field QED (SFQED) result, in contrast to the LMA. We also
investigate angular distribution of emitted radiation at fixed
transferred momentum ¢. Considering especially the regime
of ap > 1 and A > 1, we compared the angular distributions
obtained with the LMA™, the LCFA, and the exact SFQED
calculations. If A/ay < 27 the exact SFQED distribution
manifests features associated with the subcycle structure of
the pulse via the radiation beaming. While LCFA is capable
of partially reproducing these features, the LMA™ completely
lacks them, due to the cycle-averaging procedure that hides

all subcycle information. This yields a stronger constraint on
the applicability of the LMA™ as A/ag = 2. If this criterion
is violated, the LCFA was found to better agree with the full
SFQED result than the LMA™.

Finally, we obtained an approximate analytical expression
for integrated LMA™ rates. First, we found expressions for
the fully differential probability by integrating the LMA™
over the laser phase . This analytical result correctly regu-
larizes the LMA spectrum by removing the divergences in the
standard LMA. However, due to the approximations made, it
does not include the spreading of the harmonics due to the
background’s bandwidth. Second, we derived an approximate
analytical expression for the angular-integrated probability
rate in terms of modified Bessel functions, which accounts
for the softening of the harmonic edges and damping of the
harmonics peaks. Since the exact SFQED spectrum manifests
the same features, we propose the LMA™ probability rate as
a more suitable candidate for the simulations of the laser-
particle collisions in the moderate intensity regime ag ~ 1.

DATA AVAILABILITY

The data that support the findings of this article are openly
available [80].

APPENDIX A: SERIES REPRESENTATION
FOR THE FLOATING AVERAGE

We start with the definition of a floating average (5) and
perform the shift of the integration variable t = n + ¢:

1 reto2 1 o2
(F)(p,0) = —/ F(t)dt = —f F(n+ @)dn.
0 Jo—oy2 0 J o,
(AD)

Treating (F')(¢, 0) as a function of two variables, we write its
Fourier transform with respect to the average laser phase ¢,

o0

1
Fo,0)= 5 / (F)(g.0)exp (—ing)dp.  (A2)
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and then substitute (Al) into the right-hand side of (A2),
changing the integration order:

0/2

1
Fh0) = —

o0
dn / F(n+@)e ™dyp.  (A3)
270 J_o)2 —o0

For the inner integral with respect to ¢ we perform a change
of variables once again, u = ¢ + 7, and rearrange the inte-
grands:

1 0/2 ) o0 )
Fr,0)= — dne™ / F(n)e ™dp
270 J o2 —
F‘“v A 0/2 )
_F® dne™. (A4)
0
—0/2

Here we also introduced the Fourier transform F'(1) of the
function F (¢). The remaining integral with respect to 1 can be
done, giving us
_ ) A0
F(,0) = F(\)sinc 5 ) (AS)
where sinc(x) = sinx/x. The next step is to return to the

original (A1) by means of the inverse Fourier transform of
(AS):

(F>(<p,9)=/oo F()\)sinc<§>eiwd)\. (A6)

—00

If we replace sinc(16/2) with its Taylor series and change the
order of integration and summation, we can write down the
following expression:

S G LA
F)(p,0) =) ——(= AE (M) d .
(F)(9.0) ;(Znﬂ)!(z) [ xroe

(A7)
The factor (—1)"A%" appears after taking 2n-th derivative of
the integrand with respect to the ¢, so we can write

00 1 0 2n dzn 00 . o
<F>(w,9)=;m : m/_mF(k)e di.
) (A8)

Eventually, we substitute the Fourier transform of the image
F (A) with its original F(¢) and obtain the final result:

> 1 0\ d*"F (¢)
(F)(g,0) = (-) —.
;(Zn-l-l)! 2 de?

(A9)

APPENDIX B: CYCLE-AVERAGING PROCEDURE

In this Appendix, we show how to deal with the integrals
that arise due to the cycle averaging in (18). For the CP case
(6 = £1), the parameter y vanishes [see Eq. (16)] and the
generalized Bessel function simplifies to the standard Bessel
function of the first kind [see Eq. (15)]. Thus the integral that
we need to evaluate is

-7

Q+7 T
f J,(2xcos @ )dy' =2 / Jo(2xcos)de'.  (Bl)
¢ 0

In (B1) we beforehand shifted the argument ¢’ — ¢ — ¢’ and
then exploited properties of periodic functions along with the

symmetries of the Bessel functions. In doing so, we assumed
that the envelope [x ~ g(¢’/A) =~ g(p/A)] stays constant on
the cycle scale due to the SVEA. The integral on the right-
hand side of (B1) is known as the Neumann integral [78]:
T
f Jon(2x cos @ dg' = wJ*(x). (B2)
0
In the LP case (§ = 0), we deal with the two integrals of the
generalized Bessel functions,
Q-+

Jn(2xcos¢’, 2y cos 2¢")d¢'
QY—1

T
= 2/ Jon(2x cos @', 2y cos 2¢")d¢’, (B3)
0

e+
/ cos2¢' J,(2x cos ¢, 2y cos 2¢")d ¢’
¢

=2 / €08 2¢’ Jon(2x cos @', 2y cos 2¢")dg’,  (B4)
0

where to get the right-hand side, we once again exploited
properties of the periodic functions and symmetries of the
Bessel function. The integrals (B3) and (B4) are the general-
izations of the Neumann integral (B2), but since they are not
well known in the literature, we provide their evaluation here.

We adapt the strategy from Watson [78] for the standard
Neumann integral and for that we need the integral represen-
tation of the generalized Bessel function [69]:

l T
Tn(x,y) = o / dexp (ixsin ¢ + iy sin 2¢ — ing).
T Jn
(B5)

Then we consider the product of two generalized Bessel func-
tions with different indices

‘.7n—m(xv y)‘-7n+m(xv J’)
= L f /” dedf exp[—in(p + 0) + im(p — 0)
472 - J—7

+ ix(sin ¢ + sin 0) + iy(sin 2¢ + sin 20)], (B6)

where m is an integer number. The next step is to introduce
the change of variables ¢ +6 =2y, ¢ — 6 = 2x with the
Jacobian equal to 2, whereas the integration limits for ¢ and
x can be chosen as [—, ] and [0, 7], correspondingly, due
to the symmetry of the integrand [78]. Thus we have

\7n—m(xv y)\7n+m(xv y)

T T

X — dx exp (2imy) dyr exp(2ix cos x sin
272 0 -1
+ 2iycos2x sin 2y — 2inyr). B7)

We recognize in the inner integral on the right-hand side
of (B7) the integral representation of the generalized Bessel
function (B5) with the new arguments and the doubled index.
Hence, we can write

Tn-m (X, )T (X, y)

l T
= —/ dx cos 2my)Jrn(2xcos x,2ycos2x), (B8)
T Jo
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where we also exploited the fact that the left-hand side of (B7)
is areal-valued function for real x and y. Form = Oand m = 1

we have integrals that appear in the calculations of the LP case
[see Egs. (B3) and (B4)].
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