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Strong-field QED (SFQED) probability rates in the locally monochromatic approximation (LMA) have

become an indispensable tool for simulations of processes like gamma-ray emission or electron-positron pair

production in laser-particle collisions. We revisit the LMA derivation and explicitly demonstrate that it is based

on the separation of timescales, neglect of the long-range interference effects, and subsequent averaging over

the cycle scale. Doing so, we obtain unambiguously LMA rates for arbitrary polarizations of the plane-wave

background. Additionally, we partially restore the finite bandwidth effects that are lost in the LMA derivation.

We refer to the bandwidth-restored result as the LMA+ and show that it agrees with the full SFQED predictions

better than the standard LMA. We use LMA+ to address previously inaccessible observables and formulate

an additional limitation on the applicability of locally monochromatic approximations in general. We provide

analytical results for the angular-integrated LMA+ probability rate and the fully differential probability that

account for the finite bandwidth effects.
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I. INTRODUCTION

The dynamics of charged particles in ultrastrong electro-

magnetic fields is characterized by nonlinear effects [1–3].

These nonlinearities can, for instance, substantially alter the

characteristic signatures of the emitted radiation [4–7], facili-

tate radiation backreaction [8–11], or lead to the generation of

copious amounts of matter-antimatter pairs [12]. Such highly

nonlinear regimes have now become experimentally acces-

sible by employing ultrahigh-intensity laser pulses [13,14].

In general, strong-field QED (SFQED) effects are important

for plasmas in extreme-field conditions not only in labo-

ratories but also in astrophysical environments [2,15–17].

Dedicated experiments to study SFQED processes in detail

can be performed by colliding high-intensity laser pulses with

ultrarelativistic electron bunches, either from a laser-plasma

accelerator [7–9] or from a conventional accelerator [18–21].

The strength of laser-matter interaction is usually char-

acterized using two parameters: (i) the classical nonlinearity

parameter a0 and (ii) the quantum parameter χ . The parameter

a0 = |e|E/mωc represents the work done by an electric field

with field strength E on a particle with charge e < 0 over

a distance set by the wavelength of the field λ = 2πc/ω in

units of the particle’s rest energy mc2. Alternatively, if one

implies a quantum-mechanical picture, a0 tells how many
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field “photons” participated in a SFQED process. Therefore,

if it becomes of the order of 1 or larger, we expect to ob-

serve features of a nonlinear interaction between a charged

particle and a laser field [2,3]. It also serves as the inverse

Keldysh parameter [22], meaning that the process becomes

perturbative as a0 → 0 and turns quasistatic as a0 → ∞. The

quantum parameter is defined as χ = eh̄
√

−(Fµν pν )2/m3c4,

where Fµν is the electromagnetic field strength tensor and pµ

is the particle’s four-momentum. Quantum processes become

efficient if χ ∼ 1 [23]. For an electron emitting a photon,

this means that the latter acquires a significant fraction of the

electron’s initial energy. The photon itself is characterized by

its own χγ , and it is efficiently converted into e+e− pairs if

χγ ∼ 1.

When χ exceeds the order of unity one usually has to rely

on computer simulations to describe the outcome of exper-

iments, especially if the emitted photon’s χγ exceeds unity,

and it efficiently produces a second generation of charged

particles. These, in turn, keep radiating and produce subse-

quent generations, forming a so-called shower-type cascade

[24,25]. For each subsequent generation the total energy is

shared by more and more particles, and eventually the χ

parameter becomes significantly less than 1, and the cascade

stops [26–28], unless there is an efficient reacceleration of the

particles, in which case the cascade growth is self-sustained

[12,29–32].

In particular, shower-type cascades with medium-to-high

multiplicity of final state particles are of great importance for

contemporary experimental campaigns of SFQED [19,20,33].

Unfortunately, a complete analytical treatment of these pro-

cesses is near impossible within the full SFQED framework

due to the complexities of high-order S-matrix calculations

[3]. However, for sufficiently strong and/or long pulses, it
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is possible to split the higher-order processes into first-order

building blocks [34–36], such as nonlinear Compton scat-

tering (NCS) [37] and nonlinear Breit-Wheeler (NBW) pair

production [38]. In doing so, one neglects all contributions

from off-shell intermediate particles [3], but it opens avenues

for numerical simulation frameworks in which the particles

propagate on classical trajectories between the quantum pro-

cesses, described by some probability rates [2].

The rates for the quantum processes in arbitrary field

configurations, such as the ones found in laser-plasma in-

teractions, are the most commonly employed in the locally

constant field approximation (LCFA) [23], or its extensions

[39–44]. The applicability of the LCFA is, however, limited

to a0 ≫ 1 and a3
0/χ ≫ 1 [39,45,46]. Many features like har-

monic and subharmonic structure of the spectra are lost in

the LCFA. Moreover, for the NCS the LCFA overestimates

the low-energy part of the emitted spectrum, even when all

the aforementioned requirements are fulfilled. Despite these

shortcomings, the LCFA is nowadays implemented in many

particle-in-cell simulation codes’ SFQED modules [47–51].

For collisions of a high-intensity laser with a particle beam,

where the laser field can be assigned a distinct wave vector

and pulse envelope, such that the pulse contains many carrier

wave cycles, another approach is the locally monochromatic

approximation (LMA). In contrast to the LCFA, the LMA is

not restricted to large a0, and is able to resolve harmonics

in the emitted spectrum. Incidentally, the LMA was actually

used for the simulations of the SLAC E-144 experiment [18],

by just using the results for the SFQED scattering rates in

infinite monochromatic plane waves modified by a local value

of a0. The LMA was formally derived only relatively recently

by performing a separation of carrier wave and envelope

timescales [52]. Nevertheless, the LMA has already proven

its utility and reliability for numerical simulations, especially

in the transition regime a0 ∼ 1 [53–58].

In this paper, we revisit the alternative derivation of LMA

and find a procedure to obtain the LMA probability rates

from the full SFQED probability. The essential aspect in our

approach is that a cycle-averaging procedure is necessary for

finding the correct LMA rate. While this seems like a natural

necessity in view of the scale separation, and it was implied

in the application of the LMA in simulation codes [53], it

was never explicitly employed in the derivation of the LMA

rates themselves. By manifestly performing the cycle averag-

ing, we are able to fill several gaps in the LMA derivation

that previously required numerical arguments. In addition, we

propose an extension of the LMA, which we call LMA+, that

restores some bandwidth effects and removes divergencies in

the fully differential LMA rate and probability. We confront

our findings with the standard LMA, the LCFA, and with exact

SFQED S-matrix calculations to demonstrate the validity of

our results and discuss the underlying physics. Our findings

indicate an additional limitation for the applicability of the

LMA for large a0 ≫ 1. Moreover, we find analytical results

for both the angularly integrated LMA+ rates, and the LMA+

probabilities when integrated over the complete laser pulse

history.

The paper is organized as follows. In Sec. II we de-

rive the LMA probability rates for arbitrary polarizations

of a plane-wave background, by explicitly employing the

cycle-averaging procedure. In Sec. III we formulate a fully

differential LMA+ probability rate and show how to obtain

analytical expressions for the angular-integrated LMA+ and

fully differential probability that account for the finite band-

width effects. The LMA+ results are then compared with

the standard LMA, the LCFA, and the full SFQED calcula-

tions (Sec. III B), and further analytic results are presented

(Sec. III C). We conclude in Sec. IV. In Appendix A we

provide a detailed derivation of the series representation of

the floating average, which we use in our LMA derivation.

Finally, in Appendix B we show evaluation of the generalized

Neumann-type integrals that appear in the cycle-averaging

procedure. Throughout this article, we employ Heaviside-

Lorentz natural units with h̄ = c = ǫ0 = 1, such that the fine

structure constant reads α = e2/4π . Scalar products between

four-vectors are denoted as k · p = kµ pµ.

II. ALTERNATIVE DERIVATION OF THE LMA

The locally monochromatic approximation (LMA) has

become a cornerstone of numerical simulations of SFQED

processes in collisions of particle beams with high-intensity

lasers, especially in the transition regime a0 ∼ 1, where the

LCFA is not applicable. However, it is more numerically

expensive and applicable only for the backgrounds with char-

acteristic carrier frequency scale (e.g., laser frequency ω) and

which are sufficiently long. For the purpose of the separation

between carrier and pulse envelope scales we later introduce

a dimensionless pulse duration parameter 
. With this, the

LMA can be seen as an asymptotic series expansion for

1/
 ≪ 1 [3]. For a more detailed discussion of the require-

ments we refer to Ref. [52], where the first formal derivation

of the LMA was presented by approximating on the level of

the strong-field S matrix. As we will see further, the require-

ment for the existence of two different timescales is crucial

in the LMA derivation, since it allows performing the cycle

averaging over the fast component of the field. Even though

the cycle averaging was implied and implemented in numeri-

cal simulations, it has not yet been employed explicitly in the

LMA derivation. Here we will fill this gap in a derivation of

the LMA, which also opens an avenue for extensions of the

LMA.

A. Probability for nonlinear Compton scattering

To demonstrate the alternative derivation of the LMA, we

specifically consider nonlinear Compton scattering (NCS). An

initial electron with four-momentum pµ collides with a plane

electromagnetic wave with the normalized vector potential

a⊥(κ · x) = a0 f ⊥(κ · x) and four-wave-vector κµ. The sym-

bol “⊥” stands for the components perpendicular to the

background plane-wave propagation direction. In the course

of interaction, the electron emits a photon with the four-

momentum kµ and propagates further with the final four-

momentum p̃µ (see Fig. 1).

The differential probability for the process, averaged over

the initial electron’s spin and summed over the all final spin

and polarization states of the final electron and photon, may
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pµ

p̃µ

kµ

FIG. 1. SFQED Feynman diagram for nonlinear Compton

scattering.

be written as [59]

dP

dℓd2ρ⊥
= −

α

π2
A

∫∫

R2

[

1 + a2
0Bθ2〈 f ′

⊥〉2
]

× exp [iℓθG(ϕ, θ )]dϕdθ, (1)

where we introduced the shorthand notations

A =
ℓ

(1 + ρ
2
⊥ + 2ηℓ)2

, (2)

B =
1

2
+

η2ℓ2

(1 + ρ
2
⊥)(1 + ρ

2
⊥ + 2ηℓ)

, (3)

G(ϕ, θ ) = 1 +
a2

0〈 f 2
⊥〉 + 2a0ρ⊥〈 f ⊥〉

1 + ρ
2
⊥

. (4)

Here, we parametrize the final state photon via the normalized

momentum ℓ = k · p/κ · p̃ that needs to be absorbed from the

background field in order to put all particles on shell, such that

pµ + ℓκµ = kµ + p̃µ. Furthermore, we introduce the scaled

transverse momentum ρ⊥ = (k⊥ − sp⊥)/ms, where s = κ ·
k/κ · p is a light-front momentum fraction. These dimension-

less variables are related as s = 2ηℓ/(1 + 2ηℓ + ρ
2
⊥), where

η = κ · p/m2 is an initial electron energy parameter. The

background pulse profile function f ⊥(ϕ) = g(ϕ/
)h⊥(ϕ) is a

product of an envelope g(ϕ/
) and a carrier h⊥(ϕ), where 


is a pulse duration. The envelope rapidly vanishes at infinity,

g(±∞) → 0, and satisfies the condition g(0) = 1.

The probability, Eq. (1), is expressed as a twofold inte-

gral over the average laser phase ϕ = (φ + φ′)/2 and the

interference window θ = φ′ − φ [3], where φ and φ′ are the

phase variables of the strong-field S matrix and its complex

conjugate, respectively. These variables enter the probability

via the floating average of the background profile function,

〈 f ⊥〉 =
1

θ

∫ ϕ+θ/2

ϕ−θ/2

f ⊥(ϕ̃)dϕ̃, (5)

where their nontrivial dependencies make an exact analytical

treatment intractable if one accounts for the finite duration

of the background field. Usually, either some numerical ap-

proaches [60–62] or various approximations schemes [63–65]

have to be employed to evaluate the NCS probability, Eq. (1),

further.

B. Definition of a protorate

In this subsection we make the first steps towards the LMA

probability rate, by first deriving a protorate, R(ϕ), as the

quantity that returns the probability when integrated over the

laser phase ϕ,

dP

dℓd2ρ⊥
=

∫ +∞

−∞
dϕ R(ϕ). (6)

In general, the quantity R(ϕ) is not strictly positive and

therefore cannot be interpreted as a probability rate directly.

We will demonstrate further below that only under certain

(slowly varying envelope and local) approximations and, most

importantly, a subsequent cycle-averaging procedure, the

protorate R can be converted into a proper positive-definite

probability rate.

The central object for our further analysis is the floating

average, Eq. (5), since it contains all information regarding the

structure of the plane-wave background. To better see how this

information is encoded, we rewrite the integral Eq. (5) using

the following series representation (for detailed derivation, see

Appendix A):

〈 f ⊥〉 =
∞

∑

n=0

1

(2n + 1)!

(

θ

2

)2n
d2n f ⊥(ϕ)

dϕ2n
. (7)

The main advantage of this representation is that it disentan-

gles the dependency on the variables ϕ and θ from the integral

limits.

Given that our background profile function is a product

of envelope and carrier functions f ⊥(ϕ) = g(ϕ/
)h⊥(ϕ), we

use the Leibniz rule to write the 2n-th-order ϕ derivative as

follows:

f
(2n)
⊥ (ϕ) =

2n
∑

k=0

(

2n

k

)

g(k)

(

ϕ




)

h
(2n−k)
⊥ (ϕ). (8)

To demonstrate the interplay between the envelope and the

interference window θ , we explicitly write down the result for

the first two terms k = 0, 1 in the sum (8). Substituting (8)

into (7) and exploiting the fact that components of the carrier

h⊥(ϕ) are sines or cosines, we obtain the first two terms of the

expansion of the floating average (7) in the inverse powers of

the characteristic pulse width 
 ≫ 1 [3]:

θ〈 f ⊥〉 ≈ 2g

(

ϕ




)

h⊥(ϕ) sin

(

θ

2

)

+
1



g′

(

ϕ




)

h
(−1)
⊥ (ϕ)

[

θ cos
θ

2
− 2 sin

θ

2

]

. (9)

Here we show the result for θ〈 f ⊥〉, since this quantity enters

the probability (1). The notation h
(−1)
⊥ (ϕ) stands for the an-

tiderivative of the carrier, and the prime g′ corresponds to the

derivative with respect to the whole argument.

The second term in the expression (9) contains contribu-

tions with two different scalings: g′/
 and g′θ/
 (we omit

the argument of the envelope’s derivative for conciseness).

The term ∼g′/
 is responsible for the local effects, associated

with the gradients of the finite envelope, and can be discarded

if one employs the slowly varying envelope approximation

(SVEA) [66]. However, the SVEA alone is insufficient for

dropping out the term ∼θg′/
, which encodes the global

structure of the pulse via coupling between the interference

window θ and the envelope’s gradient g′. It corresponds to the

interference effects on the scale of the entire pulse and ac-

counts for the fact that the probe particle enters and leaves the
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interaction region at finite times [67,68]. Therefore, to discard

it, we have to neglect the interference on the envelope scale

by imposing a local approximation θ/
 ≪ 1. This restriction

ensures the inclusion of the interference effects only on the

scale of one or several cycles, where the background field

deviates insignificantly from the monochromatic plane wave.

Thus, given the SVEA and the local approximation (θ/
 ≪
1), we may rewrite floating averages of the background profile

function and its derivative in (1) as

θ〈 f ⊥〉 ≈ 2g

(

ϕ




)

h⊥(ϕ) sin

(

θ

2

)

,

θ〈 f ′
⊥〉 ≈ 2g

(

ϕ




)

h′
⊥(ϕ) sin

(

θ

2

)

. (10)

To obtain the result for 〈 f 2
⊥〉 in (4) we have to specify the

polarization of the carrier explicitly. Henceforth, h⊥(ϕ) =
(cos ϕ, δ sin ϕ), where δ is an ellipticity parameter [δ = 0–

linear polarization (LP); δ = ±1–circular polarization (CP)].

Using this definition, we find

θ〈 f 2
⊥〉 ≈

1

2
g2

(

ϕ




)

[(1 + δ2)θ + (1 − δ2) cos 2ϕ sin θ ].

(11)

From (11) we see that for circular polarization the oscillating

term vanishes, leaving only linear dependency on interference

window θ .

To derive our result for the LMA protorate, RLMA, we

substitute all approximations for the floating averages into

Eqs. (1) and (4) and apply the generalized Jacobi-Anger ex-

pansion [69] with respect to the interference window θ . We

find

dRLMA(ϕ)

dℓd2ρ⊥

= −
α

π2
A

+∞
∑

n=−∞
Dn(ϕ)

∫ +∞

−∞
exp

[

iθ

(

ζ (ϕ) −
n

2

)]

dθ,

(12)

with

ζ (ϕ) = ℓ +
ℓ(1 + δ2)

2(1 + ρ
2
⊥)

a2
0g2

(

ϕ




)

, (13)

and

Dn(ϕ) = Jn(X,Y ) +
a2

0

2
g2

(

ϕ




)

B[1 + δ2

− (1 − δ2) cos 2ϕ](2Jn − Jn−2 − Jn+2). (14)

The functions Jn are generalized two-argument Bessel func-

tions [70], which are related to the ordinary Bessel functions

of the first kind via the series representation [69]

Jn(X,Y ) =
+∞
∑

k=−∞

Jn−2k (X )Jk (Y ). (15)

The arguments of the generalized Bessel functions are

X = 2x cos(ϕ − ϑ ) and Y = 2y cos 2ϕ. Here we introduced

an azimuthal angle in the transverse momentum plane

0 1 2 3 4 5 6

ϕ

−0.08

−0.04

0.00

0.04

0.08

−
D

n

n = 1

n = 2

FIG. 2. The first two terms of LMA protorate (n = 1 solid red

and n = 2 solid blue lines) in IPW limit. The dashed lines stand for

the corresponding cycle-averaged values. The other parameters are

chosen as a0 = 1, η = 0.1, ρ⊥ = (a0, 0), ℓ = 5/12 for n = 1, and

ℓ = 5/6 for n = 2.

ϑ = arctan(δρy/ρx ) and shorthand notations,

x =
2ℓ

√

ρ2
x + δ2ρ2

y

1 + ρ
2
⊥

a0g

(

ϕ




)

, y =
ℓ(1 − δ2)

4(1 + ρ
2
⊥)

a2
0g2

(

ϕ




)

.

(16)

For circular polarization, δ = ±1, the generalized Bessel

functions (15) reduce to the ordinary Bessel functions since

y = 0 in that case. The remaining θ integral in Eq. (12) can be

performed, resulting in the delta distributions

dRLMA(ϕ)

dℓd2ρ⊥
= −

2α

π
A

+∞
∑

n=1

Dn(ϕ)δ

[

ζ (ϕ) −
n

2

]

. (17)

We note that contributions with n � 0 drop from the sum-

mation automatically, because of the presence of the delta

distribution and the positiveness of ζ (ϕ); see Eq. (13).

Naively, one might expect that Eq. (17) already is the

sought-after LMA probability rate. But it is not. It still al-

ters in sign, as indicated previously at the beginning of the

section. Moreover, Eq. (17) contains contributions from the

half-integer harmonics stemming from the condition ζ (ϕ) =
n/2 for odd n. To exhibit this behavior explicitly we plot

in Fig. 2 the quantity −Dn(ϕ) for n = 0, 1, where we also

employ g ≡ 1, i.e., the infinite plane-wave (IPW) limit. We

see that both the n = 1 (red solid curve) and the n = 2 (blue

solid curve) contributions become negative for some values

of ϕ. The half-integer harmonic, which corresponds to n = 1,

oscillates around zero and vanishes after averaging over the

cycle. Meanwhile, the integer harmonic, n = 2, averages to

some finite positive value which eventually corresponds to

the first harmonic in the IPW probability rate [23]. In the

same manner, all contributions from odd n average to zero,

whereas the terms with even n provide the correct result for

the IPW rate. These examples show the relevance of the cycle-

averaging procedure, which we will demonstrate explicitly for

the LMA rate in the next subsection.
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C. Cycle averaging of the protorate

In this section, we formally obtain the LMA probability

rate unambiguously for circular and linear polarizations of

the plane-wave background, by cycle averaging the LMA

protorate, Eq. (17), according to

RLMA(ϕ) ≡
1

2π

∫ ϕ+π

ϕ−π

RLMA(ϕ′)dϕ′. (18)

In this procedure we may treat the pulse envelope as a con-

stant, g(ϕ′/
) ≈ g(ϕ/
), due to the SVEA.

After cycle averaging (18), the protorate (17) turns into the

positive-definite probability rate:

dRLMA

dℓd2ρ⊥
= −

2α

π
A

+∞
∑

n=1

Dn(ϕ)δ[ζ (ϕ) − n], (19)

with

D
(CP)
n (ϕ) = J2

n (x) + a2
0g2

(

ϕ




)

B
[

2J2
n − J2

n+1 − J2
n−1

]

(20)

for circular polarization and

D
(LP)
n (ϕ) = J

2
n (x, y) +

a2
0

2
g2

(

ϕ




)

B
(

2J 2
n + Jn−2Jn

+ JnJn+2 − J
2

n−1 − 2Jn−1Jn+1 − J
2

n+1

)

(21)

for linear polarization. The integrals that appear in the cycle

averaging are known as Neumann-type integrals, and details

on their evaluation are presented in Appendix B. Here we

just stress that contributions from the half-integer harmonics,

which plagued Eq. (6), vanish after the cycle averaging. From

now on, the correct numbering of the harmonics is restored;

i.e., n = 1 refers to the first harmonic, etc.

The expressions in Eqs. (19)–(21) agree with the known

LMA probability rates for circular and linear polarization

from the literature; see, e.g., Ref. [52]. The textbook result of

the IPW limit can be easily reobtained from these expressions

by just setting g ≡ 1. In contrast to the first derivation of the

LMA in Ref. [52], here we arrived at the same result by ap-

proximating the expression for the probability of the process

and not the S-matrix elements. In contrast to Ref. [52], our LP

case result is not expressed via a double sum over harmonics

that emerged after squaring the S-matrix element. Numerical

studies showed that the contribution of the off-diagonal terms

n 
= n′ in the double sum is insignificant for the relevant pa-

rameter regime [52], and some authors used this circumstance

for their findings [55,57,58,71]. However, it was not clear why

there should be such a fundamental distinction between the CP

and LP cases.

In our derivation of the LMA rates there are no double

sums at all since we take the probability as a starting point.

However, the cycle-averaging procedure (18) is absolutely

necessary to obtain the LMA probability rates. Incidentally,

the integration over the azimuthal angle ϑ in the transverse

momentum plane in the first derivation of the LMA rate in

Ref. [52] for the CP case technically corresponds to the cycle

averaging, due to the symmetry of the CP background and

the fact that the relevant integrals depend on the laser phase

only in the combination ϕ − ϑ . However, this symmetry ar-

gument only applies for circular polarization. Additionally,

we would like to point out that if one performs the cycle

averaging in Eq. (A34) of Ref. [52], the off-diagonal terms

are eliminated, and the result coincides with our Eqs. (19) and

(21). Thus our findings so far are in complete agreement with

Ref. [52].

To summarize this section, we emphasize once again the

assumptions that we made for deriving the LMA. First, it

is necessary to neglect the local gradients of the pulse en-

velope, employing the SVEA. Second, we discarded the

interference effects on the entire pulse scales (local approx-

imation θ/
≪ 1). Third, employing once again the SVEA,

we performed the cycle-averaging procedure, which turns the

sign-alternating protorate Eq. (17) into the positive-definite

LMA probability rate Equation (19). The implementation of

the LMA rates in numerical codes for the simulation of laser-

particle collisions is based on splitting the dynamics into

slow and fast timescales, where the particles move on cycle-

averaged ponderomotive trajectories and all information on

the fast quiver oscillations is contained in the LMA probabil-

ity rates [53,56]. Conceptually, the probability rates entering

the simulation should also be the ones taken at the cycle-

averaged particle location. Here, we made explicit use of the

cycle-averaging procedure in the derivation of LMA rates,

rendering the simulation framework more self-consistent.

III. BANDWIDTH-RESTORED LMA

In deriving the LMA probability rate, we employed a local

approximation that effectively discards long-range interfer-

ence effects associated with the finite extent of the plane-wave

background [67,68]. This crucial step is what makes the ap-

proximation monochromatic by removing finite bandwidth

effects usually associated to a finite pulse duration. This

feature formally manifests in the appearance of delta distri-

butions in Eq. (19). As a consequence, the LMA probability,

which is obtained by integrating Eq. (19) over the laser phase

ϕ has divergences [3]. Specifically, the triple differential prob-

abilities of the nth harmonic diverge ∝ 1/
√

ℓ − ℓn as ℓ →
ℓn = n/[1 + a2

0 (1+δ2 )

2(1+ρ2
⊥ )

], the locations of the IPW harmonics.

The underlying reason is that the condition ζ (ϕ) = n in the

argument of the delta distribution in (19) becomes station-

ary [i.e., ζ ′(ϕ) = 0], resulting in the fold-type caustic in the

emitted spectrum [3,72–74]. In the following, we introduce

a procedure to “remedy” the LMA probability rate of these

divergencies by reintroducing finite bandwidth effects.

A. Derivation of the LMA+

To obtain a divergence-free fully differential probability,

we address a subtlety in the formal derivation of the LMA,

namely, the evaluation of the θ integral in (12) yielding the

delta distribution in (17). This delta distribution is accumu-

lated, when one integrates over the whole range of the θ

variable, including contributions even from the interference

windows θ that do not formally satisfy the condition θ/
≪1.

The way we resolve this inconsistency is by introducing a

window function W (θ ) into expression (12), with the pur-

pose of excluding contributions from the θ regions, where the
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FIG. 3. Fully differential LMA+ probability rate of NCS in a LP pulse as a function of ℓ and ϕ as a contour plot (left). The location of

the first harmonic’s center, according to Eq. (24), is depicted by the red dashed curve. The right panel shows a lineout at ϕ = 0. The other

parameters are a0 = 2, 
 = 10, η = 0.1, and ρ⊥ = (a0, 0).

condition θ/
 ≪ 1 is not fulfilled,

dRLMA+

dℓd2ρ⊥

= −
α

π2
A

+∞
∑

n=−∞
Dn(ϕ)

∫ +∞

−∞
W (θ ) exp (iθ [ζ (ϕ) − n])dθ.

(22)

This reintroduces a finite bandwidth of the background, that

was neglected due to the local approximation. We denote this

bandwidth-restored LMA as LMA+.

In principle, the window function W (θ ) could be chosen

arbitrarily. Hereinafter, we model the envelope of the back-

ground with a Gaussian function g(ϕ/
) = exp(−ϕ2/2
2)

and choose our window function to be Gaussian as well. To

find a suitable value for the width of the Gaussian window,

we match the spectra of LMA+ to the exact SFQED result

in the weak field limit a0 ≪ 1. This prescription determines

the window function as W (θ ) = exp(−θ2/
2). We note that

to achieve full correspondence of the spectra in the weak

field limit, it is necessary to choose the window function in

accordance with the envelope function. After performing the

integration with respect to θ in Eq. (22), we obtain the LMA+

rate as

dRLMA+

dℓd2ρ⊥
= −

2α


π3/2
A

+∞
∑

n=1

Dn(ϕ) exp (−
2[ζ (ϕ) − n]2).

(23)

In the standard LMA, the position of the harmonics is strictly

defined by the delta distribution and the condition ζ (ϕ) = n,

yielding a relation between transferred momentum and laser

phase as [64]

ℓn(ϕ) =
n(1 + ρ

2
⊥)

1 + ρ
2
⊥ + 1+δ2

2
a2

0g2(ϕ/
)
. (24)

In the LMA+, the delta distribution is replaced by the Gaus-

sian in Eq. (23). Thus the harmonic lines are rather “smeared”

in the vicinity of the original positions, Eq. (24), and the

width of the harmonic lines is ∝ 
−1. The finite bandwidth

contribution in the harmonics is the consequence of the finite

temporal domain assigned to the θ integral via the Gaus-

sian window function in Eq. (22). The absence of the delta

distribution in (23) also implies that n could be zero or a

negative integer in the LMA+. However, since 
 ≫ 1, and

the assigned harmonics bandwidth is small, the contributions

from the zeroth and negative harmonics are negligible [67], so

we will not discuss them any further.

In Fig. 3 we display the distribution of the fully differential

probability rate as a function of the laser phase ϕ and the

transferred momentum ℓ. This distribution tells us how the

harmonic structure of the emitted spectrum is formed through-

out the laser pulse. The red dashed curve in the left panel of

Fig. 3 designates the position of the first harmonic according

to Eq. (24). Each harmonic exhibits phase-dependent redshift

that results in the broadening [75] and the overlapping [61]

of harmonics after integrating over the laser phase ϕ. The

maximum redshift takes place in the middle point (ϕ = 0) of

the laser pulse [see Eq. (24)], where the field intensity is the

largest. We see that the higher harmonics are emitted closer

to the pulse peak, which agrees with the previous theoretical

studies [65]. To demonstrate the recovered finite bandwidth,

we plot the lineout for ϕ = 0 in the right panel of the Fig. 3.

Due to the specific choice of the window function in (22), the

emitted harmonics have a Gaussian profile.

B. Numerical results for the fully differential LMA+ probability

In this section, we show the numerical results for various

observables and discuss the underlying physics, contrasting

the LMA and LMA+ with calculations of the NCS probabil-

ity calculated by using the exact SFQED S-matrix elements

[60–62], and the angularly resolved LCFA [76].
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FIG. 4. Fully differential NCS spectra in CP background plotted for the different values of the transverse momentum ρ⊥: ρ⊥ = (0, 0)–left

(on axis), ρ⊥ = (a0, 0)–center, ρ⊥ = (2a0, 0)–right. The classical nonlinear parameter a0 = 2, pulse width 
 = 25, and the initial electron

energy parameter η = 0.1.

We start our investigation by comparing in Fig. 4 the

triple-differential probabilities dP/dℓd2ρ⊥ as a function of

ℓ for a0 = 2 and 
 = 25, and for fixed values of ρ⊥ in each

panel. In general, both the LMA and LMA+ are reasonable

approximations of the full SFQED spectra for these parame-

ters. The LCFA, on the other hand, is not capable of correctly

reproducing the harmonic spectra here for a0 ∼ O(1)—it is

outside the realm of its applicability.

Both the LMA and the LMA+ correctly predict the har-

monic structure of the NCS spectrum. For a finite pulse, the

location of the nth harmonic is approximately given by the

condition [64]

ℓn(ϕ = 0) = n
1 + ρ

2
⊥

1 + ρ
2
⊥ + a2

0

� ℓ � n, (25)

with ℓn(ϕ) given in Eq. (24). In the LMA, this condition is

strict, while the SFQED result slightly spreads outside this

region due to the finite background pulse bandwidth. This

behavior can be seen particularly well in the inset in the left

panel of Fig. 4. The LMA+ correctly reproduces this behavior

of the SFQED result. More crucially, the LMA diverges at

the lower boundaries of the harmonic ranges, while both the

SFQED and LMA+ results stay finite. Apart from these dif-

ferences at the endpoints of the harmonic ranges, the LMA+

result agrees with the standard LMA.

Neither the LMA nor the LMA+ can reproduce the char-

acteristic subharmonic structure of the full SFQED spectrum

[61,65]; they yield an average over these high-frequency os-

cillations. The subharmonic structure is due to long-range

interference between the two indistinguishable events (e.g.,

emission of the photons of the same energy at the same angle

in different points of a laser pulse), separated by the distance

θ ∼ 
, and is inaccessible, if one adheres to the local approx-

imation θ/
 ≪ 1.

We note that the positions of harmonics maxima in the

LMA+ have a slight offset compared to the SFQED result

(see, in particular, the inset in the right panel of Fig. 4). This

small discrepancy stems from our windowing procedure (22).

Due to the specific choice of the window function W (θ ), each

harmonic has a Gaussian profile in the vicinity of the cutoff

(see also the lineouts in Fig. 3). In fact, the correct shape of

the harmonic profile is closely related to the Airy function

due to the fold-type caustic structure of the emitted spectrum

[66,72,73,77].

In Fig. 5 we address how the LMA+ works for the different

laser strength a0 and pulse durations 
. We see that better

agreement is achieved for the smaller a0 and the longer pulses.

With the growth of intensity, the overlap of harmonics and

subharmonic structure result into the presence of additional

subpeaks that are even more pronounced than the harmonics

themselves. For smaller values of a0, harmonics do not over-

lap, and the additional peaks are missing, whereas the longer

the pulse, the better LMA+ averages through the subharmonic

structure, which is also true for the larger a0.

Next, we investigate dP/dℓd2ρ⊥ as a function of ρ⊥ for

fixed ℓ. In Fig. 6 we compare these angular distributions of

the emitted radiation in the LMA+ with results obtained in

the LCFA and the exact SFQED calculations for the CP case.

We note that this quantity cannot be easily plotted in the

standard LMA due to the occurring delta distributions. The

qualitative difference between the LCFA (first column) and

LMA+ (second column) can be understood from the perspec-

tive of the semiclassical picture. The LCFA predicts radiation

beaming (with a typical width ρ⊥ ∼ 1) along the direc-

tion of the electron instantaneous momentum [53,76], which

follows the laser vector potential in the transverse plane.

Along with that, the radiation forms the characteristic pattern

that imprints the cycle-scale structure of the laser pulse. In

general, for the pulses of finite duration, this structure is not

necessarily azimuthally symmetric. Such symmetry can be

attained only in the limit of very long pulses, the details of

which are discussed below. Meanwhile, the LMA+ manifests

azimuthally symmetric distribution, due to the averaging over

the cycle scale. In the third column in Fig. 6 we compare

lineouts of the LCFA and LMA+ results for ρy = 0 with the

exact SFQED calculations. We see that also the SFQED result

has distinct peaks due to the radiation beaming just like the

LCFA (top row), which is not seen in the LMA+ result.

The qualitative agreement is achieved between the LCFA,

LMA+, and SFQED only when the pulse is sufficiently long
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FIG. 5. Fully differential NCS spectra in CP background for the different intensities and pulse durations. The transverse momentum is

always chosen as ρ⊥ = (a0, 0) and the initial electron energy parameter η = 0.1.

for a given intensity, so the emitted radiation from many

cycles averages to a homogeneous pattern (see the last row

in Fig. 6). To ensure this, we formulate an additional re-

striction on the applicability of the LMA+. Given that the

radiation beaming width in the (ρx, ρy) plane is of the order

of unity [76], we demand ||a⊥(ϕ + 2π ) − a⊥(ϕ)|| � 1, so the

two neighboring maxima of the background profile would be

close enough, to guarantee overlap of the radiation due to the

beaming. If this is not the case, the exact distribution will

possess an additional structure, which LMA+ is incapable of

reproducing. This yields the condition 
 � 2πa0, that limits

the applicability of the LMA+ for large a0 much stronger than

the well known criterion 
 ≫ 1. Our results here show that

for large a0 the LCFA seems to yield better agreement with

SFQED at finite 
, compared to the LMA+. These findings

need to be contrasted with the prediction that the (standard)

LMA converges to the LCFA for a0 ≫ 1 for certain integrated

rates [52].

C. Analytic results for integrated LMA+ rates

In the expression for the standard LMA rate, Eq. (19), the

delta distribution allows for an immediate exact analytical in-

tegration with respect to one of the three dependent variables:
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FIG. 6. Fully differential NCS distributions in CP case for a0 = 10, ℓ = 225, η = 0.1, and different pulse durations: 
 = 10 (top row),


 = 20 (middle row), and 
 = 40 (bottom row). The left and right columns show LCFA and LMA+ results, respectively. The right column

demonstrates lineouts at ρy = 0 for both approximations and comparison with the full SFQED result.

laser phase ϕ, transferred momentum ℓ, or absolute value of

the transverse momentum |ρ⊥|. In turn, for the LMA+ (23)

this is not so straightforward. Nonetheless, we may perform

the integration approximately, due to the huge damping factor

∼
2≫ 1 in the exponent of Eq. (23). Below, in Secs. III C 1

and III C 2 we demonstrate how to approximately perform

analytically the integrations with respect to laser phase ϕ and

the transverse momentum magnitude |ρ⊥|, respectively.

1. Integration over the laser phase ϕ

Here we show how to obtain fully differential probabil-

ity from the probability rate (23), performing approximate

integration over the laser phase ϕ. The integrand, Eq. (23),

is suppressed, unless [ζ (ϕ) − n] � 1/
 ≪ 1. Thus the main

contributions to the ϕ integral come from the vicinities of

zeros of ζ (ϕ) − n. Since ζ (ϕ) − n is an even function of ϕ,

it has two zeros, which lay symmetrically with respect to the

032819-9



NIKITA LARIN AND DANIEL SEIPT PHYSICAL REVIEW A 112, 032819 (2025)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
ℓ

0.00

0.08

0.16

0.24

0.32

0.40

d
P
/d

ℓd
2
ρ

0 1 2 3 4 5
ℓ

0

4

8

12

16

20
×10−3

0 1 2 3 4 5
ℓ

0.0

1.5

3.0

4.5

6.0

7.5

×10−3

FIG. 7. Fully differential NCS spectra in CP background plotted for the different values of the transverse momentum ρ⊥: ρ⊥ = (0, 0)–left

(on axis), ρ⊥ = (a0, 0)–center, ρ⊥ = (2a0, 0)–right. The classical nonlinear parameter a0 = 2, pulse width 
 = 25, and the initial electron

energy parameter η = 0.1.

origin,

ϕ∗ = ±
g−1





√

2(1 + ρ
2
⊥)

a2
0(1 + δ2)

(

n

ℓ
− 1

)



. (26)

Therefore we expand ζ (ϕ) − n in the vicinity of ϕ∗ up to the

fourth order

(ζ (ϕ) − n)2 = [ζ ′(ϕ∗)]2(ϕ − ϕ∗)2 + ζ ′(ϕ∗)ζ ′′(ϕ∗)(ϕ − ϕ∗)3

+
[(

ζ ′′(ϕ∗)

2

)2

+
ζ ′(ϕ∗)ζ ′′′(ϕ∗)

3

]

(ϕ − ϕ∗)4

+ O[(ϕ − ϕ∗)5]. (27)

The inclusion of the fourth-order term is necessary to ensure

the finite result. When the two zeros coalesce, ϕ∗ = 0, the

first derivative, ζ ′(ϕ∗) ∝ g′(ϕ∗/
), vanishes, and the correct

behavior is controlled by the fourth term in (27). Moreover, we

argue that the second term in the square brackets in (27) may

be also neglected, since the overall contribution of the fourth-

order term is important only when ζ ′(ϕ∗) = 0. Otherwise, the

dominant role is played by the lower-order terms [by the same

token, we neglect the term ∝ (g′)2 in ζ ′′(ϕ∗), since it plays no

role in the regularization as well]. Thus we can write

[ζ (ϕ) − n]2 ≈
[

ζ ′(ϕ∗)(ϕ − ϕ∗) +
ζ ′′(ϕ∗)

2
(ϕ − ϕ∗)2

]2

.

(28)

Substituting (28) into (23), approximating the remaining parts

of the integrand by its value at ϕ∗, and shifting integration

variable ϕ − ϕ∗ = t , we may write

dPLMA+

dℓd2ρ⊥
≈ −

2α


π3/2
A

+∞
∑

n=1

Dn(ϕ∗)

∫ +∞

−∞
dt

× exp

[

−
2

(

ζ ′(ϕ∗)t +
ζ ′′(ϕ∗)

2
t2

)2
]

. (29)

The integral over t may be expressed via the modified Bessel

functions of the first kind [78] and the final analytic expression

for the LMA+ NCS probability is given by

dPLMA+

dℓd2ρ⊥
≈ −

α

√

π
A

+∞
∑

n=1

Dn(ϕ∗)

∣

∣

∣

∣

ζ ′(ϕ∗)

ζ ′′(ϕ∗)

∣

∣

∣

∣

×
[

I 1
4
(
2̺2) + I− 1

4
(
2̺2)

]

exp(−
2̺2), (30)

where ̺2 = [ζ ′(ϕ∗)]4/8[ζ ′′(ϕ∗)]2.

We note that one can recover the standard LMA fully

differential probability,

dPLMA

dℓd2ρ⊥
= −

4α

π
A

+∞
∑

n=1

Dn(ϕ∗)

|ζ ′(ϕ∗)|
, (31)

from (30), as the first term in the asymptotic expansion for


 ≫ 1, given the expression for the modified Bessel function

of the first kind for the large argument [78]: Iν (x) ∼ ex/
√

2πx

as x → +∞.

The advantage of the result (30) is that in contrast to the

expression (31), it stays finite for the vanishing ζ ′(ϕ∗). Also,

when the ζ ′′(ϕ∗) tends to zero (̺ → ∞), the finiteness of (30)

is ensured by the leading asymptotic term of I±1/4(
2̺2).

The expression (30) is a divergence-free result for the fully

differential NCS probability. However, we stress that (30) is

not of a general nature, since it was obtained for the specific

choice of the window function.

In Fig. 7 we now compare the result (30) with curves

obtained by the numerical integration of (23) with respect to

ϕ and the full SFQED result. We see that Eq. (30) provides

a finite result at the left edge of the harmonics range, where

standard LMA is divergent (see also Fig. 4). However, due

to approximations performed in the integration over ϕ, the

harmonics spreading outside the allowed range, Eq. (25), dis-

appeared. The expression (30) predicts the abrupt edges (see

inset in Fig. 7) for harmonics, likewise the standard LMA.

Apart from that, approximation (30) is in good agreement with

the numerically integrated LMA+ result. This shows that the

analytical result (30) manages to keep the finite bandwidth

effects where needed most: to shield the divergencies.
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2. Integration over the transverse momentum ρ⊥

Applying the same reasoning as above, we can approx-

imately integrate the LMA+ probability rate (23) over the

transverse momentum magnitude |ρ⊥|. Further, we consider

the CP case, since it also permits analytical integration over

the azimuthal angle ϑ in the transverse momentum plane

(d2
ρ⊥ = |ρ⊥|d|ρ⊥|dϑ) due to the symmetry of the back-

ground.

To proceed, we make a change of variables in (23) and (20)

and go from the transferred momentum ℓ to the light-cone mo-

mentum fraction s = κ · k/κ · p = 2ηℓ/(1 + ρ
2
⊥ + 2ηℓ), and

use that dℓ/ℓ = ds/s(1 − s). Doing so, (23) turns into

dRLMA+

ds
= −

α


2η2π3/2

s

1 − s

∫

R2

d2
ρ⊥

×
+∞
∑

n=1

Dn(ρ2
⊥) exp(−
2[ζ (ρ2

⊥) − n]2), (32)

Dn(ρ2
⊥) = J2

n (x) + a2
0g2

(

ϕ




)[

1

2
+

s2

4(1 − s)

]

×
(

2J2
n − J2

n+1 − J2
n−1

)

, (33)

x =
s

η(1 − s)
|ρ⊥|a0g

(

ϕ




)

. (34)

Exploiting the azimuthal symmetry for integration over ϑ and

introducing a new notation r = ρ
2
⊥, we arrive at,

dRLMA+

ds
= −

α


2η2
√

π

s

1 − s

∫ +∞

0

dr

+∞
∑

n=1

Dn(r)

× exp

[

−
(


s

2η(1 − s)

)2

(r − r∗)2

]

, (35)

r∗ =
2ηn(1 − s)

s

[

1 −
s

s̄(1 − s)

]

,

s̄ =
2ηn

1 + a2(ϕ/
)
, (36)

where a(ϕ/
) = a0g(ϕ/
). The main contribution to the

integral (35) comes from the region where r − r∗ � 1/
.

Hence, we may approximate (35) as

dRLMA+

ds
≈ −

α


2η2
√

π

s

1 − s

+∞
∑

n=1

Dn(r∗)

∫ +∞

0

dr

× exp

[

−
(


s

2η(1 − s)

)2

(r − r∗)2

]

. (37)

Evaluating the integral (37) with respect to r, we obtain a

complementary error function [79], and the final result reads

as

dRLMA+

ds

≈ −
α

η

+∞
∑

n=1

Dn(r∗)

{

1 −
1

2
Erfc

(

n


[

1 −
s

s̄(1 − s)

])}

,

(38)

with the argument of the Bessel functions in (33) being now

x =
2na(ϕ/
)

√

1 + a2(ϕ/
)

√

s

s̄(1 − s)

(

1 −
s

s̄(1 − s)

)

. (39)

The first term in the square brackets in (38) gives the standard

LMA expression [52]. In turn, the complementary error func-

tion corresponds to the finite bandwidth corrections. When

the value of s is far from the harmonic edge sn = s̄/(1 +
s̄) = 2ηn/[1 + 2ηn + a2(ϕ/
)], the argument of the com-

plementary error function ∼n
 ≫ 1, and we have a strong

suppression of the second term in (38), since Erfc(x) ∼
e−x2

/x
√

π for the large positive x [79]. In other words, the

standard LMA and LMA+ probability rates coincide far from

the harmonics positions. But, when s approaches the harmonic

edge sn the argument of the complementary error function in

(38) becomes of the order of unity, and the second term damps

the probability rate’s magnitude.

Another significant difference between the LMA and

LMA+ is the allowed range of change for the s variable.

The standard LMA predicts that, for each individual har-

monic n, s is confined 0 � s � sn [52]. This condition stems

from the delta distribution (19) and manifests zero bandwidth

of the monochromatic model. However, it is not the case

for the LMA+. The assigned finite bandwidth leads to the

softening of the restriction on the valid range for the s variable.

When s > sn, the sign of the complementary error function

argument changes, and since Erfc(−x) = 2 − Erfc(x), we get

dRLMA+

ds
≈

α

2η

+∞
∑

n=1

(−1)n
Dn(r∗)Erfc

(

n


[

s

s̄(1 − s)
− 1

])

,

(40)

where

Dn(r∗) = I2
n (x̃) + a2

(

ϕ




)[

1

2
+

s2

4(1 − s)

]

×
(

2I2
n + I2

n+1 + I2
n−1

)

, (41)

x̃ =
2na(ϕ/
)

√

1 + a2(ϕ/
)

√

s

s̄(1 − s)

(

s

s̄(1 − s)
− 1

)

. (42)

To obtain (41), we employed the relation Jn(ix) = eiπn/2In(x)

[78]. We see from (40) and (41) that for s → 1 the modified

Bessel functions tend to infinity; however, this divergence is

suppressed by the faster decay of the complementary error

function, so the overall expression stays finite and, as we will

see, predicts reasonable behavior in the high-energy region of

the emitted spectrum.

In Fig. 8 we compare the exact SFQED results with LMA+

given by Eqs. (38) and (40); each curve is normalized by

the total pulse duration 
. We also included the standard

LMA and LCFA for completeness. As we can see, the stan-

dard LMA is insensitive to the bandwidth features, such as

spreading of the harmonics and damping of the harmonics

peaks. LMA+ reproduces these features to a certain extent: the

harmonics magnitudes are substantially better approximated

even for the relatively short pulses (
 
≫ 1), where SVEA is

not valid anymore. Presumably, inclusion of the higher-order

gradients of the envelope may help to achieve a better agree-

ment with the exact calculations.
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FIG. 8. Angular-integrated spectra of NCS in CP background plotted for a0 = 0.5 (left), a0 = 2.5 (right). Each curve is normalized by the

total pulse duration 
. The initial electron energy parameter η = 0.1.

IV. SUMMARY

In the present paper, we revisited the derivation

of the probability rates in the locally monochromatic

approximation (LMA). Taking the probability of the nonlinear

Compton scattering (NCS) as a starting point, we employed

the slowly varying envelope approximation (SVEA) along

with the local approximation (θ/
 ≪ 1) to obtain the LMA

protorate. The proper LMA probability rates were then ob-

tained by cycle averaging the protorate. The procedure works

similarly for arbitrary polarization of a plane-wave back-

ground. Our expressions for the obtained LMA rates are in

agreement with the ones from the literature, but do not require

additional numerical arguments. Therefore, our approach em-

phasizes the key concepts behind the LMA: (i) the separation

of timescales by means of the SVEA, (ii) neglect of interfer-

ence effects on the scales of a full pulse length by employing

the local approximation θ/
 ≪ 1, and (iii) cycle averaging

over the fast carrier component to arrive at a positive-definite

probability rate.

We were able to restore the bandwidth effects into the

LMA, which we call LMA+. This is achieved in our deriva-

tion of the LMA by introducing a window function in the

protorate. By reintroducing finite bandwidth into the LMA

probability rate, we find that the fully triple-differential prob-

ability within the LMA+ stays finite, in contrast to the analog

expression in the standard LMA. Our numerical comparison

shows that the LMA+ is able to reproduce the spreading of

the emitted harmonics edges, similarly to the exact strong-

field QED (SFQED) result, in contrast to the LMA. We also

investigate angular distribution of emitted radiation at fixed

transferred momentum ℓ. Considering especially the regime

of a0 ≫ 1 and 
 ≫ 1, we compared the angular distributions

obtained with the LMA+, the LCFA, and the exact SFQED

calculations. If 
/a0 ≪ 2π the exact SFQED distribution

manifests features associated with the subcycle structure of

the pulse via the radiation beaming. While LCFA is capable

of partially reproducing these features, the LMA+ completely

lacks them, due to the cycle-averaging procedure that hides

all subcycle information. This yields a stronger constraint on

the applicability of the LMA+ as 
/a0 � 2π . If this criterion

is violated, the LCFA was found to better agree with the full

SFQED result than the LMA+.

Finally, we obtained an approximate analytical expression

for integrated LMA+ rates. First, we found expressions for

the fully differential probability by integrating the LMA+

over the laser phase ϕ. This analytical result correctly regu-

larizes the LMA spectrum by removing the divergences in the

standard LMA. However, due to the approximations made, it

does not include the spreading of the harmonics due to the

background’s bandwidth. Second, we derived an approximate

analytical expression for the angular-integrated probability

rate in terms of modified Bessel functions, which accounts

for the softening of the harmonic edges and damping of the

harmonics peaks. Since the exact SFQED spectrum manifests

the same features, we propose the LMA+ probability rate as

a more suitable candidate for the simulations of the laser-

particle collisions in the moderate intensity regime a0 ∼ 1.

DATA AVAILABILITY

The data that support the findings of this article are openly

available [80].

APPENDIX A: SERIES REPRESENTATION

FOR THE FLOATING AVERAGE

We start with the definition of a floating average (5) and

perform the shift of the integration variable t = η + ϕ:

〈F 〉(ϕ, θ ) =
1

θ

∫ ϕ+θ/2

ϕ−θ/2

F (t )dt =
1

θ

∫ θ/2

−θ/2

F (η + ϕ)dη.

(A1)

Treating 〈F 〉(ϕ, θ ) as a function of two variables, we write its

Fourier transform with respect to the average laser phase ϕ,

F (λ, θ ) =
1

2π

∫ ∞

−∞
〈F 〉(ϕ, θ ) exp (−iλϕ)dϕ, (A2)
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and then substitute (A1) into the right-hand side of (A2),

changing the integration order:

F (λ, θ ) =
1

2πθ

∫ θ/2

−θ/2

dη

∫ ∞

−∞
F (η + ϕ)e−iλϕdϕ. (A3)

For the inner integral with respect to ϕ we perform a change

of variables once again, µ = ϕ + η, and rearrange the inte-

grands:

F (λ, θ ) =
1

2πθ

∫ θ/2

−θ/2

dηeiλη

∫ ∞

−∞
F (µ)e−iλµdµ

=
F̃ (λ)

θ

∫ θ/2

−θ/2

dηeiλη. (A4)

Here we also introduced the Fourier transform F̃ (λ) of the

function F (t ). The remaining integral with respect to η can be

done, giving us

F (λ, θ ) = F̃ (λ)sinc

(

λθ

2

)

, (A5)

where sinc(x) = sin x/x. The next step is to return to the

original (A1) by means of the inverse Fourier transform of

(A5):

〈F 〉(ϕ, θ ) =
∫ ∞

−∞
F̃ (λ)sinc

(

λθ

2

)

eiλϕdλ. (A6)

If we replace sinc(λθ/2) with its Taylor series and change the

order of integration and summation, we can write down the

following expression:

〈F 〉(ϕ, θ ) =
∞

∑

n=0

(−1)n

(2n + 1)!

(

θ

2

)2n ∫ ∞

−∞
λ2nF̃ (λ)eiλϕdλ.

(A7)

The factor (−1)nλ2n appears after taking 2n-th derivative of

the integrand with respect to the ϕ, so we can write

〈F 〉(ϕ, θ ) =
∞

∑

n=0

1

(2n + 1)!

(

θ

2

)2n
d2n

dϕ2n

∫ ∞

−∞
F̃ (λ)eiλϕdλ.

(A8)

Eventually, we substitute the Fourier transform of the image

F̃ (λ) with its original F (ϕ) and obtain the final result:

〈F 〉(ϕ, θ ) =
∞

∑

n=0

1

(2n + 1)!

(

θ

2

)2n
d2nF (ϕ)

dϕ2n
. (A9)

APPENDIX B: CYCLE-AVERAGING PROCEDURE

In this Appendix, we show how to deal with the integrals

that arise due to the cycle averaging in (18). For the CP case

(δ = ±1), the parameter y vanishes [see Eq. (16)] and the

generalized Bessel function simplifies to the standard Bessel

function of the first kind [see Eq. (15)]. Thus the integral that

we need to evaluate is
∫ ϕ+π

ϕ−π

Jn(2x cos ϕ′)dϕ′ = 2

∫ π

0

J2n(2x cos ϕ′)dϕ′. (B1)

In (B1) we beforehand shifted the argument ϕ′ − ϑ → ϕ′ and

then exploited properties of periodic functions along with the

symmetries of the Bessel functions. In doing so, we assumed

that the envelope [x ∼ g(ϕ′/
) ≈ g(ϕ/
)] stays constant on

the cycle scale due to the SVEA. The integral on the right-

hand side of (B1) is known as the Neumann integral [78]:
∫ π

0

J2n(2x cos ϕ′)dϕ′ = πJ2
n (x). (B2)

In the LP case (δ = 0), we deal with the two integrals of the

generalized Bessel functions,
∫ ϕ+π

ϕ−π

Jn(2x cos ϕ′, 2y cos 2ϕ′)dϕ′

= 2

∫ π

0

J2n(2x cos ϕ′, 2y cos 2ϕ′)dϕ′, (B3)

∫ ϕ+π

ϕ−π

cos 2ϕ′
Jn(2x cos ϕ′, 2y cos 2ϕ′)dϕ′

= 2

∫ π

0

cos 2ϕ′
J2n(2x cos ϕ′, 2y cos 2ϕ′)dϕ′, (B4)

where to get the right-hand side, we once again exploited

properties of the periodic functions and symmetries of the

Bessel function. The integrals (B3) and (B4) are the general-

izations of the Neumann integral (B2), but since they are not

well known in the literature, we provide their evaluation here.

We adapt the strategy from Watson [78] for the standard

Neumann integral and for that we need the integral represen-

tation of the generalized Bessel function [69]:

Jn(x, y) =
1

2π

∫ π

−π

dϕ exp (ix sin ϕ + iy sin 2ϕ − inϕ).

(B5)

Then we consider the product of two generalized Bessel func-

tions with different indices

Jn−m(x, y)Jn+m(x, y)

=
1

4π2

∫ π

−π

∫ π

−π

dϕdθ exp[−in(ϕ + θ ) + im(ϕ − θ )

+ ix(sin ϕ + sin θ ) + iy(sin 2ϕ + sin 2θ )], (B6)

where m is an integer number. The next step is to introduce

the change of variables ϕ + θ = 2ψ , ϕ − θ = 2χ with the

Jacobian equal to 2, whereas the integration limits for ψ and

χ can be chosen as [−π, π ] and [0, π ], correspondingly, due

to the symmetry of the integrand [78]. Thus we have

Jn−m(x, y)Jn+m(x, y)

×
1

2π2

∫ π

0

dχ exp (2imχ )

∫ π

−π

dψ exp(2ix cos χ sin ψ

+ 2iy cos 2χ sin 2ψ − 2inψ ). (B7)

We recognize in the inner integral on the right-hand side

of (B7) the integral representation of the generalized Bessel

function (B5) with the new arguments and the doubled index.

Hence, we can write

Jn−m(x, y)Jn+m(x, y)

=
1

π

∫ π

0

dχ cos (2mχ )J2n(2x cos χ, 2y cos 2χ ), (B8)
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where we also exploited the fact that the left-hand side of (B7)

is a real-valued function for real x and y. For m = 0 and m = 1

we have integrals that appear in the calculations of the LP case

[see Eqs. (B3) and (B4)].
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