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Observation of the Charmonium Decay 7, — yy in J/w — 1,
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Using (2712.4 4 14.3) x 10 y(3686) events collected with the BESTII detector at the BEPCII collider,
the decay 7. —yy in J/w — yn. is observed. We determine the product branching fraction
B(J/w — yn.) x B(n. = yy) = (5.23 £ 0.26, £ 0.30y) x 1076, This result is consistent with the
lattice QCD calculation (5.34 4 0.16) x 107° from HPQCD in 2023. By using the world-average values
of B(J/w — yn,.) and the total decay width of 7., the partial decay width I'(5. — yy) is determined to be
(11.30 £ 0.564, £ 0.664y £ 1.14,+) keV, which deviates from the corresponding world-average value by

3.4e0.
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Charmonium systems offer a golden probe for inves-
tigating the nature of quantum chromodynamics (QCD),
which is the fundamental theory governing strong inter-
actions. Because of the medium energy scale of charmo-
nium systems in strong interactions, charmonium physics
encompasses both perturbative and nonperturbative phe-
nomena [1,2], making it a valuable testing ground for
deepening our understanding of QCD for both sides. The
decay rate of charmonium can offer access to the strong
coupling constant at the charmonium scale within the
framework of perturbative QCD [3], and also provide a
sensitive test to the application of the lattice QCD (LQCD)
and the effective field theories such as nonrelativistic QCD
(NRQCD) [4]. Among these studies, . — yy, as depicted
in the Feynman diagram shown in Fig. 1(a), has received
significant theoretical attention.

The decay width of 5. — yy can be written as I'(y. —
vy) = ma*Q¢M, F* [5-7], where Q.. is the electric charge of
the ¢ quark in units of e, M, is the mass of 5., a is the fine
structure constant, representing the electromagnetic inter-
action, and F is the transition form factor, representing the
strong interaction. To date, the electromagnetic part of the
decay amplitude has been well understood, while the strong
interaction part needs further study. Within the framework of
NRQCD, the relationship between the partial widths of
J/w — ete” and 5. — yy can be expressed as R =
L /y = etem)/T(ne. = yy)] = (1/302)[1 + O(a) +
O(v?/c*)] = 2 at the leading order [8], where a; is the
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running strong coupling constant, » is the quark velocity in
the charmonium system, and c is the velocity of light. It is
expected to receive sizeable radiative and relativistic correc-
tions by QCD [8-10], and their contribution may cause a
deviation from% for R. However, the phenomenology of . —
yy for both experiment [11-13] and theory [5-10,14-21] was
still unclear until now.

Experimentally, the partial decay of 7. — yy could be
assessed via radiative charmonium decays, p p annihilation
(called direct processes), and the two-photon fusion process
followed by hadrons (called the time-inversion process), with
Feynman diagrams shown in Figs. 1(a) and 1(b), respec-
tively. Evidence for n, — yy was obtained in J/y — yn, at
both CLEO and BESIII, giving the product branching
fraction (BF) (1.27 £0.3) x 107° [11] and (4.5 + 1.2 &
0.6) x 107° [12] of J /s — ¥, . — 7y, respectively. Both
results are consistent with each other but with large uncer-
tainties. For another direct measurement, pp annihilation
experiments have measured the cross section for pp — yy at
various energy points and observed a peak around 7,
resonance [22-24]. This provides the product BF of B(1. —
pp) x B(n. = yy) = (2.6 £0.5) x 107 [13]. Compared
to the direct process, the measurements with the time-inverse
process are more precise currently [25-30], and a global fit
gives a world-average value of I'(n. — yy) = (5.1 £
0.4) keV [13]. However, there are large discrepancies
between different measurements of yy — 5, [21].
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FIG. 1. The Feynman diagrams of the direct process 1. — yy
(a), and the time-inversion process yy — 7. (b).
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There are a number of theoretical predictions for I'(77. —
yy) [5-10,14-21], which do not agree with each other or
with the world-average value. The LQCD -calculation,
which employs a model-independent approach, deviates
from the world-average value by more than 3¢ [20], while
the LQCD calculation by HPQCD, which for the first time
includes u, d, s, and ¢ quarks in the sea, shows a tension
exceeding 40 [21]. Additionally, a next-to-next-to-leading
order (NNLO) QCD correction for I'(. — yy) suggests
that the calculated result is substantially larger than the
world-average value by more than 10 [19]. These devia-
tions are all in the same direction and there may be aspects
that require further understanding. Therefore, a new and
precise measurement of ., — yy, which is independent of
the pp annihilation and the two-photon production experi-
ments, is crucial for resolving this issue.

In this Letter, we present the measurement of 7, — yy via
w(3686) — ztn~J/w with J/y — yn, using (2712.4 £+
14.3) x 10° w(3686) events [31,32] collected with the
BESIII detector at the BEPCII collider. This sample has
a particular advantage over using a directly produced J/y
sample due to the high eTe™ — ygryy background in the
latter sample.

The BESII detector [33] records symmetric ete™
collisions provided by the BEPCII storage ring [34] in
the center-of-mass energy (y/s) range from 1.85 to
4.95 GeV, with a peak luminosity of 1.1 x 10* cm™2s~!
achieved at /s = 3.773 GeV. The cylindrical core of the
BESII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber, a
plastic scintillator time-of-flight (TOF) system, and a Csl
(TI) electromagnetic calorimeter (EMC), which are all
enclosed in a superconducting solenoidal magnet providing
a 1.0 T magnetic field (0.9 T in year 2012). The solenoid is
supported by an octagonal flux-return yoke with resistive
plate counter muon identification modules interleaved with
steel. The charged-particle momentum resolution at
1 GeV/c is 0.5%, and the dE/dx resolution is 6% for
electrons from Bhabha scattering. The EMC measures
photon energies with a resolution of 2.5% (5%) at
1 GeV in the barrel (end cap) region. The time resolution
in the TOF barrel region was 68 ps, while that in the end
cap region was 110 ps. The end cap TOF system was
upgraded in 2015 using multigap resistive plate chamber
technology, providing a time resolution of 60 ps, which
benefits 83.3% of the data used in this analysis [35-37].

Simulated data samples, generated with a Geant4-based
[38] Monte Carlo (MC) package [39] that includes the
geometric description of the BESIII detector [40—42] and
the detector response, are utilized to determine detection
efficiencies and to estimate backgrounds. The simulation
models the beam energy spread and initial state radiation in
e"e™ annihilations with the generator Kkmc [43,44]. All
particle decays are modeled with EvtGen [45,46], using BFs
either taken from the Particle Data Group (PDG) [13] when

available, or otherwise estimated with LUNDCHARM
[47,48]. Final state radiation from charged final state
particles is incorporated using the PHOTOS package [49].
The selection criteria of y(3686) — 7z~ J/y,
J/w = yn., n. — yy are described below. Two charged
pion tracks are required to be within a polar angle (¢) range
of |cos 0| < 0.93, where @ is defined with respect to the z
axis, which is the symmetry axis of the multilayer drift
chamber. For both pions, the distance of the closest
approach to the interaction point must be less than
10 cm along the z axis and less than 1 cm in the transverse
plane. Photon candidates are identified using showers in the
EMC. The deposited energy of each shower must exceed
50 MeV in the barrel region (| cos 8| < 0.80) or in the end
cap region (0.86 < |cos 6] < 0.92). To suppress electronic
noise and showers unrelated to the event, the difference
between the EMC shower time and the event start time [50]
is required to be within [0, 700] ns. In addition, to exclude
showers that originate from charged tracks, the angle
subtended by the EMC shower and the position of the
closest charged track at the EMC must be greater than 10°
as measured from the interaction point. Only the events
with two charged pion tracks and three or four photons
are selected [51]. To suppress the background from
ete™ - eTe yyy, the combined likelihoods (L) of particle
identification (PID) under the positron and pion hypotheses
are obtained, and pion candidates are required to satisfy
L(e)/[L(e) + L(m)] < 0.8. A four-constraint kinematic fit
[52], constraining the total four-momentum of the final
state to the initial state is performed. If multiple combina-
tions of #"z~yyy are found, the one with the minimal x5
value is selected. We require y3- < 19, determined by
optimizing the signal sensitivity (S/+/S + B), where S is
the expected signal yield and B is the expected background
yield. To select the J/y candidate, the recoil mass of 77z~
defined as M™! = [p,+ + p,- — p,+ — P, | with the four-
momenta of the beam particles p,+ and p,- and the
reconstructed four-momentum p,-(,-y of #(z7), is
required to be in the range [3.083,3.111] GeV/c?. The
three selected photons are marked as y;, y,, y3 sorted by
energy from highest to lowest. After applying all selection
criteria, the dominant remaining backgrounds arise from
the processes J/w — yx°/n/n’ — yyy. While the 5, signal
is expected to be in the y;y, invariant mass M,, these
backgrounds peak in the other two combinations and can be
suppressed by rejecting the events with invariant mass of
7273 (My3) or y1y3 (M) falling in the regions [0.10, 0.16],
[0.48, 0.59], and [0.88,1.10] GeV/c?. An inverted veto
region of M»,3 and M5 has been implemented to verify the
background simulation, which shows good agreement with
the data. In addition, there are backgrounds from J/y —
ya°n® — yyyyy and J/w — yyy, as well as other minor
contributions modeled with the y(3686) inclusive MC
sample [53]. The non-J/y [non-y(3686)] background is
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FIG. 2. Fit to the M, distribution. The black points with error
bars are data, the red line is the fit result, the green line is
the signal, and the lines in other colors represent different
backgrounds.

estimated using the sideband region of Mjff;i,l (using the
data samples at 3.773 GeV [54]) and is found to be
negligible. The signal efficiency is estimated to be €4, =
(13.77 £0.02)% from signal MC simulation.

Following the application of the aforementioned selec-
tion criteria, a significant #, — yy peak in the M,
distribution is observed, as shown in Fig. 2. To extract
the signal yield of #. — yy, an unbinned extended maxi-
mum likelihood fit on this distribution is performed. In the
fit, the line shape of 7. is described as

F(m) = E}(m) X faump(m) x [BW(m)|> (1)

with
M, T
BWm) = o T @)
r’(‘ '7(‘ '7(.‘
2 2
E,(m) = Moy =m” (3)
v 2 X MJ/II/ ’
and
E2
fdamp(m) . (4)

~ Eg % E,(m) + [E)— E,(m)]2"

where m is the mass of 77, E; (m) is the M1 transition form
factor [55], E, (m) is the energy of the transition photon in the
restframe of J/w, f qamp (1) is the damping factor in reducing
the long tail from the M1 transition form factor [56,57],
M, (T, ) is the nominal mass (width) of #. [13], which is
assumed to follow a Gaussian distribution and constrained
with the PDG values [13] (Gaussian constraint), M, is the

nominal mass of J/y [13], and Ey = (M3, — M} )/(2 x
M, )]s the energy of the transition photon at the peak of 7...
The signal probability density function in the fit is described

by
PDF(m) ~ [e(m) x F(m)] @ G(u.0), (5)

where e(m) is the mass-dependent efficiency studied from
the signal MC simulation, G(u, ¢) is a Gaussian function
with free parameters y and ¢ to account for the detector
resolution. The background shapes are extracted from the
w(3686) inclusive MC sample with kernel density estimation
[58]. The strengths of each background component also need
to satisfy the Gaussian constraint given by the luminosity and
the known BFs of these background processes [13]. The
resultant fit resultis shown in Fig. 2 and the fit gives the signal
yield Ng, = 677.7 + 33.5.

The product BF of J/yw — y5, and 5, — yy is calculated
by

B(J/y — yn.) x B(n. — yy)

N

_ sig ’ 6
Ny 3686) X €sig X Bly(3686) — 277 J /] (©)

where N, (3685) is the total number of y(3686) events
[31,32], e, is the signal efficiency studied from the signal
MC simulation, and Bly(3686) — z"z~J/y] is adopted
from the PDG [13]. The number of 5. — yy events from
non-“z"z"J/w, J/w — yn.” decay of y(3686) is negli-
gible due to their relatively small BF and low detection
efficiency. The decay width of 5. — yy is calculated by

B(J/w = yn.) x B(n. = ry)
BPS(J /w = )

where BPPS(J /y — yn,) is the BF of J /y — yn, and I'hP9
is the total width of #,., with both values obtained from the
PDG [13].

The sources of systematic uncertainty include the total
number of y(3686) events, intermediate BF, signal effi-
ciency, and signal extraction. The uncertainty of the total
number of y(3686) events is 0.5% [32]. The uncertainty of
the BF of w(3686) — z"z~J/w is 1.0% [13]. The uncer-
tainty of the tracking for two pions is assigned as 0.6%
from the control sample J/y — 7272~ z°. The uncertainty
of photon detection is found to be 0.5% per photon from the
control samples ete™ — yutu~. The uncertainty associ-
ated with the M,; and M5 veto selection is studied by
smearing the MC-generated M,; and M5 spectra with a
Gaussian function G’'(i',0¢), setting y' = £5 MeV and
¢’ = 10 MeV. The maximum signal efficiency difference,
0.7%, is taken as a conservative estimation of the uncer-
tainty. The uncertainties of other selections are estimated
from the control sample y(3686) — z"z~J /w, J/yw — yn,

L. —yy) = xIFPG - (7)
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TABLE L. Relative systematic uncertainties in the measurement
of B(J/y = yn.) x B(ne = ry).

Source Uncertainty (%)
Tracking 0.6
PID 0.5
Photon detection 1.5
M1 requirement 0.2
N, requirement 0.8
Xic requirement 2.9
Veto selection 0.7
Line shape of 7. 3.6
Background shape 0.2
Background yield 2.7
Total number of y(3686) events 0.5
Bly(3686) — ntz~J /] 1.0
Total 5.8

n — yy. For each case, the uncertainty is taken as the
efficiency difference between data and MC samples. The
assigned uncertainty is 0.5% for the PID of the two pions,
0.2% forthe M’ ff;ﬂ requirement, 0.8% for the photon number
(N,) requirement, and 2.9% for the X3c requirement. The
uncertainty of the 7, line shape is estimated by varying
the damping factor from f gy, (m) = (E§/{Eo x E,(m) +
[E — E,(m)}) 5710 faump (m) = explE2(m)/8%] with
f = 65 MeV [56], and the BF difference, 3.6%, is assigned
as the uncertainty. The uncertainty of the background shape
is investigated by changing the background shape with
different kernel width parameters in kernel density estima-
tion [58], and the BF difference, 0.2%, is taken as the
uncertainty. The uncertainty of the background yield is
assigned by individually removing the Gaussian constraints
on the background component yields, and the maximum BF
difference, 2.7%, is taken as the uncertainty. The total
systematic uncertainty is calculated to be 5.8% by summing
up all sources in quadrature. All aforementioned systematic
uncertainties are summarized in Table I. The reference
uncertainty sources for the I'(y. — yy) measurement
are from B*PS(J/y — yn.) and TIPS, which are 9.9%
and 1.6%, respectively [13]. The combined effect of these
sources is 10.1%.

The final product BF, B(J/y — yn.) x B(n. = yy), is
calculated to be (5.23 £ 0.264, £ 0.30,,) x 107° by
Eq. (6), where the first uncertainty is statistical, and the
second is systematic. A comparison of our result with
previous measurements [11,12], the world-average values
[13], and LQCD calculations from HPQCD [21] and Meng
et al. [20,59] in the B(y. — yy) versus B(J/w — yn,)
plane is shown in Fig. 3. In the plot, the value from pp —
yy is normalized to B(y, = pp) = (1.334+0.11) x 1073
[13]. We find that the world-average values of B(, — yy)
and B(J/w — yn.) [13] do not simultaneously align with
our measurement. Interestingly, the highly precise LQCD

107
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FIG. 3. The comparison of B(n. — yy) versus B(J/w — y1.)

with 1o confidence level. The red-filled region is our result of
B(J/w = yn.) x B(y. = yy), the yellow-filled region is the
HPQCD calculation [21], and the green-filled region is from
the calculation of Meng et al. [20,59]. The green line represents
the CLEO result [11], the light blue line represents the previous
BESIII result [12], and the blue grid-filled region is the
combined result of CLEO and BESIII. The purple-red filled
region is the B(y. — yy) result from the PDG [13] and the
blue full-filled region is the B(J/y — yn,) result from the PDG
[13]. The orange line represents the average pp — yy result
from SPEC [22], E760 [23], and E835 [24] normalized to
By, — pp) = (1.33 £0.11) x 1073,

predictions from HPQCD with B(J/y — yn.) x B(n. —
yy) = (5.34 £0.16) x 107° [21] and Meng et al. [20,59]
both agree with our measurement, while the corresponding
individual calculations of B(y. — yy) and B(J/w — yn,)
are inconsistent with the world-average values [13]. No
other calculation provides both B(n. — yy) and B(J/y —
yn.) simultaneously.

Using B(J/w = yn.) = (141£0.14)% and T, =
(30.5 £0.5) MeV from the PDG [13], the decay width
of 5. — yy is determined to be I'(n. — yy) = (11.30+
0.564, = 0.664, + 1.14¢) keV, with the first uncertainties
statistical, the second systematic, and the third from
B(J/w — yn.) and T, used from the PDG [13]. The decay
widths T'(. — yy) from multiple theoretical calculations,
experimental measurements, and the world-average values
are shown in Fig. 4. Combining with the world-average value
of B(J/w — yn.)[13], ourresultof B(y. — yy)is consistent
with the NNLO corrections of NRQCD [19] but significantly
deviates from other calculations by more than 3¢. Although
the HPQCD calculation of B(J/w — yn.) x B(n. — yy)
[21] is consistent with our measurement, it predicts a
different value of B(J/w — yn.) compared to the world-
average value. This discrepancy is evident in the comparison
between our measurement and the HPQCD value in Fig. 4.
Our measurement also deviates from the world-average value
of T'(n. — yy) [13], which is dominantly based on the
measurements with the time-inverse process [25-30], by
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FIG. 4. The comparison of I'(5. — yy). For the plot of “This
Letter,” the black solid line indicates the total uncertainty
including the reference uncertainties of J/y — yn. and I,
[13], and the dark, dark-to-light, and light red-filled regions
indicate the lo, 20, and 3o regions, respectively. The LQCD
calculations are marked with rhomboid and the NNLO calcu-
lation of NRQCD is marked with an inverted triangle. The blue
dashed line corresponds to R =2 using I'(J/y — e*e™) from
the PDG [13].

3.40. It is crucial to note that several theoretical calculations
of B(J/w — yn,.) are significantly larger than the value
presented in the PDG [21,59-62].

In summary, we report the measurement of the charmo-
nium decay n.—yy based on (27124 +14.3) x
10 y(3686) events. The reported product BF B(J/y —
ne) X B(ne = vy), (5.23 £ 0.264, + 0.304) x 107°, is
consistent with the recent LQCD calculations [20,21,59].
Using the world-average value of B(J/y — yn,.), we also
present the decay width of 7, —yy to be (11.30+
0.564, 0664, += 1.14,¢) keV. It agrees with the
NRQCD NNLO calculation [19] but deviates from the
world-average value, which is dominantly based on
the time-inverse process, by 3.4c. When taking charge-
parity-time conservation into account, the difference in the
decay of 17, — yy compared to its time-inverse process may
suggest a potential source of CP violation [63]. However,
before delving into this, a careful check of the current
experimental results is necessary. Our results indicate that
the current experimental information of either 5. — yy or
J/w — yn. may not be fully reliable, underscoring the need
for precise and independent measurements of both quantities
in future studies. In both direct and time-inversion process
measurements, the interference between the #.-included
process and the nonresonance process is neglected. Taking
into account this potential interference with a full interference
assumption [64], the product BF B(J/y — yn.) x B(n. —
v7) becomes (4.13 & 0.20 4 0.23) x 107° for the construc-
tive interference or (6.73 4-0.32+0.38) x 107 for the
destructive interference, with a statistical significance of

only 1.2¢ by comparing the likelihood in the fits with and
without interference. Because of the limited data sample and
the good quality of the fit without interference, we report the
fit result without interference as the nominal result and
provide the fit results with interference for reference.
Furthermore, given the relatively large BF uncertainty of
J/w — yn., additional studies of . — yy produced through
alternative mechanisms, such as w(3686) — yn. or
h. = yn., could offer further cross-validation of T'(y. —
yy) with independent systematic uncertainties. Additionally,
an updated measurement of B(J/w — yn.) with 5. —
inclusive or 7, — hadrons is also essential to further inves-
tigate the QCD phenomenon in charmonium.
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