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Abstract

We propose and investigate a Yukawa model featuring a dynamical scalar field coupled to
relativistic Luttinger fermions. Using the functional renormalization group (RG) as well
as large- Ny or perturbative expansions, we observe the emergence of an infrared attractive
partial fixed point in all interactions at which all couplings become RG irrelevant. At the
partial fixed point, the scalar mass parameter is RG marginal, featuring a slow logarithmic
running towards the regime of spontaneous symmetry breaking. The long-range behavior
of the model is characterized by mass gap formation in the scalar and the fermionic
sector independently of the initial conditions. Most importantly, a large scale separation
between the low-energy scales and the microscopic scales, e.g., a high-energy cutoff scale,
is naturally obtained for generic initial conditions without the need for any fine-tuning. We
interpret the properties of our model as a relativistic version of self-organized criticality,
a phenomenon observed in specific statistical or dynamical systems. This entails natural
scale separation and universal long-range observables. We determine nonperturbative
estimates for the latter including the scalar and fermionic mass gaps.

1 Introduction

Quantum field theories with scalar fields are prototypical for theories with phase transitions,
since the potential of the scalar field can trigger different realizations of the ground state
depending on its location and possible symmetry-breaking features in field space. Already at
zero temperature, phase transitions can occur as a function of the parameters of the models,
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specifically the parameters and couplings entailed in the scalar potential. The underlying
mechanisms find application in a wide range of fields from statistical mechanics, condensed
matter physics to elementary particle physics and cosmology.

The parameter region near a phase transition typically features critical phenomena and
is often governed by fluctuations of the scalar fields, potentially giving rise to features of
universality [1]. In relativistic four-dimensional spacetimes, approaching the critical region
generically requires a fine-tuning of parameters. This is because the mass parameter of the
scalar field represents a relevant direction of the renormalization group (RG) with a power-
counting exponent near two; the latter implies that microscopic parameters of a model have
to be tuned with quadratic precision to certain values in order to observe near-critical fea-
tures in the long-range physics.

A prominent example for such properties is the Higgs sector of the standard model of
particle physics where the mass of the Higgs boson characterizing the low-energy scale is
much smaller than anticipated high-energy scales such as those of grand-unified theories
or the Planck scale of gravity. The correspondingly anticipated necessity of fine-tuning of
parameters, specifically the scalar mass parameter, is often considered as unnatural. Solu-
tions to this naturalness problem [2-5], or rather explanations for the seemingly specific
parameter choices, have inspired a large number of suggestions for new underlying particle
physics models.

Standard suggestions involve, for instance, a removal of the relevant direction by postu-
lating an additional symmetry (e.g., scale, conformal, or supersymmetry) or by replacing the
fundamental scalar by an alternative or composite degree of freedom that becomes effective
near the electroweak scale (e.g., technicolor, little Higgs models, etc.).

In the present work, we explore a different option which is well known in the context
of dynamical systems: if a system has a critical point that is an attractor of the evolution
the macroscopic properties can display critical phenomena without the need to tune micro-
scopic parameters to specific values. This self-organized criticality [6] can, for instance, be
observed in slowly driven nonequilibrium many-body systems with nonlinear dynamics
[7—11]. Translated into relativistic quantum field theory, where the transition across scales,
i.e., RG time, plays the role of time in nonequilibrium systems, this requires an interacting
scalar model with a slow (e.g., logarithmic) RG running near a suitably infrared (IR) attrac-
tive fixed point. This is clearly at odds with the strongly relevant mass parameter of a scalar
model near the standard Gaussian fixed point.

A possible scenario for self-organized criticality in a relativistic theory has first been
sketched by Bornholdt and Wetterich in [12] where the necessary critical point has been
suggested to occur in the form of a partial RG fixed point for the running scalar-field expec-
tation value to be stabilized by a sufficiently large scalar anomalous dimension. It has been
argued in [12] that this stabilization could occur for a suitable matter content.

In our work, we show that a partial infrared attractive RG fixed point occurs naturally in
Yukawa theories with scalar fields interacting with relativistic Luttinger fermions. The latter
have recently been proposed as novel particle degrees of freedom giving rise to new asymp-
totically free field theories [13]; the relativistic version generalizes Luttinger fermions [14]
known from various non-relativistic condensed-matter systems, e.g, with electronic excita-
tions near quadratic band touching points [15-21]. The partial fixed point occurs in our
model for the Yukawa coupling as well as for all scalar self-interactions rendering all these
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couplings RG irrelevant. At the same time, the partial fixed point goes along with a large
scalar anomalous dimension which renders the scalar mass parameter RG marginal. In the
course of the RG flow, the latter exhibits a slow logarithmic drift towards the transition from
the symmetric to the broken regime. Once the transition occurs, the partial fixed points are
destroyed and the system settles in the broken phase with a gapped spectrum. No fine-tuning
is needed for a scale separation of the low-energy observables from the microscopic scales
— in direct analogy to self-organized criticality in dynamical systems.

We define our Yukawa model in Section 2. For the analysis of the model, we utilize
the functional RG as detailed in Section 3. A leading-order analysis, including large-Nt or
perturbative methods is presented in Section 4. A nonperturbative analysis using a local
potential approximation of the functional RG is performed in Section 5, where also first
quantitative estimates for the low-energy observables are computed. The high-energy com-
pletion of the Yukawa model in terms of an asymptotically free fixed point of a purely
fermionic model is discussed in Section 6. We conclude in Section 7. Some technical details
are described in the appendices.

2 The ;1 Yukawa Model

Our model is inspired by a purely fermionic model of self-interacting relativistic Luttinger
fermions first discussed and analyzed in [22]. The classical Euclidean action of this model
reads

Sp = / d*z {&Gwaﬂaw - gmw ; (M

where ¢ denotes a d, = 32 component Luttinger spinor and 1 its conjugate 1) = ¢t h with
the spin metric 4. The action has been constructed in such a way that the corresponding
Minkowskian action is real [13]. For given Lorentz indices y,v, G, denotes a dy x dy
matrix which is tracefree in Lorentz as well as spin space and satisfies the relativistic version
of the Abrikosov algebra [13, 17, 23]

2 d
{G;w: GN}\} = _ﬁgm/gn)\ + ﬁ(g;mgu/\ + gu/\gzm)a 2

where d denotes the (Euclidean) spacetime dimension. In our formulas, we keep d some-
times general for illustrative purposes, but concentrate on d = 4 dimensional spacetime for
the concrete application to studies of criticality. The matrices G,,,, can be spanned by a suit-
able set of Euclidean Dirac matrices v4, see Appendix A for further details. For spanning the
nine matrices G, together with the spin metric 4, in total 10 Euclidean Dirac matrices are
required, 71, . ..,710. The corresponding Dirac algebra thus contains another Dirac matrix
~11 which is used to define the interaction channel in (1). Further scalar interaction channels
are also possible [22]. In Minkowski space, the model is relativistically invariant by virtue
of the algebra (2) together with a mapping of SO(1,3) Lorentz transformations A*,, into the
spin-base transformations SL(32,C), A* , — Spor(A) € SL(32,C). This mapping defines the
Lorentz transformations of relativistic Luttinger spinors, see Appendix A of [13] for details.
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By means of a Hubbard-Stratonovich transformation, the model of (1) is fully equivalent
to a description involving an auxiliary scalar field,

Sen = [ ata {&Gwaﬂaw ~ Bobmw + 1ate?] )

which is obvious by using the equations of motion on the classical level or performing the
Gaussian functional ¢ integral on a quantum level, provided the matching condition

g= 4)

is fulfilled. The action (3) can be the starting point of a mean-field analysis of the fermionic
model as performed in [22]. In the present work, we generalize the model by considering a fully
dynamical scalar field which we consider as a fundamental quantum degree of freedom. Focus-
ing on the perturbatively renormalizable operators, we investigate the 11 Yukawa model

s= [ dt { PGP L0000 — Bl + s + 6, ()

where we have included a scalar kinetic term and a self-interaction with bare coupling .
Similar to the fermionic model (1), also the v;; Yukawa model features a Zo symmetry: the
model is invariant under a simultaneous replacement of ¢ — —e?Z7114), 1) — he PT11,
and ¢ — —¢; note that ¢ and ¢ are independent variables in the quantum theory. This Zy
symmetry also inhibits a bare fermionic mass term. Here and in the following, we assume
the fermion fields to occur in N flavors.

With both the fermionic field and the scalar field exhibiting a canonical mass dimension
of one in d = 4, the model features the renormalizable coupling \, the superrenormalizable
Yukawa coupling & and the scalar mass parameter 7 which are a priori independent.

If the Z, symmetry is broken by a scalar expectation value ¢ — v, the spectra of both fields
are gapped: the scalar field exhibits a massive o-type mode as lowest excitation, Whereas the
fermions develop an imaginary mass gap at iimfb with mi) = hw as smallest possible solu-
tions of the dispersion relation p? = :i:imi (ignoring further interactions). The corresponding
free fermionic propagator has square root singularities in the complex p? plane with a branch
cut along the imaginary axis; these, however, combine in closed fermion loops to a gapped
1/(p* + mi) form yielding well-defined Wick-rotatable momentym integrals, cf. [22].

It is instructive to compare the model (5) with a standard Yukawa model involving, e.g.,
Dirac fermions. This analogous case features the same three parameters, all of which exert
a qualitative and uantitative influence on the low-energy observables [24-28]. For instance,
the mass parameter m? governs the properties of the low-energy phase: for m? larger than
a critical value m2,, the model remains in the symmetric phase with a massive scalar and
massless fermions and / and \ governing their interactions. For /2 smaller than a critical
value, the model is in the broken phase with the scalar field acquiring an expectation value v
(determined by m?), all modes are gapped, and the couplings / and A determine the result-
ing fermion mass and the mass of the scalar o-type mode.
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Moreover, for generic initial values of the bare mass m?2, say of order of a UV cutoff
scale A, also the dimensionful low-energy observables, e.g., the vacuum expectation values
and the mass spectrum, will be of the order of the cutoff scale. In order to reach a sizable
scale separation with v << A, the bare mass parameter has to be fine-tuned extremely close
to the critical value 7m2,. In the language of statistical physics, the standard Yukawa model
with Dirac fermions has a second-order (quantum) phase transition with the scalar mass
parameter serving as the control parameter. The long-range physics becomes insensitive to
the microscopic realization, i.e., the cutoff can be sent to infinity, provided that the model
is fine-tuned to criticality. The latter corresponds to non-generic initial conditions, and the
fine-tuning has to be done “by hand” for concrete numerical solutions.

By contrast, the model (5) has very different features as we show in the following: the
model is critical for generic choices of initial conditions, i.e., v <& A can be reached with-
out fine-tuning, the system is always in the broken phase, and the low-energy observables
are universal to a large degree, i.e., the mass spectrum is independent of the bare parameters
for a large region in parameter space. In this region, the model (5) has only one parameter
instead of the expected three; this one parameter essentially corresponds to a scale thus
reflecting the paradigmatic field theory property of dimensional transmutation.

3 Renormalization Flow

While the model (5) can straightforwardly be analyzed using perturbation theory or effec-
tive field theory methods, we use the functional RG in the present work. This method has
the advantage of being able to account for threshold phenomena as they can occur in both
the symmetric and the broken regime at various scales in the present model. Perturbative or
effective-field-theory results are provided by our functional RG analysis in the correspond-
ing simplifying limits.

More specifically, we employ the Wetterich equation [29] describing the RG flow of the
effective action I'y, as a function of an RG scale parameter £,

O:Ry;

1
atrk = §S’I‘r T
Fk + Ry

; (6)

where 0; = k%, and Ry, specifies the Wilsonian momentum-shell regularization, see [30—
35] for details. The bare action (5) of our model serves as the initial condition for I', at a
UV scale, T'y—p = S. At k = 0, the action corresponds to the full quantum effective action,

i.e., the 1PI generating functional I'y—¢ = T".

Our approximation to solve the Wetterich equation is based on the ansatz
4 7 o av Z¢ Y 0T
Iw= | d'z| = 296 d"0"¢ + —-0,60"¢ — h¢ymy + U(9) |, (M

where we include a full scale-dependent effective potential U for the scalar field, and also
the Yukawa coupling h and the wave function renormalizations Z; 4 are considered to be &
dependent. This ansatz corresponds to an improved local potential approximation (so-called
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LPA’) which can be considered as a leading order in a systematic derivative expansion of
the action. This approximation is well tested in a plethora of nonperturbative analyses of
Yukawa systems [36—49].

Upon insertion into the Wetterich (6), our ansatz (7) yields flow equations for all k-depen-
dent quantities. It is convenient to express the resulting flows in terms of dimensionless
renormalized quantities. For this, we first define the dimensionless effective potential as a
function of a dimensionless renormalized field invariant,

U Z, 2
up) =20, 2o & ®

The dimensionless renormalized Yukawa coupling reads

h2 = L )
Zi}Z¢k67d ’

The flow of the wave function renormalizations is encoded in the anomalous dimensions

Mg = =0 InZy g (10)
Correspondingly, the resulting flows can be written as

Beulp) = — du+ (d — 2+ 1g)pu’ + 2vq |13 (u' + 2pu";mg) — Nedo 18 (2002, 1) ] (1)

where primes denote derivatives with respect to the invariant p. The phase space factor
vy =2 17d/21(d/2) reduces to v4 = 1/(3272) in d = 4. Here and in the following,
the functions / (and m used below) represent threshold functions which encode the result of
the regularized loop integration. For zero arguments, they yield simple positive constants.
For large first arguments, they vanish thereby encoding threshold effects. The precise form
depends on the choice of the regulator, details are given in Appendix B The flow of the
Yukawa coupling yields

FRl

Oh? =— (2 —2ny —n¢)h2+8vd h%l; W1, W25 N> M) 5 (12)

where

w1 =2Kh?% wy =/ (k) + 2ku" (K), (13)

and K = pmin denotes the minimum of the potential such that w'(x) = 0 for x # 0. The
anomalous dimensions derived from the flow of the wave function renormalizations are
given by

16

_ (LB),d
=+ 2)

Udhz’m/lg (UJ17W2;77¢777¢)7 (14)

@ Springer



International Journal of Theoretical Physics (2025) 64:282 Page 7 of 26 282

8
77(15:%5(31// + 2/<;u//')2mg72(w2; M)
8v,
+ Tdedwh2 (mELL)’d(wl,Th/J) - 2h2ﬁm5L>’d(w1,Tiw)> . (15)

Upon insertion of the solutions of (15), (14) into (11), (12), the flow of the scalar potential
and of the Yukawa coupling can be integrated and the low energy observables can be deter-
mined within the present ansatz.

For a simplified discussion, a polynomial expansion of the potential is useful. In the sym-
metric regime (SYM), we use an expansion about zero scalar field amplitude, whereas we
expand about the nontrivial minimum < > 0 in the symmetry broken regime (SSB),

Np
Z upp", (SYM),
n=1

u(p) =4 " (16)
D unlp—K)", (SSB),
n=2

where IV}, specifies the order of the polynomial approximation as well as the number of
operators included for the parametrization of the potential. In the simplest approximation,
Ny = 2, we use

1 1
u(p) = €p+ 5Ap* (SYM), u(p) = SA(p— K)* (SSB), (17)
such that € = ZT’; denotes the dimensionless renormalized mass, A = 2uy = # the
renormalized scalar ¢* coupling, and x = 2;0,—2_2 is the dimensionless version of the expec-

tation value of the (renormalized) field v = \/Z4@min in the SSB regime. Once the RG

flows are computed down to low scales k, we can straightforwardly determine estimates
for the physical observables. For instance for flows arriving in the phase with spontaneous
symmetry breaking, we obtain the vacuum expectation value, the scalar o-type mass and
the fermion mass from

v = kV26|k0, Mo = kV2M&|k0, my = kV2kh2]; 50 (18)

where we have used d = 4, and the fermion mass m,, gaps the spectrum of the Luttinger
fermions along the imaginary axis in the p? plane [22].

4 Leading-Order Polynomial Expansion

Several aspects of the RG equations can be studied analytically. Let us first concentrate on
the flow of the relevant mass parameter ¢ and the marginal couplings h2 and .
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In a conventional perturbative expansion, we would focus on the deep Euclidean region
by ignoring the threshold effects, i.e., set all arguments of the threshold functions to zero.
Using the functional RG flow, it is, however, straightforward to include the threshold phe-
nomena. For definiteness, we perform this first analysis in the symmetric regime, assuming
e > 0and k = 0, implying w; = 0, wy = €. The corresponding expansion of the flow equa-
tions of the relevant and marginal couplings yields

o M - M e
@W:—@—mwﬂm#+8;ufd{ﬂﬁ—?)+ﬂl€] (1)

To this order, the expansion of the anomalous dimensions reads
=l (2)
e :M 2 (23)

1672

The one-loop result of all flows in the conventional deep Euclidean region is obtained by
setting € = 0, i.e., ignoring threshold effects, and upon insertion of 7y, 4 into (19)-(21) and
a subsequent expansion to lowest-coupling order.

4.1 Large-IN; Analysis

The preceding equations simplify in the limit of a large number of Luttinger flavors N¢. For
this, we assume Ngd., > 1, but Nyd h? = const, implying that h? ~ 1/(N¢d.,) < 1. Since
d, = 32, already N; = 1 turns out to satisfy the “large-N¢” approximation rather well.

From (22), we deduce that 7y, ~ 0 in this limit, whereas 74 contributes fully to leading
order. Dropping the subleading orders, the Yukawa flow (21) reduces to

Oh* = —(2 = ng)h* + O(1/(Nedy)), @4

independently of the size of € > 0. For a given value of Ny and upon insertion of 7, ~ h?,
the right-hand side corresponds to a parabola in 22 with two zeros. These zeros correspond
to fixed points of the RG flow. In addition to the Gaussian, i.e., non-interacting fixed point
h? = 0, we observe the existence of an interacting fixed point at

12 32m?

= BN, < N or N¢d, — 00 (25)
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Inserting this fixed-point value into the flow of the scalar self-interaction (20), also A exhib-
its a fixed point at

1282
~ 25N¢d,

for Ned., — oo, (26)

*

which demonstrates that also A, scales like ~ 1/(N¢d.,) in a large- Nt analysis. It is straight-
forward to check that this fixed point is fully IR attractive in the (), h?) plane. This is illus-
trated in Fig. 1 where phase diagram in terms of a stream plot of the flow towards the IR is
depicted in the (), h?) plane.

The corresponding critical exponents, defined in terms of the negative of the eigenvalues
of the stability matrix B,

3.01 . —_ \\

250 & -

2.0F e g .

h2

o AN T T T T

1.5F ( i \\ .\‘\s ‘\\\\\;\ T

oA AN ~_ -~ ~—
\ AR - ~—
e e T,
N e S
AN
\\ ~ .~ \\
I e e
1.2 1.4 1.6 1.8 2.0
A

Fig. 1 Phase diagram of the 11 Yukawa model with Luttinger fermions, in the plane of the dimensionless
scalar self-interaction A and the dimensionless Yukawa coupling h2. The arrows indicate the RG flow
towards the IR. The interacting fixed point, highlighted in red, is fully IR attractive. The flow has been
obtained from the full (20)-(21) with € = 10 and for Ny = 1, d = 32
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0 = —eig{ B}, Bj; = a(atgi), gi=h%eN ..., 27
¥ agj
are
Ohz = —2, 0= —4, for Nyd, — oo, (28)

which reveals that both couplings are RG irrelevant and their flow is fully governed by the
fixed point. Since the exponents are not small, the system approaches the fixed point rather
rapidly. In conclusion, the two couplings thus do not represent physical parameters since the
long-range behavior is determined by the fixed point.

However, the fixed point is not a quantum scale invariant point of the full system, but
only a partial fixed point of the couplings studied so far. Inserting the fixed-point values into
the remaining (19), we find to leading order

4
Oe = 5 for Nyd, — o0, (29)

as a consequence of the large scalar anomalous dimension 74 = 2. The latter, in fact, corre-
sponds precisely to the value that renders the mass parameter from relevant near the Gauss-
ian fixed point to marginal with 6,,, = 0 at the partial fixed point. Fixing the initial condition
for € at the high scale A to some value €5 > 0, the solution to (29) reads

4 k
30
G(k)—GA-i-E)ln R (30)

which shows that the mass parameter e flows logarithmically slowly to smaller values, tran-
sitioning into the SSB regime with €(kggp) = 0 at

kssp = Ae 3¢, (31)

We observe that kgsp < A is natural for generic choices of €. For instance: in order
to have kssp being n orders of magnitude smaller than A, we only need to choose
€A = n% In(10) ~ 1.8 n as initial condition. No fine-tuning is needed to separate kssp
from A. The initial conditions for A2 and X are even less relevant, since they are quickly
attracted to the fixed point fairly independently of the initial conditions.

Once €(k) has dropped below zero for k < kgsp, (19)-(22) are no longer valid but have
to be replaced by their analogues accounting for a nontrivial minimum « of the effective
potential u(p). Around k ~ kgsp, all couplings start to run fast. However, once the (dimen-
sionless) minimum « grows large, strong threshold effects set in since wy 2 ~ k. As a con-
sequence, all threshold functions essentially drop to zero quickly describing the decoupling
of massive modes. The flow is then governed only by the dimensional scaling terms and all
dimensionful physical observables such as those listed in (18) approach constant values; the
flow “freezes out”.

We emphasize that the large- Nt limit does not feature a symmetric phase, independently
of the initial conditions. Of course, large initial values for the scalar mass term ey > 1
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will lead to a flow in the symmetric regime over a wide range of scales, but the system will
unavoidably end in the broken phase as is obvious from (30). In the language of statistical
physics, this is reminiscent to the phenomenon of self-organized criticality: independently
of how far the seeming control parameter €, is chosen away from a (naively anticipated)
critical point, the RG flow drives the system to criticality. The more €5 > 0 is chosen away
from the regime transition € = 0, the closer the system approaches the partial fixed point
in the (h2, ) plane, i.e., the closer is the system tuned to criticality with more pronounced
universal features. Nevertheless, the large-N¢ flow ultimately ends up in the broken phase
with all long-range observables being naturally much smaller than the high-energy scale A.

The present RG flow shows also some similarity to the scenario of nordic walking pro-
posed in [50] for a 2+1 dimensional solid-state system, and suggested as a novel ingredient
for natural high-energy models. The nordic-walking scenario relies on the existence of a flat
region in the S function of a relevant coupling. In the proposal of [50], this can be arranged
for through the competition between different fluctuation contributions. In the present case,
it is the scalar mass term that exhibits nordic-walking behavior by virtue of a fully IR attrac-
tive partial fixed point in all couplings; no specific balance between different 5 function
contributions seems necessary.

4.2 Perturbative Analysis

The preceding large- Nt analysis is, in fact, more general as naively expected, not only because
Ntd,, is large even for Ny = 1. As a justification, let us analyse (19)-(22) perturbatively with-
out specific assumptions about the size of N¢d.,. In addition to the polynomial (perturbative)
dependence on the couplings h? and ), the equations depend non-linearly on e.

In the limit of large €, we observe that the right-hand sides of (19)-(22) reproduce exactly
the flow equations of the large-Ny limit of the preceding subsection. We conclude that the
large- N¢ analysis also applies to the perturbative large-e regime, the latter potentially receiv-
ing 1/N¢ corrections. Even the fixed-point values h2 and ). are perturbatively small for
sufficiently large V.

In a straightforward naive perturbative expansion for small couplings h? and A, the
anomalous dimensions simplify to

h2 5h2Nfde

_ _ _ 2
821 +e2 T T 16n2 (32)

Thy

Insertion into the coupling flows (19)-(21) and an expansion to leading order in the cou-
plings would yield the perturbative flows adequately describing the vicinity of the Gaussian
fixed point.

Since we are also interested in the non-Gaussian fixed point identified before in the large-
N¢ limit, there is an improved perturbative expansion which is quantitatively more accurate
also near the non-Gaussian fixed point. For this, we observe that the non-Gaussian fixed
point is characterized by a scalar anomalous dimension 74 ~ 2 + O(1/Nt). Also the fixed-
point values for 22 and ) scale as ~ 1/Ny. Inserting this scaling into (14), we observe that
7y scales like ~ 1 /Nf2 near the non-Gaussian fixed point, but ~ h? near the Gaussian one.
Therefore, we can describe both fixed points by using the leading-order formulas (32) to
lowest perturbative order, but 7, ~ 0 + O(1/N7) at higher order. Still, we keep 74 as in
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(32) also at higher order, since it appropriately accounts for 14 ~ 2 + O(1/N¢). As aresult,
we obtain

B 5N¢ed | 5 3\ Nedy 5 5A
8te——<2— h® ) e + h 1+1287T2 ,  (33)

1672 S 2r2(1+6)2 | 87 (14¢)2
5Nyd Ned % 5Nyd
A= il hQ)\ — 7 I 4 _ 1— 2 H 2
o 8 o2 T 1672(1 4 €)® 9672 ) (34
5N¢d 5+ 3¢ 5N;d ,
3h2 :—2h2 7 pd 4._ 2l h().
! T 1272(1 + €)2 76874 (1 + )2 (33)

Conventional perturbative results in the deep Euclidean region are obtained keeping only
the leading powers in h? and A and by setting € = 0 in the denominator (and in (35) also
in the numerator). The few terms that would formally be of higher order, such as the term
~ h2Xin (33), the term ~ A2h? in (34), and the term ~ hS in (35) arise from the anomalous
dimension 74; they account for the possibility that this anomalous dimension can become
large 4, ~ O(1) at a non-Gaussian fixed point. Nevertheless, dropping these terms in a pure
perturbative spirit would not modify the following results qualitatively.

From (39), it is again obvious that the Yukawa coupling flow has a non-Gaussian fixed
point for any N; and € > 0; for instance, ignoring the subleading term ~ hS in (35), the
fixed-point value assumes the compact form

-1
hg_(std7+ 5+ 3¢ ) . 36)

* 3272 2472(1 + ¢)?

At large- Ny, or alternatively large €, we rediscover the result of the preceding subsection,
(25). However, even in the extreme opposite limit of € = 0 and for Ny = 1, the numerical
value for h? deviates from the large- N limit only by a few percent.

The same conclusion holds for the scalar self-interaction A also exhibiting a fixed-point
A« upon insertion of (36) into (34). The somewhat extensive result can be worked out ana-
Iytically in a straightforward fashion; here we simply note that the large- Nt result of (26) is
rediscovered in the corresponding limit (and also for large €); in the extreme opposite limit
of Ny = 1 and € = 0, the result deviates only on the few percent level.

Most importantly, this fixed point in the (h?, ) plane remains fully IR attractive for any
value of Nt and € > 0. This can be read off from the critical exponents for which we now find

Ore = =2, 6x=[-4,-3.940...], (pert.), (37)

where 0, as a function of N; and € varies in the given interval on the few percent level; the
upper end of the interval is reached for small but finite €.

Also within perturbation theory, the fixed point in these couplings is, of course, only a
partial fixed point. Once it is approached rapidly in this coupling plane, the remaining per-
turbative flow of the dimensionless scalar mass parameter reads again

8t€ = Ce, (pert')7 (38)
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where c¢. = c¢.(¢, N¢) is a slowly varying positive function of € and Nt which remains in
the vicinity of its large-Nf value ¢ |n,—o00 = 4/5, cf. (29). E.g., for ¢ — oo but any N¢, we
find c¢. = (4/5) — 1/(20N¢). In the opposite limit with e = 0 and Nt = 1, ¢, is only about
1 percent larger.

In summary, our conclusions of the large-N; analysis remain valid in the whole per-
turbative domain: the Yukawa system develops a partial IR attractive fixed point that is
rapidly approached by the Yukawa coupling and the scalar self-interaction for any initial
value in the perturbative domain. At this partial fixed point, the scalar mass is no longer a
relevant direction, but it is only marginal featuring a logarithmically slow running towards
the regime of chiral symmetry breaking. Again, we conclude that a large scale separation
kssp < A is natural for generic choices of the initial conditions.

5 Functional RG Flow

Let us now integrate the functional flows (11)-(15) without any assumption on the size of V¢
or the values of the couplings. While there are powerful methods available to solve also the
potential flow (11) as a partial differential equation in field space [S1-59], we use a simple
polynomial expansion about the minimum as parametrized in (16). This gives us access to
the spectral information of the Yukawa system, and we can monitor the convergence of this
expansion as a function of the polynomial order NVy,.

At the initial scale £ = A, we impose nontrivial initial conditions on all perturbatively
marginal or relevant couplings necessary in order to render the theory fully interacting, i.e.,
choose initial values for €y, h?\ > 0; for simplicity, we set all other u,>2 = 0 (including
Ap) at k = A, as these couplings are generated by the flow anyway. However, since all
scalar couplings are quickly attracted by their corresponding partial fixed point with a large
negative (RG irrelevant) critical exponent, generic nontrivial initial conditions for all other
Un>2 do not take any relevant influence on the results.

As for the initial conditions for €, and k2, there are qualitatively two resulting flows: for
negative e, < 0 (or small e, > 0 with sufficiently large 13 ), the flow starts in (or runs com-
paratively quickly into) the broken regime where all modes become massive and decouple
quickly. In this case, kssp < A remains fairly close to the high scale. The resulting dimen-
sionful quantities such as the vacuum expectation value v or the particle masses m, or
my, depend strongly on the details of the initial conditions. In this case, the RG flow is not
governed by a (partial) fixed point, hence we do not observe nor expect universal features.

By contrast, for sufficiently large mass parameter, say ey 2 O(1), and perturbative or
medium large initial Yukawa couplings h3, the RG flow of all other couplings is attracted
by the partial fixed point present in all couplings /4, A = u9, and all other u,,, while € runs
logarithmically slowly towards zero and then into the SSB regime, such that kssg < A. No
fine-tuning of any of the parameters is needed for this generic situation; in fact, the deeper we
put the system into the symmetric regime, e.g., with a large positive €5, the more RG time the
systems spends near the partial fixed point and is ultimately driven to criticality. As the partial
fixed point renders all other couplings RG irrelevant, the IR observables show a large amount
of universality, and we can express all dimensionful quantities in units of a single scale.

The degree of universality of the long-range observables is governed by the RG time spent

at the partial fixed point; for a simple estimate, we use the RG time scale tggp = In kS/fB
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where the system runs into the broken regime as a proxy for the time spent near the fixed
point. Since the irrelevant perturbations near the fixed point die out with their corresponding
critical exponents, the non-universal corrections contribute at most with the largest exponent
02 = —2, cf. (28), such that corrections to universality scale maximally with ~ (kssp/A)2.
Therefore, 2(log, €)|tssp| ~ 0.82|tgsp| serves as an estimate for the number of digits of a
long-range observable that are unaffected by non-universal corrections. In Fig. 2, we depict the
curves in the (h3, €,) plane of initial conditions for which we obtain tgsp = —5, —10, —20
for the Ny = 1 (d, = 32) model. The shaded regions above these curves exhibit universality
of the long-range observables at least to this estimated degree. Also, we haven’t found any
significant influence of the initial condition for the scalar interaction Ay on these curves. This
is in agreement with the even more subleading critical exponent 85 ~ —4 which induces a
rapid die out of the scalar self-coupling. In conclusion, a large region in the space of initial
parameters leads to universal long-range physics. This justifies to call these initial conditions
generic. No fine-tuning is needed at all to put the system into this region.

As we are mainly interested in this universal regime which we interpret as the analogue
of self-organized criticality of dynamical systems, we initialize the flow such that the system
spends sufficient RG time ¢ = In % in the symmetric regime, in order for the couplings to
be sufficiently attracted by the fixed point, before entering the broken regime. The preced-
ing considerations have also been confirmed by fully numerical tests demonstrating that
tssp S —10,i.e. kssp/A < 1079, is sufficient to suppress non-universal corrections within
our numerical accuracy. For concrete computations, we set hf\ = 1,up,n = 0and choose €p
such that the universal regime will always be reached. For the cases Ny = 1,2, €5 has been
set to 10. For larger ¢, the initial condition €, has been chosen somewhat larger such that
the transition time tgsg < —10. This is, because larger Nt for h?\ fixed correspond to large
initial values for 74, cf. for instance (32), inducing a faster initial running until the couplings
have sufficiently approached their fixed point values.

35

30

25 universal/regime

20 — tssp = —20
15 — tgsp = —10
10 tssp = -5

non-universal regime

€A
L I e L L B

Fig.2 Degree of universality in the (h?\, e ) plane of initial conditions for the Ny = 1(d~, = 32) model.
The solid curves mark initial conditions for which tgsg = —5, —10, —20. The shaded regions above
these curves correspond to generic initial conditions with a correspondingly increasing degree of univer-
sality. (The initial values of all the irrelevant couplings ., > are set to zero, but do not exert a significant
influence on the data anyway, see text). In subsequent studies, we use tgsg < —10 exhibiting a degree
of universality sufficient for all practical purposes
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In Fig. 3, we plot the resulting dimensionful effective potential as a function of the dimen-
sionful field invariant both in units of the vacuum expectation value v for various values of
N¢. In all cases, the potential develops a nontrivial expectation value. Using d’Alembert’s
ratio test, we have performed an estimate for the convergence radius of the polynomial
expansion. Going up to 18" order in the expansion, the ratio test suggests that the conver-
gence radius is of the order 0.005 (in units of v); the corresponding highest-order results
are shown in Fig. 3. (NB: The polynomial expansion is not able to resolve the convexity
property of the effective potential. The full flow of (11) would lead to a convex potential,
implying that the potential to the left of the minimum in Fig. 3 would become flat in the
limit & — 0 [58, 60—63].)

On the basis of this numerical control of the full flow of the effective potential near its
minimum, we can straightforwardly determine the mass of the o-like scalar excitation m,,
as well as the fermionic mass gap m,; according to (18). In the universal regime, their scale
is clearly set by the vacuum expectation value v as well. Since the RG flow of the coupings
X and h2 is governed by the partial fixed point for a wide range of scales, the partial fixed
point for these couplings also exerts an influence on the final mass values. Once, the scalar
mass parameter € crosses zero at kssp, the couplings depart from their fixed-point values
such that the details of the SSB flow ultimately determine the mass spectrum quantitatively.
For N = 1, the resulting values for the mass spectrum are shown in Fig. 4 as a function of
the approximation order IV, in units of the vacuum expectation value v. While small values
of IV, exhibit somewhat larger truncation artefacts, the convergence with increasing order
of the truncation appears satisfactory; in particular for the highest orders N, = 20, 22, the
variation is on the sub-permille level. Quantitatively, we find m, /v ~ 1.36 for the sigma-
like mass of the scalar excitation and m,;, /v >~ 1.72 for the fermionic mass gap.

4.0
2 3.0
X _— Nf =1
P . Nee—
= ;
& 2.0
) Ne=3
< ,
S 1.0 - Ny=4
‘‘‘‘‘‘‘‘ Nf =
O Il Il .\ Il Il
0.4990 0.4995 0.5 0.5005 0.5010
p/(2kr)

Fig. 3 Dimensionful effective potential of our Yukawa model with Luttinger fermions as a function of
the field amplitude p = %QSQ for different values of N¢ and d-, = 32 in units of the resulting vacuum
expectation value v. A polynomial expansion at 18" order of the potential has been used, and initial con-
ditions at the UV scale A have been chosen such that the flow spends a sufficently wide range of scales
near the partial fixed point; no fine-tuning is needed for this while the resulting potential is universal, i.e.,
essentially independent of the microscopic initial conditions. The figure displays the limited range of field
values where the polynomial expansion passes D’ Alembert’s ratio test for convergence
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The dashed lines indicate the would-be value of the masses if computed from the partial
fixed point values h2, A, of (25), (26) in the large- Nt limit. More precisely, the estimate for
m, /v indicated by the blue dashed line corresponds to m, /v =~ /A, = %’T, using (18) and
the large- Ny limit fixed-point value (26); a similar estimate for m,, /v involves to choose a
scale, since the Yukawa coupling in the original action is dimensionful. The relevant scale
here is kgsB, since this is the scale where the system starts departing from the partial fixed
point and subsequently decouples. Hence, the red dashed line in Fig. 4 is given by the esti-
VhikSsp

mate 1. /v > —5B,

where we use the large- V¢ limit fixed-point value (25) in addition

to the numerical data for kggp and v. Since the deviations from finite- Ny corrections are on
the few percent level, cf. (36), the visible difference of the full numerical result (dots) from
the estimates (dashed lines) in Fig. 4 is a result of the full RG flow in the threshold regime
€ < 0. The fact that this difference is only on the O(10%) level justifies the interpretation
that the properties of the long-range observables are essentially governed by the properties
of the partial fixed point. Even though the fixed point is destroyed in the course of the transi-
tion to the SSB regime, the hierarchy of the couplings is essentially preserved in the course
of the flow through the threshold regime.

The mass ratio m,/m,, is a particularly relevant prediction of our model for several
reasons: from the viewpoint of the high-energy completion of the model discussed Sec-
tion 6 below, the scalar could arise as bi-fermionic bound state. In this context, the devia-
tion of the ratio from m, ~ 2m,, is a measure for the binding energy of the scalar state.
Also, for a comparison with other nonperturbative methods, we expect the mass ratio

1.8, ... - §
r ® 1
® ¢ 06 06 ¢ © 06 © 0 0 0 0 0 o o ° ° |
b [ ] 4
161 ]
S . ° () o [ . [ ] N ° e © o o ® [ ] .: . mw/v
L2r 1« mg/v
1.01 7
L R 1
0,8 1 L L L L 1 L L L L 1 L L L L 1 L L L L 1
0 5 10 15 20
NP

Fig. 4 Ratio of the scalar o-type mass m, and the vacuum expectation value v (orange) and ratio of the
fermionic mass gap m.;, and v (blue) for the Ny = 1 model (d = 32) as a function of the polynomial
expansion Np. The initial conditions have been chosen such that the model is in the universal regime. The
dashed lines (in the corresponding colors) correspond to an estimate based on the fixed point analysis in
the large Nt limit, c.f. (25) and (26), as explained in the main text
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to play a useful role; e.g., lattice simulations typically have a direct access to spectral
information via the study of spatial correlation functions. Our result for the mass ratio is
shown in Fig. 5 as a function of the flavor number Nt and for the highest truncation order
N, = 22. As expected, we observe a variation on the percent level for small N, rapidly
converging for larger Ny. The mass ratio shown in the plot for Ny = 5 agrees already on
the per-mille level with m,/m,, ~ 0.786 computed for Ny = 100 as a large- Nt reference
value.

From the viewpoint of the high-energy completion of the model where the scalar is a bi-
fermionic bound state, we conclude that the mass ratio near m,/my, ~ 0.79 < 2 points to
a deeply bound relativistic state where the binding energy exceeds the mass gap of a single
fermionic constituent.

Finally, the property of self-organized criticality can also be read off from the flow
of the scalar anomalous dimension. A typical flow is depicted in Fig. 6 for initial condi-
tions in the universal regime (ex = 10, h?\ =1, up>2 = 0) and the case Ny = 1. Near
the cutoff k£ < A (¢ < 0), the flow rapidly approaches the fixed-point value 14 ~ 2 and
remains there for a wide range of scales. This goes hand in hand with the fact that
the scalar mass parameter no longer is a relevant operator but becomes marginal at
the partial fixed point where it runs logarithmically slowly towards the broken regime
quantitatively similar to the large-/Ny flow (29). At the same time, 14 ~ 2 induces the
partial fixed points in all other couplings h?, A, u,~2 while keeping 7,, numerically
small as expected from (22). This fixed-point controlled flow stops, once € drops below

0.792

0.790

0.788

0.786

Mg /1My,

0.784

0.782

0.780 1 1 1 1 1

Fig. 5 Ratio between the scalar o-type mass m and the fermion mass m., as a function of the flavor
number Ny (d~ = 32). All data points have been produced within the /N, = 22 truncation inside the
universal regime
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Fig. 6 Scalar anomalous dimension 74 for a typical RG flow initiated in the universal parameter space.
The plot should be read from right to left (UV to IR): starting in the symmetric regime att = 0 (k = A),
74 rapidly approaches the fixed-point value 1y = 2, c.f. (25), and remains there for a wide range of
scales. After entering the broken phase towards small #, 77, vanishes due to threshold effects. This plot uses
Nf=1,dy =32, Np = 18,ep = 10, hi = 1, up>2 = 0, yielding a transition scale of tssp ~ —26,
ie., kssp ~ 5 x 10712 A, as indicated by the gray dashed line

zero, which in the case of Fig. 6 happens at exponentially small scales near tgsp ~ —26,
i.e., kgsp ~ 5 x 107 12A. Here, 7 starts to run fast towards zero. Once the RG scale
drops below the scale of the vacuum expectation value, all modes become massive and
decouple which implies that 4, — 0 for ¢ < tggp.

Comparing the results for our model with the scenario for self-organized criticality in
chiral Higgs-Yukawa models suggested by Bornholdt and Wetterich in [12], the scalar
anomalous dimension 74 plays the role of the mass anomalous dimension w defined in
[12]. The quantitative criterion for self-organized criticality suggested in [12] (Bornholdt-
Wetterich criterion),

I v
(w) = %/ dt w(t) =2, to:=In " (39)
0

is evidently satisfied for w = 74, as the scalar anomalous dimension is essentially constant in
t and governed by the partial fixed point value 14 ~ 2. While (39) could be satisfied also by a
varying function w(t), our Yukawa model based on Luttinger fermions satisfies the Bornholdt-
Wetterich criterion in a straightforward fashion. In contrast to the scenario developed in [12],
our model bridges the wide ranges of scales between k = A and k£ ~ v fully in the symmet-
ric regime. A flow in the broken regime with x > 0 or an attractive partial fixed point with
K — Ky as studied in [12] is not needed for self-organized criticality as featured by our model.
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6 High-Energy Completion of the Model

So far, we have studied the flow towards the IR, assuming that the microscopic parameters
of the model have been fixed at some initial high-energy scale A. The Yukawa model
exhibits a remarkable degree of universality as its long-range physics is governed by a
partial IR fixed point which is fully IR attractive apart from the marginal mass-parameter
direction.

Let us now concentrate on the high-energy behavior of the model by addressing the ques-
tion as to whether RG trajectories exist along which we can take the limit A — oo. If so, the
corresponding model is UV complete and could exist on all length scales.

From the properties of the IR fixed point, we can already conclude that its UV flow is
fully repulsive in the Yukawa and all scalar self-couplings. Therefore, the only RG trajec-
tories for which we may have full UV control are those that emanate from the partial fixed
point. Other options would require the existence of further UV fixed points; however, we
haven’t found any other fixed point in the validity regime of our approximation except for
the Gaussian one which would yield a trivial free theory. The fact that all Yukawa and scalar
self-couplings are irrelevant at the partial fixed point implies that they are also irrelevant
for UV-complete flows emanating from the fixed point. The only physical parameter to be
fixed is the mass parameter. We know from the preceding studies that the mass direction
runs logarithmically if the other couplings are at the partial fixed point. Towards the UV, the
mass parameter e runs logarithmically to +oo for k — oc.

It is useful to study the flow of the ratio

b= (0
€

which corresponds to the renormalized version of the matching condition of the partially
bosonized purely fermionic ;1 model (with nondynamical scalars and zero scalar self cou-
pling) [22]. We can straightforwardly derive the flow of this ratio in the present Yukawa
model from (19) and (21), yielding

3 M A
S
g =209 + 353 6/ e1+e2?

1 U € m) L=\ o
) - () )
87r2{ i 6 l—i—e( 3) 7 Tve )Y

In order to understand the high-energy behavior, we note that € grows large, implying
1y — 0, while the coupling A approaches the fixed point and thus remains bounded, as does
1. In the limit € — oo, we obtain

(41)

1 2

which corresponds precisely to the flow of the fermionic self-coupling in the ~;; model
including the anticipated 1/N¢ corrections [13, 22].
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Therefore, we can interpret the UV complete RG trajectories present in our Yukawa model
as follows: the flow of the Yukawa coupling dominated by the partial fixed point and the loga-
rithmic running of the scalar mass parameter are reflections of the asymptotic freedom of the
purely fermionic 7;; model. The latter is UV complete, features dimensional transmutation,
and exhibits the same long-range behavior as our Yukwawa model. We conclude that the UV
complete trajectories in our Yukawa model and the fermionic ;1 model are in the same uni-
versality class, since they are governed by the same fixed point. As our preceding discussion
has demonstrated, the models are also in the same universality class even if the Yukawa model
is initiated with generic initial conditions. This is because the partial fixed point is fully IR
attractive in those couplings that would induce deviations from the purely fermionic descrip-
tion. Of course, if the Yukawa model serves as an effective field theory fixed at an initial UV
scale A, the long-range physics can deviate from the universal trajectory by corrections of the
order ~ 1/Al%! where 6; corresponds to a suitable exponent of the irrelevant operators.

The effective-field theory viewpoint also illustrates that the existence of a UV completion
is a priori unrelated to the property of self-organized criticality: for this let us assume that a
corresponding Yukawa theory with Dirac fermions was UV complete, e.g., with the Yukawa
couling and the ¢* compling rendered asymptotically free by some mechanism. The cor-
responding couplings would still be marginal parameters of the theory, and, most impor-
tantly, the scalar mass would still be a relevant parameter requiring a fine-tuning of initial
conditions in order to separate an initial UV scale A from a gapped low-energy regime. By
contrast, our present Yukawa model renders the scalar mass parameter marginal (and all
other couplings irrelevant) by virtue of the quasi fixed point, thereby manifesting properties
of self-organized criticality.

This interpretation is also corroborated by the scalar anomalous dimension being 74 ~ 2
near the partial fixed point. This implies that the scalar wave function renormalization
behaves like

2

k
Z¢(k§) jad Z¢(k1R)%, for k — oo (43)

for k1R representing some IR scale at which the field amplitude is renormalized. For instance,
normalizing the wave function renormalization naturally to Z4(kir) = 1 in the long-range
limit, the wave function renormalization becomes small towards the UV. The kinetic term
of the scalars thus becomes suppressed and the scalar field more and more resembles a
nondynamical auxiliary field, similarly to that introduced by a Hubbard-Stratonovich trans-
formation of a fermionic self-interaction. Of course, near the transition scale k£ ~ kssg, 14
deviates from 74 ~ 2 and approaches 74 ~ 0 for k < ksgp, implying that (43) receives
some quantitative corrections; however, the scaling with ~ 1/k? towards higher energies
holds true over the range of scales where the system is close to the partial fixed point.
Finally, the present fermionic picture also offers an explanation for the fact that the curves
of constant tgsp in Fig. 2 have almost constant slope: in the fermionic language, tssp essen-
tially corresponds to the scale of the IR divergence of the coupling g when integrating the flow
(42) towards the IR. Now, changing the initial conditions for €4 and h% such that their ratio
ga = h? /e remains fixed, leaves the scale for the IR divergence of g unchanged. The univer-
sal region in the full Yukawa model — if reduced to the UV-complete trajectory — thus corre-
sponds to initial conditions of the fermionic model in the perturbative weak coupling regime.
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7 Conclusions

The relativistic Yukawa model proposed in this work exhibits features that are both novel
and, to the best of our knowledge, unprecedented in quantum field theories in four-dimen-
sional spacetime. In contrast to conventional models involving Dirac, Majorana or Weyl
fermions, the use of relativistic Luttinger fermions exerts a strong influence on the RG phase
diagram of the model in the space spanned by the power-counting RG relevant and marginal
couplings: for generic initial conditions (including those with an arbitrarily positive scalar
mass parameter in units of the cutoff scale), the model features an IR attractive partial fixed
point of the RG evolution at which the system can bridge a wide range of scales. While all
couplings are RG irrelevant at the fixed point, the scalar mass parameter is RG marginal and
exhibits a slow logarithmic drift towards small values.

The long-range behavior of the model is characterized by spontaneous symmetry break-
ing and mass gap generation in both the scalar and the fermionic sector. Remarkably, the
low-energy scales such as the scalar condensate or mass gaps can be many orders of magni-
tude smaller than a microscopic UV cutoff scale without the need to fine-tune initial param-
eters. In fact, the UV and IR scales are naturally many orders of magnitude apart for generic
initial conditions, including those with couplings of order one and a scalar mass parameter
of the order of several times the UV cutoff scale.

Some of these exceptional properties of our Yukawa model are reminiscent to the phe-
nomenon of self-organized criticality in statistical or dynamical systems: identifying the RG
time with the physical time in dynamical systems, our model inevitably runs towards a scale
where it becomes critical in the sense of an onset of spontaneous symmetry breaking. At this
scale, all modes are gapless featuring large fluctuations. For generic initial conditions, the
long-range behavior is universal because of the IR attractiveness of the partial fixed point at
which the dependence of the system on its initial condition is depleted and largely removed.
The partial fixed point is characterized by critical exponents governing the RG running of
the dimensionless couplings in terms of simple power-laws. The most prominent similarity
to self-organized criticality is given by the slow logarithmic running of the (dimensionless)
scalar mass parameter which plays the role of a slow driving force that gradually and inevi-
tably moves the model to criticality.

The present model therefore is a concrete realization of a scenario envisaged in [12] for
addressing the issue of naturalness in elementary particle physics in terms of self-organized
criticality. Whether or not the present mechanism can be used for corresponding model
building in elementary particle physics is an open question. Possible pathways include add-
ing a separate Luttinger fermionic sector to the standard model, or embedding its fermionic
content into Luttinger spinors; for a first assessment see [13]. While speculative, it might
be an inspiring observation to see that the universal scalar-to-fermion mass gap ratio of our
model is quantitatively close to the Higgs-to-top mass ratio in the standard model.

Within the functional RG approach, we have been able to derive this mass-gap ratio
together with a number of quantitative results for the mass spectrum. Provided the model
spends sufficient RG time near the partial fixed point, as is the case for generic initial condi-
tions, the long-range properties of the model are universal. While some of our nonperturba-
tive results can also be verified with large- N; techniques as used in this work as well, we
believe that these quantitative long-range properties could be a prime example for the appli-
cation of other techniques such Dyson-Schwinger or gap equations, or lattice field theory.
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Such techniques can also shed further light on the nature of the fermionic mass gap in our
model which occurs in the form of square root singularities with a branch cut along the
imaginary axis in the (Minkowskian) complex p? plane and the question of the existence or
inexistence of Luttinger fermions as asymptotic states [22]. Since such propagators do not
feature a Lehmann-Kdéllen spectral representation, we cannot draw an immediate conclusion
about the positivity of the Hilbert space. Therefore, it is also an open question as to whether
relativistic Luttinger fermions satisfy the spin-statistics or the CPT theorem. These ques-
tions may best be addressed in a Hamiltonian approach to quantization.

Finally, an attractive feature of our model is that it features a UV complete extension by vir-
tue of the asymptotically free purely fermionic model which is in the same universality class
as our Yukawa model. Though our results for the Yukawa model are independent of this pos-
sible UV completion, the existence of such a scale-invariant high-energy limit may represent
another motivation to explore such models with relativistic Luttinger fermions even further.

Appendix A: Abrikosov Algebra

For completeness, we recall a few aspects of the Abrikosov algebra [23] in (2) in a relativ-
istic context as studied in [13, 22].

While not explicitly needed, it is helpful to know that a representation of the G, matrices
can be constructed in terms of a Euclidean Dirac algebra {y4,v5} = 2§ 4. For the present
work, we work in four-dimensional Euclidean spacetime with metric g = diag(1,1,1,1),
such that the Abrikosov algebra is satisfied by

2
Goi = — f7A=i» i=1,2,3,
3
2 2 2
G —_ — — G Q = — — G: = — —Ya
12 \/;747 23 \/;757 31 \/;%7

1 2v2
Goo=—77 Gu=-3%——5%; (Ab
1 V2 2
Gog = — = g — 4/ =
22 3W7+ 3 8 3797

1 V2 2
Gss=—3gm+ 5%+ \/;797

in agreement with the Euclidean rotation of the Minkowskian version discussed in [22].
This representation can be related to that of [17] for d = 4 Euclidean dimensions through a
spin-base transformation. While (A1) can be constructed from 9 Euclidean Dirac matrices
v1,...,9, @ Euclidean construction satisfying also reflection positivity requires a nontrivial
spin metric /4 for the definition of a Luttinger conjugate spinor ¢/ = ' h. As detailed in [13,
22], this demands for an at least d, = 32 dimensional representation of the Euclidean Dirac
algebra, going along with two further anti-commuting elements ;¢ and ~;;. In the pres-
ent work, we use 1o for the construction of the spin metric, h = y1v27y3710, While 711 is
employed for the definition of the Yukawa interaction of our model. Various other choices
would alternatively be possible, cf. [22].
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Appendix B: Threshold Functions

The threshold functions used in the main text, are classified and defined for general regula-
tor functions in the literature [30, 36, 37, 64, 65]. As the Luttinger fermions come with a
new kinetic term, several new threshold functions are needed which can be defined in full
analogy to those involving, for instance, Dirac fermions.

For the regulator, we choose in the scalar and the fermionic sectors

Ryo(p?) =Zsp* (1 + re(p°/K?)),

2 oV 2 /1.2 (Az)

Ry (p”) =ZyGrup”p” (1 + ro(p”/k7)),
where 5 (y), 71, (y) denote dimensionless regulator shape functions that encode the momen-
tum space regularization near p?> ~ k2. Introducing the following auxiliary functions related
to the regularized momentum-space propagators

1 1

Cpw)= ——— GLw) =
B(w) y(1+7rg) +w’ L) 1+ rm)? 4w

(A3)

where y = p?/k?, the threshold functions involving Luttinger fermions occuring in the
main text are defined by

k—d <
09w = o [ GGt o), (A%)
p
(LB)d k=t [ =
U i) = [ 8.6 (en)Ginlon) (A5)
p
(LB).d k=4 25 "
myy (W1, w2, m2) = —E/dy Y 0[(Gr(w2))" (1 + rL)Gr(wi)], (A6)
P
(L),d - ’
o =~ [y o [+ Gl
p g (A7)
+ 5(1 + TL)2G%(M)},
(L),d — 5
my " wim) = = |y l(GL@)T (A8)
p

where, in practice, the derivative J; can be read as 9, — (Oyr — 1) Oy, fp = f % indi-

cates the full momentum integral, and primes denote derivatives with respect to y.

For all concrete computations in the main text, we use the partially linear regulator
(Litim regulator) [66, 67],
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S (i - 1) 01— y), (A9)

which allows for an analytic evaluation of the loop momentum integration. The correspond-
ing threshold functions then read

Lyd, . :é(1_i>L
o wim) = 5 d+2) 14w’ "o
(LB)d 2 :
I . = 37T N N
11 (Wi, wasm,n2) d(14+w)(1+ws)
All
) 9 (1_ m )+ 1 (1_ T2 ) ( )
1+ w; d+2) " 1T+ ws d+2/)"
m(LB),d(w Wo ):1 !
12 o) = 5T
x(d+1+923 -
w1+1 ")
(L).d (L-w? 2d-n) l-w
_ Al
L),d 4
m{ ! (w,m) = A+ o)t "

For completeness, we also list all other required threshold functions known from the litera-
ture [30, 36, 37, 64, 65]:

2 1
dg, . = (1= n )
lolwin) = 5 ( i+2)1+a’ (AL3)

1
mg 5 (w;n) = ( (A16)

14+ w)t

Because of the nonanalyticity of the Litim regulator, the m-type threshold functions
partly involve ill-defined products of distributions such as §(1 — y)0(1 — y). This is
a result of using the derivative expansion of the action as an ansatz; including full
momentum-dependencies would lead to perfectly well-defined flows. In the present
case, the problematic products occuring here can straightforwardly be cured by suitably
smearing the singularity of the Heaviside function. Using a symmetric smearing, it can
be shown that the resulting loop integrations can effectively be performed by the simple
replacement 6(1 — y)#(1 — y) — $6(1 — y). This recipe is in agreement with the results
used in the literature.

@ Springer



International Journal of Theoretical Physics (2025) 64:282 Page 250f 26 282

Acknowledgements We thank Lukas Janssen, David Moser, Michael Scherer, Richard Schmieden, and
Christof Wetterich for valuable discussions. We are grateful to Richard Schmieden for his kind assistance
with the numerical implementation and the code development. HG thanks the ITP Heidelberg for hospitality
while working on this project. This work has been funded by the Deutsche Forschungsgemeinschaft (DFG)
under Grant No. 406116891 within the Research Training Group RTG 2522/1.

Author Contributions Both authors have contributed equally.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data Availability No datasets were generated or analysed during the current study.
Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Zinn-Justin, J.: Int. Ser. Monogr. Phys. 77, 1 (1989)

’t Hooft, G.: NATO Sci. Ser. B 59,, 135 (1980)

Giudice, G.F.: 155 (2008). arXiv:0801.2562 [hep-ph]

Grinstein, B., O’Connell, D., Wise, M.B.: Phys. Rev. D 77, 025012 (2008). arXiv:0704.1845 [hep-ph]

Hossenfelder, S.: Synthese 198, 3727 (2021). arXiv:1801.02176 [physics.hist-ph]

Bak, P, Tang, C., Wiesenfeld, K.: Phys. Rev. Lett. 59, 381 (1987)

Bak, P., Tang, C., Wiesenfeld, K.: Phys. Rev. A 38, 364 (1988)

Manna, S.S.: J. Phys. A: Math. Gen. 24, L363 (1991)

9.  Olami, Z., Feder, H.J.S., Christensen, K.: Phys. Rev. Lett. 68, 1244 (1992)

10. Malamud, B.D., Morein, G., Turcotte, D.L.: Science 281, 1840 (1998)

11.  Vespignani, A., Zapperi, S.: Phys. Rev. E 57, 6345-6362 (1998)

12. Bornholdt, S., Wetterich, C.: Phys. Lett. B 282, 399 (1992)

13. Gies, H., Heinzel, P., Laufkétter, J., Picciau, M.: Phys. Rev. D 110, 065001 (2024). arXiv:2312.12058
[hep-th]

14. Luttinger, J.M.: Phys. Rev. 102, 1030 (1956)

15. Murakami, S., Nagosa, N., Zhang, S.-C.: Phys. Rev. B 69, 235206 (2004). arXiv:cond-mat/0310005

16. Moon, E.-G., Xu, C., Kim, Y.B., Balents, L.: Phys. Rev. Lett. 111, 206401 (2013). arXiv:1212.1168
[condmat.str-el]

17. Janssen, L., Herbut, L.F.: Phys. Rev. B 92, 045117 (2015). arXiv:1503.04242 [cond-mat.str-el]

18. Janssen, L., Herbut, L.E.: Phys. Rev. B 95, 075101 (2017). arXiv:1611.04594 [cond-mat.str-el]

19. Ray, S., Vojta, M., Janssen, L.: Phys. Rev. B 98, 245128 (2018). arXiv:1810.07695 [cond-mat.str-el]

20. Dey, S., Maciejko, J.: Phys. Rev. B 106, 035140 (2022). arXiv:2204.05319 [cond-mat.str-el]

21. Moser, D.J., Janssen, L.: Rep. Prog. Phys. 88 098001 (2025), [cond-mat.str-el] https://doi.org/10.1088/
1361-6633/ae01d5

22. Gies, H., Picciau, M.: Phys. Rev. D 111, 085001 (2025). arXiv:2410.22166 [hep-th]

23.  Abrikosov, A.A.: Sov. Phys. JETP 39, 709 (1974)

PNANR LD~

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/0801.2562
http://arxiv.org/abs/0704.1845
http://arxiv.org/abs/1801.02176
http://arxiv.org/abs/2312.12058
http://arxiv.org/abs/cond-mat/0310005
http://arxiv.org/abs/1212.1168
http://arxiv.org/abs/1503.04242
http://arxiv.org/abs/1611.04594
http://arxiv.org/abs/1810.07695
http://arxiv.org/abs/2204.05319
https://doi.org/10.1088/1361-6633/ae01d5
https://doi.org/10.1088/1361-6633/ae01d5
http://arxiv.org/abs/2410.22166

282

Page 26 of 26 International Journal of Theoretical Physics (2025) 64:282

24.

41.
42.
43.
44.
45.

46.
47.

48.
50.
51.
52.
53.
54.
55.
56.

57.

Publi

Holland, K., Kuti, J.: Lattice hadron physics. Proceedings, 2nd topical workshop, LHP 2003, Cairns,
Australia, July 22-30, 2003, Nucl. Phys. Proc. Suppl. 129, 765 (2004), [,765(2003)], arXiv:hep-
1at/0308020 [hep-lat]

Holland, K.: Lattice field theory. Proceedings, 22nd international symposium, Lattice 2004, Batavia, USA,
June 21-26, 2004, Nucl. Phys. Proc. Suppl. 140, 155 (2005), [,155(2004)], arXiv:hep-lat/0409112 [hep-lat]
Branchina, V., Faivre, H.: Phys. Rev. D 72, 065017 (2005). arXiv:hep-th/0503188 [hep-th]

Branchina, V., Faivre, H., Pangon, V.: J. Phys. G36, 015006 (2009). arXiv:0802.4423 [hep-ph]

Gies, H., Gneiting, C., Sondenheimer, R.: Phys. Rev. D 89, 045012 (2014). arXiv:1308.5075 [hep-ph]
Wetterich, C.: Phys. Lett. B 301, 90 (1993)

Berges, J., Tetradis, N., Wetterich, C.: Phys. Rept. 363, 223 (2002). arXiv:hep-ph/0005122 [hep-ph]
Pawlowski, J.M.: Annals Phys. 322, 2831 (2007). arXiv:hep-th/0512261 [hep-th]

Gies, H.: ECT* School on renormalization group and effective field theory approaches to many-body systems
trento, Italy, February 27-March 10, 2006, Lect. Notes Phys. 852, 287 (2012), arXiv:hep-ph/0611146 [hep-ph]
Delamotte, B.: Lect. Notes Phys. 852, 49 (2012). arXiv:cond-mat/0702365 [cond-mat.stat-mech]
Braun, J.: J. Phys. G39, 033001 (2012). arXiv:1108.4449 [hep-ph]

Dupuis, N., Canet, L., Eichhorn, A., Metzner, W., Pawlowski, J.M., Tissier, M., Wschebor, N.: Phys.
Rept. 910, 1 (2021). arXiv:2006.04853 [cond-mat.stat-mech]

Jungnickel, D.U., Wetterich, C.: Phys. Rev. D 53, 5142 (1996). arXiv:hep-ph/9505267 [hep-ph]
Hofling, F., Nowak, C., Wetterich, C.: Phys. Rev. B 66, 205111 (2002). arXiv:cond-mat/0203588 [condmat]
Diehl, S., Floerchinger, S., Gies, H., Pawlowski, J.M., Wetterich, C.: Annalen Phys. 522, 615 (2010).
arXiv:0907.2193 [cond-mat.quant-gas]

Braun, J., Gies, H., Scherer, D.D.: Phys. Rev. D 83, 085012 (2011). arXiv:1011.1456 [hep-th]
Mesterhazy, D., Berges, J., von Smekal, L.: Phys. Rev. B 86, 245431 (2012). arXiv:1207.4054 [cond-
mat.str-el]

Jakovac, A., Patkos, A., Posfay, P.: Eur. Phys. J. C 75, 2 (2015). arXiv:1406.3195 [hep-th]

Janssen, L., Herbut, I.F.: Phys. Rev. B 89, 205403 (2014). arXiv:1402.6277 [cond-mat.str-el]

Vacca, G.P.,, Zambelli, L.: Phys. Rev. D 91, 125003 (2015). arXiv:1503.09136 [hep-th]

Gies, H., Sondenheimer, R.: Eur. Phys. J. C 75, 68 (2015). arXiv:1407.8124 [hep-ph]

Classen, L., Herbut, L.F., Janssen, L., Scherer, M.M.: Phys. Rev. B 93, 125119 (2016). arXiv:1510.09003
[condmat.str-el]

Knorr, B.: Phys. Rev. B 94, 245102 (2016). arXiv:1609.03824 [cond-mat.str-el]

Fu, WJ., Pawlowski, J.M., Rennecke, F., Schaefer, B.J.: Phys. Rev. D 94, 116020 (2016).
arXiv:1608.04302 [hep-ph]

Stoll, J., Zorbach, N., Koenigstein, A., Steil, M.J., Rechenberger, S.: (2021), arXiv:2108.10616 [hep-ph]
Gies, H., Schmieden, R., Zambelli, L.: Eur. Phys. J. C 85, 56 (2025). arXiv:2306.05943 [hep-th]
Hawashin, B., Eichhorn, A., Janssen, L., Scherer, M.M., Ray, S.: Nature Commun. 16, 20 (2025).
arXiv:2312.11614 [cond-mat.str-el]

Bervillier, C., Juttner, A., Litim, D.F.: Nucl. Phys. B 783, 213 (2007). arXiv:hep-th/0701172
Borchardt, J., Knorr, B.: Phys. Rev. D 91, 105011 (2015). arXiv:1502.07511 [hep-th]

Borchardt, J., Knorr, B.: Phys. Rev. D 94, 025027 (2016). arXiv:1603.06726 [hep-th]

Borchardt, J., Gies, H., Sondenheimer, R.: Eur. Phys. J. C 76, 472 (2016). arXiv:1603.05861 [hep-ph]
Grossi, E., Wink, N.: SciPost Phys. Core 6, 071 (2023). arXiv:1903.09503 [hep-th]

Koenigstein, A., Steil, M.J., Wink, N., Grossi, E., Braun, J., Buballa, M., Rischke, D.H.: Phys. Rev. D
106, 065012 (2022). arXiv:2108.02504 [cond-mat.stat-mech]

Thssen, F., Pawlowski, J.M., Sattler, F.R., Wink, N.: Comput. Phys. Commun. 300, 109182 (2024).
arXiv:2207.12266 [hep-th]

Ihssen, F., Sattler, F.R., Wink, N.: Phys. Rev. D 107, 114009 (2023). arXiv:2302.04736 [hep-th]
Sattler, F.R., Pawlowski, J.M.: (2024), arXiv:2412.13043 [hep-ph]

O’Raifeartaigh, L., Wipf, A., Yoneyama, H.: Nucl. Phys. B 271, 653 (1986)

Litim, D.F., Pawlowski, J.M., Vergara, L.: (2006), arXiv:hep-th/0602140 [hep-th]

Zorbach, N., Stoll, J., Braun, J.: (2024), arXiv:2401.12854 [hep-ph]

Zorbach, N., Koenigstein, A., Braun, J.: (2024), arXiv:2412.16053 [cond-mat.stat-mech]

Gies, H., Rechenberger, S., Scherer, M.M., Zambelli, L.: Eur. Phys. J. C 73,2652 (2013). arXiv:1306.6508
[hep-th]

Gies, H., Ziebell, J.: Eur. Phys. J. C 80, 607 (2020). arXiv:2005.07586 [hep-th]

Litim, D.F.: Phys. Lett. B 486, 92 (2000). arXiv:hepth/0005245 [hep-th]

Litim, D.F.: Phys. Rev. D 64, 105007 (2001). arXiv:hepth/0103195 [hep-th]

sher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

@ Springer


http://arxiv.org/abs/hep-lat/0308020
http://arxiv.org/abs/hep-lat/0308020
http://arxiv.org/abs/hep-lat/0409112
http://arxiv.org/abs/hep-th/0503188
http://arxiv.org/abs/0802.4423
http://arxiv.org/abs/1308.5075
http://arxiv.org/abs/hep-ph/0005122
http://arxiv.org/abs/hep-th/0512261
http://arxiv.org/abs/hep-ph/0611146
http://arxiv.org/abs/cond-mat/0702365
http://arxiv.org/abs/1108.4449
http://arxiv.org/abs/2006.04853
http://arxiv.org/abs/hep-ph/9505267
http://arxiv.org/abs/cond-mat/0203588
http://arxiv.org/abs/0907.2193
http://arxiv.org/abs/1011.1456
http://arxiv.org/abs/1207.4054
http://arxiv.org/abs/1406.3195
http://arxiv.org/abs/1402.6277
http://arxiv.org/abs/1503.09136
http://arxiv.org/abs/1407.8124
http://arxiv.org/abs/1510.09003
http://arxiv.org/abs/1609.03824
http://arxiv.org/abs/1608.04302
http://arxiv.org/abs/2108.10616
http://arxiv.org/abs/2306.05943
http://arxiv.org/abs/2312.11614
http://arxiv.org/abs/hep-th/0701172
http://arxiv.org/abs/1502.07511
http://arxiv.org/abs/1603.06726
http://arxiv.org/abs/1603.05861
http://arxiv.org/abs/1903.09503
http://arxiv.org/abs/2108.02504
http://arxiv.org/abs/2207.12266
http://arxiv.org/abs/2302.04736
http://arxiv.org/abs/2412.13043
http://arxiv.org/abs/hep-th/0602140
http://arxiv.org/abs/2401.12854
http://arxiv.org/abs/2412.16053
http://arxiv.org/abs/1306.6508
http://arxiv.org/abs/2005.07586
http://arxiv.org/abs/hepth/0005245
http://arxiv.org/abs/hepth/0103195

	﻿Self-Organized Criticality in a Relativistic Yukawa Theory with Luttinger Fermions
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿The ﻿￼﻿﻿ Yukawa Model
	﻿﻿3﻿ ﻿Renormalization Flow
	﻿﻿4﻿ ﻿Leading-Order Polynomial Expansion
	﻿4.1﻿ ﻿Large-﻿￼﻿﻿ Analysis
	﻿4.2﻿ ﻿Perturbative Analysis

	﻿﻿5﻿ ﻿Functional RG Flow
	﻿﻿6﻿ ﻿High-Energy Completion of the Model
	﻿﻿7﻿ ﻿Conclusions
	﻿﻿Appendix A: Abrikosov Algebra
	﻿﻿Appendix B: Threshold Functions
	﻿References


