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Abstract
We propose and investigate a Yukawa model featuring a dynamical scalar field coupled to 
relativistic Luttinger fermions. Using the functional renormalization group (RG) as well 
as large-Nf or perturbative expansions, we observe the emergence of an infrared attractive 
partial fixed point in all interactions at which all couplings become RG irrelevant. At the 
partial fixed point, the scalar mass parameter is RG marginal, featuring a slow logarithmic 
running towards the regime of spontaneous symmetry breaking. The long-range behavior 
of the model is characterized by mass gap formation in the scalar and the fermionic 
sector independently of the initial conditions. Most importantly, a large scale separation 
between the low-energy scales and the microscopic scales, e.g., a high-energy cutoff scale, 
is naturally obtained for generic initial conditions without the need for any fine-tuning. We 
interpret the properties of our model as a relativistic version of self-organized criticality, 
a phenomenon observed in specific statistical or dynamical systems. This entails natural 
scale separation and universal long-range observables. We determine nonperturbative 
estimates for the latter including the scalar and fermionic mass gaps.

1  Introduction

Quantum field theories with scalar fields are prototypical for theories with phase transitions, 
since the potential of the scalar field can trigger different realizations of the ground state 
depending on its location and possible symmetry-breaking features in field space. Already at 
zero temperature, phase transitions can occur as a function of the parameters of the models, 
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specifically the parameters and couplings entailed in the scalar potential. The underlying 
mechanisms find application in a wide range of fields from statistical mechanics, condensed 
matter physics to elementary particle physics and cosmology.

The parameter region near a phase transition typically features critical phenomena and 
is often governed by fluctuations of the scalar fields, potentially giving rise to features of 
universality [1]. In relativistic four-dimensional spacetimes, approaching the critical region 
generically requires a fine-tuning of parameters. This is because the mass parameter of the 
scalar field represents a relevant direction of the renormalization group (RG) with a power-
counting exponent near two; the latter implies that microscopic parameters of a model have 
to be tuned with quadratic precision to certain values in order to observe near-critical fea-
tures in the long-range physics.

A prominent example for such properties is the Higgs sector of the standard model of 
particle physics where the mass of the Higgs boson characterizing the low-energy scale is 
much smaller than anticipated high-energy scales such as those of grand-unified theories 
or the Planck scale of gravity. The correspondingly anticipated necessity of fine-tuning of 
parameters, specifically the scalar mass parameter, is often considered as unnatural. Solu-
tions to this naturalness problem [2–5], or rather explanations for the seemingly specific 
parameter choices, have inspired a large number of suggestions for new underlying particle 
physics models.

Standard suggestions involve, for instance, a removal of the relevant direction by postu-
lating an additional symmetry (e.g., scale, conformal, or supersymmetry) or by replacing the 
fundamental scalar by an alternative or composite degree of freedom that becomes effective 
near the electroweak scale (e.g., technicolor, little Higgs models, etc.).

In the present work, we explore a different option which is well known in the context 
of dynamical systems: if a system has a critical point that is an attractor of the evolution 
the macroscopic properties can display critical phenomena without the need to tune micro-
scopic parameters to specific values. This self-organized criticality [6] can, for instance, be 
observed in slowly driven nonequilibrium many-body systems with nonlinear dynamics 
[7–11]. Translated into relativistic quantum field theory, where the transition across scales, 
i.e., RG time, plays the role of time in nonequilibrium systems, this requires an interacting 
scalar model with a slow (e.g., logarithmic) RG running near a suitably infrared (IR) attrac-
tive fixed point. This is clearly at odds with the strongly relevant mass parameter of a scalar 
model near the standard Gaussian fixed point.

A possible scenario for self-organized criticality in a relativistic theory has first been 
sketched by Bornholdt and Wetterich in [12] where the necessary critical point has been 
suggested to occur in the form of a partial RG fixed point for the running scalar-field expec-
tation value to be stabilized by a sufficiently large scalar anomalous dimension. It has been 
argued in [12] that this stabilization could occur for a suitable matter content.

In our work, we show that a partial infrared attractive RG fixed point occurs naturally in 
Yukawa theories with scalar fields interacting with relativistic Luttinger fermions. The latter 
have recently been proposed as novel particle degrees of freedom giving rise to new asymp-
totically free field theories [13]; the relativistic version generalizes Luttinger fermions [14] 
known from various non-relativistic condensed-matter systems, e.g, with electronic excita-
tions near quadratic band touching points [15–21]. The partial fixed point occurs in our 
model for the Yukawa coupling as well as for all scalar self-interactions rendering all these 
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couplings RG irrelevant. At the same time, the partial fixed point goes along with a large 
scalar anomalous dimension which renders the scalar mass parameter RG marginal. In the 
course of the RG flow, the latter exhibits a slow logarithmic drift towards the transition from 
the symmetric to the broken regime. Once the transition occurs, the partial fixed points are 
destroyed and the system settles in the broken phase with a gapped spectrum. No fine-tuning 
is needed for a scale separation of the low-energy observables from the microscopic scales 
– in direct analogy to self-organized criticality in dynamical systems.

We define our Yukawa model in Section 2. For the analysis of the model, we utilize 
the functional RG as detailed in Section 3. A leading-order analysis, including large-Nf or 
perturbative methods is presented in Section 4. A nonperturbative analysis using a local 
potential approximation of the functional RG is performed in Section 5, where also first 
quantitative estimates for the low-energy observables are computed. The high-energy com-
pletion of the Yukawa model in terms of an asymptotically free fixed point of a purely 
fermionic model is discussed in Section 6. We conclude in Section 7. Some technical details 
are described in the appendices.

2  The γ11 Yukawa Model

Our model is inspired by a purely fermionic model of self-interacting relativistic Luttinger 
fermions first discussed and analyzed in [22]. The classical Euclidean action of this model 
reads

	
SF =

ˆ
d4x

[
−ψ̄Gµν∂µ∂νψ − ḡ

2
(ψ̄γ11ψ)2

]
,� (1)

where ψ denotes a dγ = 32 component Luttinger spinor and ψ̄ its conjugate ψ̄ = ψ†h with 
the spin metric h. The action has been constructed in such a way that the corresponding 
Minkowskian action is real [13]. For given Lorentz indices µ, ν, Gµν  denotes a dγ × dγ  
matrix which is tracefree in Lorentz as well as spin space and satisfies the relativistic version 
of the Abrikosov algebra [13, 17, 23]

	
{Gµν , Gκλ} = − 2

d − 1
gµνgκλ + d

d − 1
(gµκgνλ + gµλgνκ),� (2)

where d denotes the (Euclidean) spacetime dimension. In our formulas, we keep d some-
times general for illustrative purposes, but concentrate on d = 4 dimensional spacetime for 
the concrete application to studies of criticality. The matrices Gµν  can be spanned by a suit-
able set of Euclidean Dirac matrices γA, see Appendix A for further details. For spanning the 
nine matrices Gµν  together with the spin metric h, in total 10 Euclidean Dirac matrices are 
required, γ1, . . . , γ10. The corresponding Dirac algebra thus contains another Dirac matrix 
γ11 which is used to define the interaction channel in (1). Further scalar interaction channels 
are also possible [22]. In Minkowski space, the model is relativistically invariant by virtue 
of the algebra (2) together with a mapping of SO(1,3) Lorentz transformations Λµ

ν  into the 
spin-base transformations SL(32,C), Λµ

ν → SLor(Λ) ∈ SL(32,C). This mapping defines the 
Lorentz transformations of relativistic Luttinger spinors, see Appendix A of [13] for details.
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By means of a Hubbard-Stratonovich transformation, the model of (1) is fully equivalent 
to a description involving an auxiliary scalar field,

	
SFB =

ˆ
d4x

[
−ψ̄Gµν∂µ∂νψ − h̄ϕψ̄γ11ψ + 1

2
m̄2ϕ2

]
,� (3)

which is obvious by using the equations of motion on the classical level or performing the 
Gaussian functional ϕ integral on a quantum level, provided the matching condition

	
ḡ = h̄2

m̄2
� (4)

is fulfilled. The action (3) can be the starting point of a mean-field analysis of the fermionic 
model as performed in [22]. In the present work, we generalize the model by considering a fully 
dynamical scalar field which we consider as a fundamental quantum degree of freedom. Focus-
ing on the perturbatively renormalizable operators, we investigate the γ11 Yukawa model

	
S =

ˆ
d4x

[
− ψ̄Gµν∂µ∂νψ + 1

2
∂µϕ∂µϕ − h̄ϕψ̄γ11ψ + 1

2
m̄2ϕ2 + λ̄

8
ϕ4

]
, � (5)

where we have included a scalar kinetic term and a self-interaction with bare coupling λ̄. 
Similar to the fermionic model (1), also the γ11 Yukawa model features a Z2 symmetry: the 
model is invariant under a simultaneous replacement of ψ → −ei π

2 γ11ψ, ψ̄ → ψ̄e−i π
2 γ11 , 

and ϕ → −ϕ; note that ψ and ψ̄ are independent variables in the quantum theory. This Z2 
symmetry also inhibits a bare fermionic mass term. Here and in the following, we assume 
the fermion fields to occur in Nf flavors.

With both the fermionic field and the scalar field exhibiting a canonical mass dimension 
of one in d = 4, the model features the renormalizable coupling λ̄, the superrenormalizable 
Yukawa coupling h̄ and the scalar mass parameter m̄ which are a priori independent.

If the Z2 symmetry is broken by a scalar expectation value ϕ → v, the spectra of both fields 
are gapped: the scalar field exhibits a massive σ-type mode as lowest excitation, whereas the 
fermions develop an imaginary mass gap at ±im2

ψ with m2
ψ = h̄v as smallest possible solu-

tions of the dispersion relation p2 = ±im2
ψ (ignoring further interactions). The corresponding 

free fermionic propagator has square root singularities in the complex p2 plane with a branch 
cut along the imaginary axis; these, however, combine in closed fermion loops to a gapped 
1/(p4 + m4

ψ) form yielding well-defined Wick-rotatable momentum integrals, cf. [22].
It is instructive to compare the model (5) with a standard Yukawa model involving, e.g., 

Dirac fermions. This analogous case features the same three parameters, all of which exert 
a qualitative and uantitative influence on the low-energy observables [24–28]. For instance, 
the mass parameter m̄2 governs the properties of the low-energy phase: for m̄2 larger than 
a critical value m̄2

cr, the model remains in the symmetric phase with a massive scalar and 
massless fermions and h̄ and λ̄ governing their interactions. For m̄2 smaller than a critical 
value, the model is in the broken phase with the scalar field acquiring an expectation value v 
(determined by m̄2), all modes are gapped, and the couplings h̄ and λ̄ determine the result-
ing fermion mass and the mass of the scalar σ-type mode.
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Moreover, for generic initial values of the bare mass m̄2, say of order of a UV cutoff 
scale Λ, also the dimensionful low-energy observables, e.g., the vacuum expectation values 
and the mass spectrum, will be of the order of the cutoff scale. In order to reach a sizable 
scale separation with v ≪ Λ, the bare mass parameter has to be fine-tuned extremely close 
to the critical value m̄2

cr. In the language of statistical physics, the standard Yukawa model 
with Dirac fermions has a second-order (quantum) phase transition with the scalar mass 
parameter serving as the control parameter. The long-range physics becomes insensitive to 
the microscopic realization, i.e., the cutoff can be sent to infinity, provided that the model 
is fine-tuned to criticality. The latter corresponds to non-generic initial conditions, and the 
fine-tuning has to be done “by hand” for concrete numerical solutions.

By contrast, the model (5) has very different features as we show in the following: the 
model is critical for generic choices of initial conditions, i.e., v ≪ Λ can be reached with-
out fine-tuning, the system is always in the broken phase, and the low-energy observables 
are universal to a large degree, i.e., the mass spectrum is independent of the bare parameters 
for a large region in parameter space. In this region, the model (5) has only one parameter 
instead of the expected three; this one parameter essentially corresponds to a scale thus 
reflecting the paradigmatic field theory property of dimensional transmutation.

3  Renormalization Flow

While the model (5) can straightforwardly be analyzed using perturbation theory or effec-
tive field theory methods, we use the functional RG in the present work. This method has 
the advantage of being able to account for threshold phenomena as they can occur in both 
the symmetric and the broken regime at various scales in the present model. Perturbative or 
effective-field-theory results are provided by our functional RG analysis in the correspond-
ing simplifying limits.

More specifically, we employ the Wetterich equation [29] describing the RG flow of the 
effective action Γk as a function of an RG scale parameter k,

	
∂tΓk = 1

2
STr

[
∂tRk

Γ(2)
k + Rk

]
,� (6)

where ∂t = k d
dk , and Rk specifies the Wilsonian momentum-shell regularization, see [30–

35] for details. The bare action (5) of our model serves as the initial condition for Γk at a 
UV scale, Γk=Λ = S. At k = 0, the action corresponds to the full quantum effective action, 
i.e., the 1PI generating functional Γk=0 = Γ.

Our approximation to solve the Wetterich equation is based on the ansatz

	
Γk =

ˆ
d4x

[
− Zψψ̄Gµν∂µ∂νψ + Zϕ

2
∂µϕ∂µϕ − h̄ϕψ̄γ11ψ + U(ϕ)

]
, � (7)

where we include a full scale-dependent effective potential U for the scalar field, and also 
the Yukawa coupling h̄ and the wave function renormalizations Zψ,ϕ are considered to be k 
dependent. This ansatz corresponds to an improved local potential approximation (so-called 
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LPA’) which can be considered as a leading order in a systematic derivative expansion of 
the action. This approximation is well tested in a plethora of nonperturbative analyses of 
Yukawa systems [36–49].

Upon insertion into the Wetterich (6), our ansatz (7) yields flow equations for all k-depen-
dent quantities. It is convenient to express the resulting flows in terms of dimensionless 
renormalized quantities. For this, we first define the dimensionless effective potential as a 
function of a dimensionless renormalized field invariant,

	
u(ρ) = U(ϕ)

kd
, ρ =

Zϕ

2
ϕ2

kd−2 .� (8)

The dimensionless renormalized Yukawa coupling reads

	
h2 = h̄2

Z2
ψZϕk6−d

.� (9)

The flow of the wave function renormalizations is encoded in the anomalous dimensions

	 ηψ,ϕ = −∂t ln Zψ,ϕ.� (10)

Correspondingly, the resulting flows can be written as

	 ∂tu(ρ) = − d u + (d − 2 + ηϕ)ρu′ + 2vd

[
ld
0 (u′ + 2ρu′′; ηϕ) − Nfdγ l

(L) d
0

(
2ρh2; ηψ

) ]
, � (11)

where primes denote derivatives with respect to the invariant ρ. The phase space factor 
v−1

d = 2d+1πd/2Γ(d/2) reduces to v4 = 1/(32π2) in d = 4. Here and in the following, 
the functions l (and m used below) represent threshold functions which encode the result of 
the regularized loop integration. For zero arguments, they yield simple positive constants. 
For large first arguments, they vanish thereby encoding threshold effects. The precise form 
depends on the choice of the regulator, details are given in Appendix B The flow of the 
Yukawa coupling yields

	 ∂th
2 = − (2 − 2ηψ − ηϕ)h2 + 8vd h4

kl
(LB) d
1,1 (ω1, ω2; ηψ, ηϕ) , � (12)

where

	 ω1 = 2 κ h2, ω2 = u′(κ) + 2κu′′(κ) ,� (13)

and κ = ρmin denotes the minimum of the potential such that u′(κ) = 0 for κ ̸= 0. The 
anomalous dimensions derived from the flow of the wave function renormalizations are 
given by

	
ηψ = 16

d(d + 2)
vdh2m

(LB),d
1,2 (ω1, ω2; ηψ, ηϕ), � (14)
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ηϕ =8vd

d
κ(3u′′ + 2κu′′′)2md

2,2(ω2; ηϕ)

+ 8vd

d
Nfdγh2

(
m

(L),d
4 (ω1, ηψ) − 2h2κm

(L),d
2 (ω1, ηψ)

)
.
� (15)

Upon insertion of the solutions of (15), (14) into (11), (12), the flow of the scalar potential 
and of the Yukawa coupling can be integrated and the low energy observables can be deter-
mined within the present ansatz.

For a simplified discussion, a polynomial expansion of the potential is useful. In the sym-
metric regime (SYM), we use an expansion about zero scalar field amplitude, whereas we 
expand about the nontrivial minimum κ > 0 in the symmetry broken regime (SSB),

	

u(ρ) ≃




Np∑
n=1

unρn, (SYM),

Np∑
n=2

un(ρ − κ)n, (SSB),

� (16)

where Np specifies the order of the polynomial approximation as well as the number of 
operators included for the parametrization of the potential. In the simplest approximation, 
Np = 2, we use

	
u(ρ) ≃ ϵρ + 1

2
λρ2 (SYM), u(ρ) ≃ 1

2
λ(ρ − κ)2 (SSB),� (17)

such that ϵ = m̄2

Zϕk2  denotes the dimensionless renormalized mass, λ ≡ 2u2 = λ̄
Z2

ϕ
k4−d  the 

renormalized scalar ϕ4 coupling, and κ = v2

2kd−2  is the dimensionless version of the expec-
tation value of the (renormalized) field v =

√
Zϕϕmin in the SSB regime. Once the RG 

flows are computed down to low scales k, we can straightforwardly determine estimates 
for the physical observables. For instance for flows arriving in the phase with spontaneous 
symmetry breaking, we obtain the vacuum expectation value, the scalar σ-type mass and 
the fermion mass from

	 v = k
√

2κ|k→0, mσ = k
√

2λκ|k→0, mψ = k
4
√

2κh2|k→0� (18)

where we have used d = 4, and the fermion mass mψ  gaps the spectrum of the Luttinger 
fermions along the imaginary axis in the p2 plane [22].

4  Leading-Order Polynomial Expansion

Several aspects of the RG equations can be studied analytically. Let us first concentrate on 
the flow of the relevant mass parameter ϵ and the marginal couplings h2 and λ.

1 3
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In a conventional perturbative expansion, we would focus on the deep Euclidean region 
by ignoring the threshold effects, i.e., set all arguments of the threshold functions to zero. 
Using the functional RG flow, it is, however, straightforward to include the threshold phe-
nomena. For definiteness, we perform this first analysis in the symmetric regime, assuming 
ϵ > 0 and κ = 0, implying ω1 = 0, ω2 = ϵ. The corresponding expansion of the flow equa-
tions of the relevant and marginal couplings yields

	
∂tϵ = − (2 − ηϕ)ϵ −

3
(
1 − ηϕ

6
)

32π2
λ

(1 + ϵ)2 +
Nfdγ

(
1 − ηψ

6
)

8π2 h2, � (19)

	
∂tλ =2ηϕλ +

9
(
1 − ηϕ

6
)

16π2
λ2

(1 + ϵ)3 −
Nfdγ

(
1 − ηψ

6
)

2π2 h4, � (20)

	
∂th

2 = − (2 − 2ηψ − ηϕ)h2 + 1
8π2

h4

(1 + ϵ)

[
2

(
1 − ηψ

6

)
+

1 − ηϕ

6
1 + ϵ

]
. � (21)

To this order, the expansion of the anomalous dimensions reads

	
ηψ =

(
1 − ηϕ

2
)

48π2
h2

(1 + ϵ)2 , � (22)

	
ηϕ =

5Nfdγ

(
1 − ηψ

5
)

16π2 h2. � (23)

The one-loop result of all flows in the conventional deep Euclidean region is obtained by 
setting ϵ = 0, i.e., ignoring threshold effects, and upon insertion of ηψ,ϕ into (19)-(21) and 
a subsequent expansion to lowest-coupling order.

4.1  Large-Nf Analysis

The preceding equations simplify in the limit of a large number of Luttinger flavors Nf. For 
this, we assume Nfdγ ≫ 1, but Nfdγh2 = const, implying that h2 ∼ 1/(Nfdγ) ≪ 1. Since 
dγ = 32, already Nf = 1 turns out to satisfy the “large-Nf” approximation rather well.

From (22), we deduce that ηψ ≃ 0 in this limit, whereas ηϕ contributes fully to leading 
order. Dropping the subleading orders, the Yukawa flow (21) reduces to

	 ∂th
2 = −(2 − ηϕ)h2 + O(1/(Nfdγ)),� (24)

independently of the size of ϵ ≥ 0. For a given value of Nf and upon insertion of ηϕ ∼ h2, 
the right-hand side corresponds to a parabola in h2 with two zeros. These zeros correspond 
to fixed points of the RG flow. In addition to the Gaussian, i.e., non-interacting fixed point 
h2 = 0, we observe the existence of an interacting fixed point at

	
h2

∗ = 32π2

5Nfdγ
⇔ ηϕ = 2 for Nfdγ → ∞.� (25)
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Inserting this fixed-point value into the flow of the scalar self-interaction (20), also λ exhib-
its a fixed point at

	
λ∗ = 128π2

25Nfdγ
for Nfdγ → ∞,� (26)

which demonstrates that also λ∗ scales like ∼ 1/(Nfdγ) in a large-Nf analysis. It is straight-
forward to check that this fixed point is fully IR attractive in the (λ, h2) plane. This is illus-
trated in Fig. 1 where phase diagram in terms of a stream plot of the flow towards the IR is 
depicted in the (λ, h2) plane.

The corresponding critical exponents, defined in terms of the negative of the eigenvalues 
of the stability matrix B,

Fig. 1  Phase diagram of the γ11 Yukawa model with Luttinger fermions, in the plane of the dimensionless 
scalar self-interaction λ and the dimensionless Yukawa coupling h2. The arrows indicate the RG flow 
towards the IR. The interacting fixed point, highlighted in red, is fully IR attractive. The flow has been 
obtained from the full (20)-(21) with ϵ = 10 and for Nf = 1, dγ = 32
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θ = −eig{B}, Bij = ∂(∂tgi)

∂gj
, gi = h2, ϵ, λ, . . . ,� (27)

are

	 θh2 = −2, θλ = −4, for Nfdγ → ∞,� (28)

which reveals that both couplings are RG irrelevant and their flow is fully governed by the 
fixed point. Since the exponents are not small, the system approaches the fixed point rather 
rapidly. In conclusion, the two couplings thus do not represent physical parameters since the 
long-range behavior is determined by the fixed point.

However, the fixed point is not a quantum scale invariant point of the full system, but 
only a partial fixed point of the couplings studied so far. Inserting the fixed-point values into 
the remaining (19), we find to leading order

	
∂tϵ = 4

5
, for Nfdγ → ∞,� (29)

as a consequence of the large scalar anomalous dimension ηϕ = 2. The latter, in fact, corre-
sponds precisely to the value that renders the mass parameter from relevant near the Gauss-
ian fixed point to marginal with θm = 0 at the partial fixed point. Fixing the initial condition 
for ϵ at the high scale Λ to some value ϵΛ > 0, the solution to (29) reads

	
ϵ(k) = ϵΛ + 4

5
ln k

Λ
,� (30)

which shows that the mass parameter ϵ flows logarithmically slowly to smaller values, tran-
sitioning into the SSB regime with ϵ(kSSB) = 0 at

	 kSSB = Λe− 5
4 ϵΛ .� (31)

We observe that kSSB ≪ Λ is natural for generic choices of ϵΛ. For instance: in order 
to have kSSB being n orders of magnitude smaller than Λ, we only need to choose 
ϵΛ = n 4

5 ln(10) ≃ 1.8 n as initial condition. No fine-tuning is needed to separate kSSB 
from Λ. The initial conditions for h2 and λ are even less relevant, since they are quickly 
attracted to the fixed point fairly independently of the initial conditions.

Once ϵ(k) has dropped below zero for k < kSSB, (19)-(22) are no longer valid but have 
to be replaced by their analogues accounting for a nontrivial minimum κ of the effective 
potential u(ρ). Around k ∼ kSSB, all couplings start to run fast. However, once the (dimen-
sionless) minimum κ grows large, strong threshold effects set in since ω1,2 ∼ κ. As a con-
sequence, all threshold functions essentially drop to zero quickly describing the decoupling 
of massive modes. The flow is then governed only by the dimensional scaling terms and all 
dimensionful physical observables such as those listed in (18) approach constant values; the 
flow “freezes out”.

We emphasize that the large-Nf limit does not feature a symmetric phase, independently 
of the initial conditions. Of course, large initial values for the scalar mass term ϵΛ ≫ 1 
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will lead to a flow in the symmetric regime over a wide range of scales, but the system will 
unavoidably end in the broken phase as is obvious from (30). In the language of statistical 
physics, this is reminiscent to the phenomenon of self-organized criticality: independently 
of how far the seeming control parameter ϵΛ is chosen away from a (naively anticipated) 
critical point, the RG flow drives the system to criticality. The more ϵΛ > 0 is chosen away 
from the regime transition ϵ = 0, the closer the system approaches the partial fixed point 
in the (h2, λ) plane, i.e., the closer is the system tuned to criticality with more pronounced 
universal features. Nevertheless, the large-Nf flow ultimately ends up in the broken phase 
with all long-range observables being naturally much smaller than the high-energy scale Λ.

The present RG flow shows also some similarity to the scenario of nordic walking pro-
posed in [50] for a 2+1 dimensional solid-state system, and suggested as a novel ingredient 
for natural high-energy models. The nordic-walking scenario relies on the existence of a flat 
region in the β function of a relevant coupling. In the proposal of [50], this can be arranged 
for through the competition between different fluctuation contributions. In the present case, 
it is the scalar mass term that exhibits nordic-walking behavior by virtue of a fully IR attrac-
tive partial fixed point in all couplings; no specific balance between different β function 
contributions seems necessary.

4.2  Perturbative Analysis

The preceding large-Nf analysis is, in fact, more general as naively expected, not only because 
Nfdγ  is large even for Nf = 1. As a justification, let us analyse (19)-(22) perturbatively with-
out specific assumptions about the size of Nfdγ . In addition to the polynomial (perturbative) 
dependence on the couplings h2 and λ, the equations depend non-linearly on ϵ.

In the limit of large ϵ, we observe that the right-hand sides of (19)-(22) reproduce exactly 
the flow equations of the large-Nf limit of the preceding subsection. We conclude that the 
large-Nf analysis also applies to the perturbative large-ϵ regime, the latter potentially receiv-
ing 1/Nf corrections. Even the fixed-point values h2

∗ and λ∗ are perturbatively small for 
sufficiently large Nf.

In a straightforward naive perturbative expansion for small couplings h2 and λ, the 
anomalous dimensions simplify to

	
ηψ = h2

48π2(1 + ϵ)2 , ηϕ =
5h2Nfdγ

16π2 .� (32)

Insertion into the coupling flows (19)-(21) and an expansion to leading order in the cou-
plings would yield the perturbative flows adequately describing the vicinity of the Gaussian 
fixed point.

Since we are also interested in the non-Gaussian fixed point identified before in the large-
Nf limit, there is an improved perturbative expansion which is quantitatively more accurate 
also near the non-Gaussian fixed point. For this, we observe that the non-Gaussian fixed 
point is characterized by a scalar anomalous dimension ηϕ ≃ 2 + O(1/Nf). Also the fixed-
point values for h2 and λ scale as ∼ 1/Nf. Inserting this scaling into (14), we observe that 
ηψ  scales like ∼ 1/N2

f  near the non-Gaussian fixed point, but ∼ h2 near the Gaussian one. 
Therefore, we can describe both fixed points by using the leading-order formulas (32) to 
lowest perturbative order, but ηψ ∼ 0 + O(1/N2

f ) at higher order. Still, we keep ηϕ as in 
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(32) also at higher order, since it appropriately accounts for ηϕ ≃ 2 + O(1/Nf). As a result, 
we obtain

	
∂tϵ = −

(
2 − 5Nfdγ

16π2 h2
)

ϵ − 3λ

32π2(1 + ϵ)2 +
Nfdγ

8π2 h2
(

1 + 5λ

128π2(1 + ϵ)2

)
, � (33)

	
∂tλ =

5Nfdγ

8π2 h2λ − Nfdγ

2π2 h4 + 9λ2

16π2(1 + ϵ)3

(
1 − 5Nfdγ

96π2 h2
)

, � (34)

	
∂th

2 = − 2h2 +
5Nfdγ

16π2 h4 + 5 + 3ϵ

12π2(1 + ϵ)2 h4. − 5Nfdγ

768π4(1 + ϵ)2 h6. � (35)

Conventional perturbative results in the deep Euclidean region are obtained keeping only 
the leading powers in h2 and λ and by setting ϵ = 0 in the denominator (and in (35) also 
in the numerator). The few terms that would formally be of higher order, such as the term 
∼ h2λ in (33), the term ∼ λ2h2 in (34), and the term ∼ h6 in (35) arise from the anomalous 
dimension ηϕ; they account for the possibility that this anomalous dimension can become 
large ηϕ ∼ O(1) at a non-Gaussian fixed point. Nevertheless, dropping these terms in a pure 
perturbative spirit would not modify the following results qualitatively.

From (35), it is again obvious that the Yukawa coupling flow has a non-Gaussian fixed 
point for any Nf and ϵ ≥ 0; for instance, ignoring the subleading term ∼ h6 in (35), the 
fixed-point value assumes the compact form

	
h2

∗ =
(

5Nfdγ

32π2 + 5 + 3ϵ

24π2(1 + ϵ)2

)−1

.� (36)

At large-Nf, or alternatively large ϵ, we rediscover the result of the preceding subsection, 
(25). However, even in the extreme opposite limit of ϵ = 0 and for Nf = 1, the numerical 
value for h2

∗ deviates from the large-Nf limit only by a few percent.
The same conclusion holds for the scalar self-interaction λ also exhibiting a fixed-point 

λ∗ upon insertion of (36) into (34). The somewhat extensive result can be worked out ana-
lytically in a straightforward fashion; here we simply note that the large-Nf result of (26) is 
rediscovered in the corresponding limit (and also for large ϵ); in the extreme opposite limit 
of Nf = 1 and ϵ = 0, the result deviates only on the few percent level.

Most importantly, this fixed point in the (h2, λ) plane remains fully IR attractive for any 
value of Nf and ϵ ≥ 0. This can be read off from the critical exponents for which we now find

	 θh2 = −2, θλ = [−4, −3.940 . . . ], (pert.),� (37)

where θλ as a function of Nf and ϵ varies in the given interval on the few percent level; the 
upper end of the interval is reached for small but finite ϵ.

Also within perturbation theory, the fixed point in these couplings is, of course, only a 
partial fixed point. Once it is approached rapidly in this coupling plane, the remaining per-
turbative flow of the dimensionless scalar mass parameter reads again

	 ∂tϵ = cϵ, (pert.),� (38)
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where cϵ = cϵ(ϵ, Nf) is a slowly varying positive function of ϵ and Nf which remains in 
the vicinity of its large-Nf value cϵ|Nf→∞ = 4/5, cf. (29). E.g., for ϵ → ∞ but any Nf, we 
find cϵ = (4/5) − 1/(20Nf). In the opposite limit with ϵ = 0 and Nf = 1, cϵ is only about 
1 percent larger.

In summary, our conclusions of the large-Nf analysis remain valid in the whole per-
turbative domain: the Yukawa system develops a partial IR attractive fixed point that is 
rapidly approached by the Yukawa coupling and the scalar self-interaction for any initial 
value in the perturbative domain. At this partial fixed point, the scalar mass is no longer a 
relevant direction, but it is only marginal featuring a logarithmically slow running towards 
the regime of chiral symmetry breaking. Again, we conclude that a large scale separation 
kSSB ≪ Λ is natural for generic choices of the initial conditions.

5  Functional RG Flow

Let us now integrate the functional flows (11)-(15) without any assumption on the size of Nf 
or the values of the couplings. While there are powerful methods available to solve also the 
potential flow (11) as a partial differential equation in field space [51–59], we use a simple 
polynomial expansion about the minimum as parametrized in (16). This gives us access to 
the spectral information of the Yukawa system, and we can monitor the convergence of this 
expansion as a function of the polynomial order Np.

At the initial scale k = Λ, we impose nontrivial initial conditions on all perturbatively 
marginal or relevant couplings necessary in order to render the theory fully interacting, i.e., 
choose initial values for ϵΛ, h2

Λ > 0; for simplicity, we set all other un≥2 = 0 (including 
λΛ) at k = Λ, as these couplings are generated by the flow anyway. However, since all 
scalar couplings are quickly attracted by their corresponding partial fixed point with a large 
negative (RG irrelevant) critical exponent, generic nontrivial initial conditions for all other 
un≥2 do not take any relevant influence on the results.

As for the initial conditions for ϵΛ and h2
Λ, there are qualitatively two resulting flows: for 

negative ϵΛ < 0 (or small ϵΛ > 0 with sufficiently large h2
Λ), the flow starts in (or runs com-

paratively quickly into) the broken regime where all modes become massive and decouple 
quickly. In this case, kSSB ≲ Λ remains fairly close to the high scale. The resulting dimen-
sionful quantities such as the vacuum expectation value v or the particle masses mσ  or 
mψ  depend strongly on the details of the initial conditions. In this case, the RG flow is not 
governed by a (partial) fixed point, hence we do not observe nor expect universal features.

By contrast, for sufficiently large mass parameter, say ϵΛ ≳ O(1), and perturbative or 
medium large initial Yukawa couplings h2

Λ, the RG flow of all other couplings is attracted 
by the partial fixed point present in all couplings h, λ = u2, and all other un, while ϵ runs 
logarithmically slowly towards zero and then into the SSB regime, such that kSSB ≪ Λ. No 
fine-tuning of any of the parameters is needed for this generic situation; in fact, the deeper we 
put the system into the symmetric regime, e.g., with a large positive ϵΛ, the more RG time the 
systems spends near the partial fixed point and is ultimately driven to criticality. As the partial 
fixed point renders all other couplings RG irrelevant, the IR observables show a large amount 
of universality, and we can express all dimensionful quantities in units of a single scale.

The degree of universality of the long-range observables is governed by the RG time spent 
at the partial fixed point; for a simple estimate, we use the RG time scale tSSB = ln kSSB

Λ  
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where the system runs into the broken regime as a proxy for the time spent near the fixed 
point. Since the irrelevant perturbations near the fixed point die out with their corresponding 
critical exponents, the non-universal corrections contribute at most with the largest exponent 
θh2 = −2, cf. (28), such that corrections to universality scale maximally with ∼ (kSSB/Λ)2. 
Therefore, 2(log10 e)|tSSB| ≃ 0.82|tSSB| serves as an estimate for the number of digits of a 
long-range observable that are unaffected by non-universal corrections. In Fig. 2, we depict the 
curves in the (h2

Λ, ϵΛ) plane of initial conditions for which we obtain tSSB = −5, −10, −20 
for the Nf = 1 (dγ = 32) model. The shaded regions above these curves exhibit universality 
of the long-range observables at least to this estimated degree. Also, we haven’t found any 
significant influence of the initial condition for the scalar interaction λΛ on these curves. This 
is in agreement with the even more subleading critical exponent θλ ≃ −4 which induces a 
rapid die out of the scalar self-coupling. In conclusion, a large region in the space of initial 
parameters leads to universal long-range physics. This justifies to call these initial conditions 
generic. No fine-tuning is needed at all to put the system into this region.

As we are mainly interested in this universal regime which we interpret as the analogue 
of self-organized criticality of dynamical systems, we initialize the flow such that the system 
spends sufficient RG time t = ln k

Λ  in the symmetric regime, in order for the couplings to 
be sufficiently attracted by the fixed point, before entering the broken regime. The preced-
ing considerations have also been confirmed by fully numerical tests demonstrating that 
tSSB ≲ −10, i.e. kSSB/Λ ≲ 10−5, is sufficient to suppress non-universal corrections within 
our numerical accuracy. For concrete computations, we set h2

Λ = 1, un,Λ = 0 and choose ϵΛ 
such that the universal regime will always be reached. For the cases Nf = 1, 2, ϵΛ has been 
set to 10. For larger Nf, the initial condition ϵΛ has been chosen somewhat larger such that 
the transition time tSSB ≲ −10. This is, because larger Nf for h2

Λ fixed correspond to large 
initial values for ηϕ, cf. for instance (32), inducing a faster initial running until the couplings 
have sufficiently approached their fixed point values.

Fig. 2  Degree of universality in the (h2
Λ, ϵΛ) plane of initial conditions for the Nf = 1(dγ = 32) model. 

The solid curves mark initial conditions for which tSSB = −5, −10, −20. The shaded regions above 
these curves correspond to generic initial conditions with a correspondingly increasing degree of univer-
sality. (The initial values of all the irrelevant couplings un≥2 are set to zero, but do not exert a significant 
influence on the data anyway, see text). In subsequent studies, we use tSSB ≤ −10 exhibiting a degree 
of universality sufficient for all practical purposes
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In Fig. 3, we plot the resulting dimensionful effective potential as a function of the dimen-
sionful field invariant both in units of the vacuum expectation value v for various values of 
Nf. In all cases, the potential develops a nontrivial expectation value. Using d’Alembert’s 
ratio test, we have performed an estimate for the convergence radius of the polynomial 
expansion. Going up to 18th order in the expansion, the ratio test suggests that the conver-
gence radius is of the order 0.005 (in units of v); the corresponding highest-order results 
are shown in Fig. 3. (NB: The polynomial expansion is not able to resolve the convexity 
property of the effective potential. The full flow of (11) would lead to a convex potential, 
implying that the potential to the left of the minimum in Fig. 3 would become flat in the 
limit k → 0 [58, 60–63].)

On the basis of this numerical control of the full flow of the effective potential near its 
minimum, we can straightforwardly determine the mass of the σ-like scalar excitation mσ  
as well as the fermionic mass gap mψ  according to (18). In the universal regime, their scale 
is clearly set by the vacuum expectation value v as well. Since the RG flow of the coupings 
λ and h2 is governed by the partial fixed point for a wide range of scales, the partial fixed 
point for these couplings also exerts an influence on the final mass values. Once, the scalar 
mass parameter ϵ crosses zero at kSSB, the couplings depart from their fixed-point values 
such that the details of the SSB flow ultimately determine the mass spectrum quantitatively. 
For Nf = 1, the resulting values for the mass spectrum are shown in Fig. 4 as a function of 
the approximation order Np in units of the vacuum expectation value v. While small values 
of Np exhibit somewhat larger truncation artefacts, the convergence with increasing order 
of the truncation appears satisfactory; in particular for the highest orders Np = 20, 22, the 
variation is on the sub-permille level. Quantitatively, we find mσ/v ≃ 1.36 for the sigma-
like mass of the scalar excitation and mψ/v ≃ 1.72 for the fermionic mass gap.

Fig. 3  Dimensionful effective potential of our Yukawa model with Luttinger fermions as a function of 
the field amplitude ρ = 1

2 ϕ2 for different values of Nf and dγ = 32 in units of the resulting vacuum 
expectation value v. A polynomial expansion at 18th order of the potential has been used, and initial con-
ditions at the UV scale Λ have been chosen such that the flow spends a sufficently wide range of scales 
near the partial fixed point; no fine-tuning is needed for this while the resulting potential is universal, i.e., 
essentially independent of the microscopic initial conditions. The figure displays the limited range of field 
values where the polynomial expansion passes D’Alembert’s ratio test for convergence
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The dashed lines indicate the would-be value of the masses if computed from the partial 
fixed point values h2

∗, λ∗ of (25), (26) in the large-Nf limit. More precisely, the estimate for 
mσ/v indicated by the blue dashed line corresponds to mσ/v ≃

√
λ∗ = 2π

5 , using (18) and 
the large-Nf limit fixed-point value (26); a similar estimate for mψ/v involves to choose a 
scale, since the Yukawa coupling in the original action is dimensionful. The relevant scale 
here is kSSB, since this is the scale where the system starts departing from the partial fixed 
point and subsequently decouples. Hence, the red dashed line in Fig. 4 is given by the esti-

mate mψ/v ≃
4
√

h2
∗k2

SSB√
v

, where we use the large-Nf limit fixed-point value (25) in addition 
to the numerical data for kSSB and v. Since the deviations from finite-Nf corrections are on 
the few percent level, cf. (36), the visible difference of the full numerical result (dots) from 
the estimates (dashed lines) in Fig. 4 is a result of the full RG flow in the threshold regime 
ϵ ≲ 0. The fact that this difference is only on the O(10%) level justifies the interpretation 
that the properties of the long-range observables are essentially governed by the properties 
of the partial fixed point. Even though the fixed point is destroyed in the course of the transi-
tion to the SSB regime, the hierarchy of the couplings is essentially preserved in the course 
of the flow through the threshold regime.

The mass ratio mσ/mψ  is a particularly relevant prediction of our model for several 
reasons: from the viewpoint of the high-energy completion of the model discussed Sec-
tion 6 below, the scalar could arise as bi-fermionic bound state. In this context, the devia-
tion of the ratio from mσ ≃ 2mψ  is a measure for the binding energy of the scalar state. 
Also, for a comparison with other nonperturbative methods, we expect the mass ratio 

Fig. 4  Ratio of the scalar σ-type mass mσ  and the vacuum expectation value v (orange) and ratio of the 
fermionic mass gap mψ  and v (blue) for the Nf = 1 model (dγ = 32) as a function of the polynomial 
expansion Np. The initial conditions have been chosen such that the model is in the universal regime. The 
dashed lines (in the corresponding colors) correspond to an estimate based on the fixed point analysis in 
the large Nf limit, c.f. (25) and (26), as explained in the main text
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to play a useful role; e.g., lattice simulations typically have a direct access to spectral 
information via the study of spatial correlation functions. Our result for the mass ratio is 
shown in Fig. 5 as a function of the flavor number Nf and for the highest truncation order 
Np = 22. As expected, we observe a variation on the percent level for small Nf, rapidly 
converging for larger Nf. The mass ratio shown in the plot for Nf = 5 agrees already on 
the per-mille level with mσ/mψ ≃ 0.786 computed for Nf = 100 as a large-Nf reference 
value.

From the viewpoint of the high-energy completion of the model where the scalar is a bi-
fermionic bound state, we conclude that the mass ratio near mσ/mψ ≃ 0.79 < 2 points to 
a deeply bound relativistic state where the binding energy exceeds the mass gap of a single 
fermionic constituent.

Finally, the property of self-organized criticality can also be read off from the flow 
of the scalar anomalous dimension. A typical flow is depicted in Fig. 6 for initial condi-
tions in the universal regime (ϵΛ = 10, h2

Λ = 1, un≥2 = 0) and the case Nf = 1. Near 
the cutoff k ≲ Λ (t ≲ 0), the flow rapidly approaches the fixed-point value ηϕ ≃ 2 and 
remains there for a wide range of scales. This goes hand in hand with the fact that 
the scalar mass parameter no longer is a relevant operator but becomes marginal at 
the partial fixed point where it runs logarithmically slowly towards the broken regime 
quantitatively similar to the large-Nf flow (29). At the same time, ηϕ ≃ 2 induces the 
partial fixed points in all other couplings h2, λ, un>2 while keeping ηψ  numerically 
small as expected from (22). This fixed-point controlled flow stops, once ϵ drops below 

Fig. 5  Ratio between the scalar σ-type mass mσ  and the fermion mass mψ  as a function of the flavor 
number Nf (dγ = 32). All data points have been produced within the Np = 22 truncation inside the 
universal regime
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zero, which in the case of Fig. 6 happens at exponentially small scales near tSSB ≈ −26, 
i.e., kSSB ≃ 5 × 10−12Λ. Here, ηϕ starts to run fast towards zero. Once the RG scale 
drops below the scale of the vacuum expectation value, all modes become massive and 
decouple which implies that ηϕ → 0 for t < tSSB.

Comparing the results for our model with the scenario for self-organized criticality in 
chiral Higgs-Yukawa models suggested by Bornholdt and Wetterich in [12], the scalar 
anomalous dimension ηϕ plays the role of the mass anomalous dimension ω defined in 
[12]. The quantitative criterion for self-organized criticality suggested in [12] (Bornholdt-
Wetterich criterion),

	
⟨ω⟩ = 1

t0

ˆ t0

0
dt ω(t) ≃ 2, t0 := ln v

Λ
,� (39)

is evidently satisfied for ω = ηϕ, as the scalar anomalous dimension is essentially constant in 
t and governed by the partial fixed point value ηϕ ≃ 2. While (39) could be satisfied also by a 
varying function ω(t), our Yukawa model based on Luttinger fermions satisfies the Bornholdt-
Wetterich criterion in a straightforward fashion. In contrast to the scenario developed in [12], 
our model bridges the wide ranges of scales between k = Λ and k ≃ v fully in the symmet-
ric regime. A flow in the broken regime with κ > 0 or an attractive partial fixed point with 
κ → κ∗ as studied in [12] is not needed for self-organized criticality as featured by our model.

Fig. 6  Scalar anomalous dimension ηϕ for a typical RG flow initiated in the universal parameter space. 
The plot should be read from right to left (UV to IR): starting in the symmetric regime at t = 0 (k = Λ), 
ηϕ rapidly approaches the fixed-point value ηϕ = 2, c.f. (25), and remains there for a wide range of 
scales. After entering the broken phase towards small t, ηϕ vanishes due to threshold effects. This plot uses 
Nf = 1, dγ = 32, Np = 18, ϵΛ = 10, h2

Λ = 1, un≥2 = 0, yielding a transition scale of tSSB ≈ −26, 
i.e., kSSB ≃ 5 × 10−12Λ, as indicated by the gray dashed line
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6  High-Energy Completion of the Model

So far, we have studied the flow towards the IR, assuming that the microscopic parameters 
of the model have been fixed at some initial high-energy scale Λ. The Yukawa model 
exhibits a remarkable degree of universality as its long-range physics is governed by a 
partial IR fixed point which is fully IR attractive apart from the marginal mass-parameter 
direction.

Let us now concentrate on the high-energy behavior of the model by addressing the ques-
tion as to whether RG trajectories exist along which we can take the limit Λ → ∞. If so, the 
corresponding model is UV complete and could exist on all length scales.

From the properties of the IR fixed point, we can already conclude that its UV flow is 
fully repulsive in the Yukawa and all scalar self-couplings. Therefore, the only RG trajec-
tories for which we may have full UV control are those that emanate from the partial fixed 
point. Other options would require the existence of further UV fixed points; however, we 
haven’t found any other fixed point in the validity regime of our approximation except for 
the Gaussian one which would yield a trivial free theory. The fact that all Yukawa and scalar 
self-couplings are irrelevant at the partial fixed point implies that they are also irrelevant 
for UV-complete flows emanating from the fixed point. The only physical parameter to be 
fixed is the mass parameter. We know from the preceding studies that the mass direction 
runs logarithmically if the other couplings are at the partial fixed point. Towards the UV, the 
mass parameter ϵ runs logarithmically to +∞ for k → ∞.

It is useful to study the flow of the ratio

	
g = h2

ϵ
,� (40)

which corresponds to the renormalized version of the matching condition of the partially 
bosonized purely fermionic γ11 model (with nondynamical scalars and zero scalar self cou-
pling) [22]. We can straightforwardly derive the flow of this ratio in the present Yukawa 
model from (19) and (21), yielding

	

∂tg =2ηψg + 3
32π2

(
1 − ηϕ

6

) λ

ϵ(1 + ϵ)2 g

− 1
8π2

[
Nfdγ

(
1 − ηψ

6

)
− ϵ

1 + ϵ

((
2 − ηψ

3

)
+

1 − ηϕ

6
1 + ϵ

)]
g2.

� (41)

In order to understand the high-energy behavior, we note that ϵ grows large, implying 
ηψ → 0, while the coupling λ approaches the fixed point and thus remains bounded, as does 
ηϕ. In the limit ϵ → ∞, we obtain

	
∂tg = − 1

8π2 (Nfdγ − 2)g2� (42)

which corresponds precisely to the flow of the fermionic self-coupling in the γ11 model 
including the anticipated 1/Nf corrections [13, 22].
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Therefore, we can interpret the UV complete RG trajectories present in our Yukawa model 
as follows: the flow of the Yukawa coupling dominated by the partial fixed point and the loga-
rithmic running of the scalar mass parameter are reflections of the asymptotic freedom of the 
purely fermionic γ11 model. The latter is UV complete, features dimensional transmutation, 
and exhibits the same long-range behavior as our Yukwawa model. We conclude that the UV 
complete trajectories in our Yukawa model and the fermionic γ11 model are in the same uni-
versality class, since they are governed by the same fixed point. As our preceding discussion 
has demonstrated, the models are also in the same universality class even if the Yukawa model 
is initiated with generic initial conditions. This is because the partial fixed point is fully IR 
attractive in those couplings that would induce deviations from the purely fermionic descrip-
tion. Of course, if the Yukawa model serves as an effective field theory fixed at an initial UV 
scale Λ, the long-range physics can deviate from the universal trajectory by corrections of the 
order ∼ 1/Λ|θi|, where θi corresponds to a suitable exponent of the irrelevant operators.

The effective-field theory viewpoint also illustrates that the existence of a UV completion 
is a priori unrelated to the property of self-organized criticality: for this let us assume that a 
corresponding Yukawa theory with Dirac fermions was UV complete, e.g., with the Yukawa 
couling and the ϕ4 compling rendered asymptotically free by some mechanism. The cor-
responding couplings would still be marginal parameters of the theory, and, most impor-
tantly, the scalar mass would still be a relevant parameter requiring a fine-tuning of initial 
conditions in order to separate an initial UV scale Λ from a gapped low-energy regime. By 
contrast, our present Yukawa model renders the scalar mass parameter marginal (and all 
other couplings irrelevant) by virtue of the quasi fixed point, thereby manifesting properties 
of self-organized criticality.

This interpretation is also corroborated by the scalar anomalous dimension being ηϕ ≃ 2 
near the partial fixed point. This implies that the scalar wave function renormalization 
behaves like

	
Zϕ(k) ≃ Zϕ(kIR)

k2
IR
k2 , for k → ∞� (43)

for kIR representing some IR scale at which the field amplitude is renormalized. For instance, 
normalizing the wave function renormalization naturally to Zϕ(kIR) = 1 in the long-range 
limit, the wave function renormalization becomes small towards the UV. The kinetic term 
of the scalars thus becomes suppressed and the scalar field more and more resembles a 
nondynamical auxiliary field, similarly to that introduced by a Hubbard-Stratonovich trans-
formation of a fermionic self-interaction. Of course, near the transition scale k ≃ kSSB, ηϕ 
deviates from ηϕ ≃ 2 and approaches ηϕ ≃ 0 for k ≪ kSSB, implying that (43) receives 
some quantitative corrections; however, the scaling with ∼ 1/k2 towards higher energies 
holds true over the range of scales where the system is close to the partial fixed point.

Finally, the present fermionic picture also offers an explanation for the fact that the curves 
of constant tSSB in Fig. 2 have almost constant slope: in the fermionic language, tSSB essen-
tially corresponds to the scale of the IR divergence of the coupling g when integrating the flow 
(42) towards the IR. Now, changing the initial conditions for ϵΛ and h2

Λ such that their ratio 
gΛ = h2

Λ/ϵΛ remains fixed, leaves the scale for the IR divergence of g unchanged. The univer-
sal region in the full Yukawa model – if reduced to the UV-complete trajectory – thus corre-
sponds to initial conditions of the fermionic model in the perturbative weak coupling regime.
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7  Conclusions

The relativistic Yukawa model proposed in this work exhibits features that are both novel 
and, to the best of our knowledge, unprecedented in quantum field theories in four-dimen-
sional spacetime. In contrast to conventional models involving Dirac, Majorana or Weyl 
fermions, the use of relativistic Luttinger fermions exerts a strong influence on the RG phase 
diagram of the model in the space spanned by the power-counting RG relevant and marginal 
couplings: for generic initial conditions (including those with an arbitrarily positive scalar 
mass parameter in units of the cutoff scale), the model features an IR attractive partial fixed 
point of the RG evolution at which the system can bridge a wide range of scales. While all 
couplings are RG irrelevant at the fixed point, the scalar mass parameter is RG marginal and 
exhibits a slow logarithmic drift towards small values.

The long-range behavior of the model is characterized by spontaneous symmetry break-
ing and mass gap generation in both the scalar and the fermionic sector. Remarkably, the 
low-energy scales such as the scalar condensate or mass gaps can be many orders of magni-
tude smaller than a microscopic UV cutoff scale without the need to fine-tune initial param-
eters. In fact, the UV and IR scales are naturally many orders of magnitude apart for generic 
initial conditions, including those with couplings of order one and a scalar mass parameter 
of the order of several times the UV cutoff scale.

Some of these exceptional properties of our Yukawa model are reminiscent to the phe-
nomenon of self-organized criticality in statistical or dynamical systems: identifying the RG 
time with the physical time in dynamical systems, our model inevitably runs towards a scale 
where it becomes critical in the sense of an onset of spontaneous symmetry breaking. At this 
scale, all modes are gapless featuring large fluctuations. For generic initial conditions, the 
long-range behavior is universal because of the IR attractiveness of the partial fixed point at 
which the dependence of the system on its initial condition is depleted and largely removed. 
The partial fixed point is characterized by critical exponents governing the RG running of 
the dimensionless couplings in terms of simple power-laws. The most prominent similarity 
to self-organized criticality is given by the slow logarithmic running of the (dimensionless) 
scalar mass parameter which plays the role of a slow driving force that gradually and inevi-
tably moves the model to criticality.

The present model therefore is a concrete realization of a scenario envisaged in [12] for 
addressing the issue of naturalness in elementary particle physics in terms of self-organized 
criticality. Whether or not the present mechanism can be used for corresponding model 
building in elementary particle physics is an open question. Possible pathways include add-
ing a separate Luttinger fermionic sector to the standard model, or embedding its fermionic 
content into Luttinger spinors; for a first assessment see [13]. While speculative, it might 
be an inspiring observation to see that the universal scalar-to-fermion mass gap ratio of our 
model is quantitatively close to the Higgs-to-top mass ratio in the standard model.

Within the functional RG approach, we have been able to derive this mass-gap ratio 
together with a number of quantitative results for the mass spectrum. Provided the model 
spends sufficient RG time near the partial fixed point, as is the case for generic initial condi-
tions, the long-range properties of the model are universal. While some of our nonperturba-
tive results can also be verified with large-Nf techniques as used in this work as well, we 
believe that these quantitative long-range properties could be a prime example for the appli-
cation of other techniques such Dyson-Schwinger or gap equations, or lattice field theory. 
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Such techniques can also shed further light on the nature of the fermionic mass gap in our 
model which occurs in the form of square root singularities with a branch cut along the 
imaginary axis in the (Minkowskian) complex p2 plane and the question of the existence or 
inexistence of Luttinger fermions as asymptotic states [22]. Since such propagators do not 
feature a Lehmann-Källen spectral representation, we cannot draw an immediate conclusion 
about the positivity of the Hilbert space. Therefore, it is also an open question as to whether 
relativistic Luttinger fermions satisfy the spin-statistics or the CPT theorem. These ques-
tions may best be addressed in a Hamiltonian approach to quantization.

Finally, an attractive feature of our model is that it features a UV complete extension by vir-
tue of the asymptotically free purely fermionic model which is in the same universality class 
as our Yukawa model. Though our results for the Yukawa model are independent of this pos-
sible UV completion, the existence of such a scale-invariant high-energy limit may represent 
another motivation to explore such models with relativistic Luttinger fermions even further.

Appendix A: Abrikosov Algebra

For completeness, we recall a few aspects of the Abrikosov algebra [23] in (2) in a relativ-
istic context as studied in [13, 22].

While not explicitly needed, it is helpful to know that a representation of the Gµν  matrices 
can be constructed in terms of a Euclidean Dirac algebra {γA, γB} = 2δAB . For the present 
work, we work in four-dimensional Euclidean spacetime with metric g = diag(1, 1, 1, 1), 
such that the Abrikosov algebra is satisfied by

	

G0i = −
√

2
3

γA=i, i = 1, 2, 3,

G12 = −
√

2
3

γ4, G23 = −
√

2
3

γ5, G31 = −
√

2
3

γ6,

G00 = − γ7, G11 = −1
3

γ7 − 2
√

2
3

γ8,

G22 = − 1
3

γ7 +
√

2
3

γ8 −
√

2
3

γ9,

G33 = − 1
3

γ7 +
√

2
3

γ8 +
√

2
3

γ9,

� (A1)

in agreement with the Euclidean rotation of the Minkowskian version discussed in [22]. 
This representation can be related to that of [17] for d = 4 Euclidean dimensions through a 
spin-base transformation. While (A1) can be constructed from 9 Euclidean Dirac matrices 
γ1,...,9, a Euclidean construction satisfying also reflection positivity requires a nontrivial 
spin metric h for the definition of a Luttinger conjugate spinor ψ̄ = ψ†h. As detailed in [13, 
22], this demands for an at least dγ = 32 dimensional representation of the Euclidean Dirac 
algebra, going along with two further anti-commuting elements γ10 and γ11. In the pres-
ent work, we use γ10 for the construction of the spin metric, h = γ1γ2γ3γ10, while γ11 is 
employed for the definition of the Yukawa interaction of our model. Various other choices 
would alternatively be possible, cf. [22].
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Appendix B: Threshold Functions

The threshold functions used in the main text, are classified and defined for general regula-
tor functions in the literature [30, 36, 37, 64, 65]. As the Luttinger fermions come with a 
new kinetic term, several new threshold functions are needed which can be defined in full 
analogy to those involving, for instance, Dirac fermions.

For the regulator, we choose in the scalar and the fermionic sectors

	

Rk,ϕ(p2) =Zϕp2(1 + rB(p2/k2)),
Rk,ψ(p2) =ZψGµνpµpν(1 + rL(p2/k2)),

� (A2)

where rB(y), rL(y) denote dimensionless regulator shape functions that encode the momen-
tum space regularization near p2 ∼ k2. Introducing the following auxiliary functions related 
to the regularized momentum-space propagators

	
GB(ω) = 1

y(1 + rB) + ω
, GL(ω) = 1

y2(1 + rL)2 + ω
,� (A3)

where y = p2/k2, the threshold functions involving Luttinger fermions occuring in the 
main text are defined by

	
l
(L) d
0 (ω; η) = k−d

4vd

ˆ

p

∂̃t ln G−1
L (ω), � (A4)

	
l
(LB) d
1,1 (ω1, ω2; η1, η2) = k−d

4vd

ˆ

p

∂̃tGL(ω1)GB(ω2), � (A5)

	
m

(LB),d
1,2 (ω1, ω2; η1, η2) = −k−d

4vd

ˆ

p

dy y2∂̃t[(GB(ω2))′′(1 + rL)GL(ω1)], � (A6)

	

m
(L),d
4 (ω, η) = −k−d

4vd

ˆ

p

y ∂̃t

{[
(y(1 + rL)GL(ω))′]2

+ d

2
(1 + rL)2G2

L(ω)
}

,

� (A7)

	
m

(L),d
2 (ω, η) = −k−d

4vd

ˆ

p

y ∂̃t[(GL(ω))′]2, � (A8)

where, in practice, the derivative ∂̃t can be read as ∂̃t → (∂tr − ηr)∂r, 
´

p
≡
´

ddp
(2π)d  indi-

cates the full momentum integral, and primes denote derivatives with respect to y.

For all concrete computations in the main text, we use the partially linear regulator 
(Litim regulator) [66, 67],

1 3

Page 23 of 26    282 



International Journal of Theoretical Physics          (2025) 64:282 

	
rB = rL =

(
1
y

− 1
)

θ(1 − y),� (A9)

which allows for an analytic evaluation of the loop momentum integration. The correspond-
ing threshold functions then read

	
l
(L) d
0 (ω; η) = 4

d

(
1 − η

d + 2

) 1
1 + ω

, � (A10)

	

l
(LB) d
1,1 (ω1, ω2; η1, η2) = 2

d

1
(1 + ω1)(1 + ω2)

×
(

2
1 + ω1

(
1 − η1

d + 2

)
+ 1

1 + ω2

(
1 − η2

d + 2

))
,

� (A11)

	

m
(LB),d
1,2 (ω1, ω2; η1, η2) = 1

2
1

(1 + ω1)(1 + ω2)2

×
(

d + 1 + ω1 − 3
ω1 + 1

− η2

)
,

� (A12)

	
m

(L),d
4 (ω, η) = (1 − ω)2

(1 + ω)4 + 2(d − η)
d − 2

1 − ω

(1 + ω)3 , � (A13)

	
m

(L),d
2 (ω, η) = 4

(1 + ω)4 . � (A14)

For completeness, we also list all other required threshold functions known from the litera-
ture [30, 36, 37, 64, 65]:

	
ld
0(ω; η) = 2

d

(
1 − η

d + 2

) 1
1 + ω

, � (A15)

	
md

2,2(ω; η) = 1
(1 + ω)4 . � (A16)

Because of the nonanalyticity of the Litim regulator, the m-type threshold functions 
partly involve ill-defined products of distributions such as δ(1 − y)θ(1 − y). This is 
a result of using the derivative expansion of the action as an ansatz; including full 
momentum-dependencies would lead to perfectly well-defined flows. In the present 
case, the problematic products occuring here can straightforwardly be cured by suitably 
smearing the singularity of the Heaviside function. Using a symmetric smearing, it can 
be shown that the resulting loop integrations can effectively be performed by the simple 
replacement δ(1 − y)θ(1 − y) → 1

2 δ(1 − y). This recipe is in agreement with the results 
used in the literature.
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