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Abstract

relativistic Luttinger fermions. Using the functional renormalization group (RG) as well 
as large-Nf or perturbative expansions, we observe the emergence of an infrared attractive 

running towards the regime of spontaneous symmetry breaking. The long-range behavior 
of the model is characterized by mass gap formation in the scalar and the fermionic 
sector independently of the initial conditions. Most importantly, a large scale separation 

interpret the properties of our model as a relativistic version of self-organized criticality, 

scale separation and universal long-range observables. We determine nonperturbative 
estimates for the latter including the scalar and fermionic mass gaps.

1 Introduction

zero temperature, phase transitions can occur as a function of the parameters of the models, 
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matter physics to elementary particle physics and cosmology.
The parameter region near a phase transition typically features critical phenomena and 

universality [1]. In relativistic four-dimensional spacetimes, approaching the critical region 

counting exponent near two; the latter implies that microscopic parameters of a model have 
to be tuned with quadratic precision to certain values in order to observe near-critical fea-
tures in the long-range physics.

A prominent example for such properties is the Higgs sector of the standard model of 
particle physics where the mass of the Higgs boson characterizing the low-energy scale is 

-
tions to this naturalness problem [2–5
parameter choices, have inspired a large number of suggestions for new underlying particle 
physics models.

Standard suggestions involve, for instance, a removal of the relevant direction by postu-
lating an additional symmetry (e.g., scale, conformal, or supersymmetry) or by replacing the 

near the electroweak scale (e.g., technicolor, little Higgs models, etc.).

of dynamical systems: if a system has a critical point that is an attractor of the evolution 
the macroscopic properties can display critical phenomena without the need to tune micro-

self-organized criticality [6] can, for instance, be 
observed in slowly driven nonequilibrium many-body systems with nonlinear dynamics 
[7–11
i.e., RG time, plays the role of time in nonequilibrium systems, this requires an interacting 
scalar model with a slow (e.g., logarithmic) RG running near a suitably infrared (IR) attrac-

sketched by Bornholdt and Wetterich in [12] where the necessary critical point has been 
-

argued in [12] that this stabilization could occur for a suitable matter content.

have recently been proposed as novel particle degrees of freedom giving rise to new asymp-
13]; the relativistic version generalizes Luttinger fermions [14] 

known from various non-relativistic condensed-matter systems, e.g, with electronic excita-
tions near quadratic band touching points [15–21
model for the Yukawa coupling as well as for all scalar self-interactions rendering all these 
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scalar anomalous dimension which renders the scalar mass parameter RG marginal. In the 

is needed for a scale separation of the low-energy observables from the microscopic scales 
– in direct analogy to self-organized criticality in dynamical systems.

2. For the analysis of the model, we utilize 
the functional RG as detailed in Section 3. A leading-order analysis, including large-Nf or 
perturbative methods is presented in Section 4. A nonperturbative analysis using a local 
potential approximation of the functional RG is performed in Section 5
quantitative estimates for the low-energy observables are computed. The high-energy com-

fermionic model is discussed in Section 6. We conclude in Section 7. Some technical details 
are described in the appendices.

2 The γ11 Yukawa Model

Our model is inspired by a purely fermionic model of self-interacting relativistic Luttinger 
22]. The classical Euclidean action of this model 

reads

 
SF =

ˆ

d4x

[

−ψ̄Gµν∂µ∂νψ −
ḡ

2
(ψ̄γ11ψ)2

]

, (1)

where ψ denotes a dγ = 32 component Luttinger spinor and ψ̄ its conjugate ψ̄ = ψ†h with 
the spin metric h. The action has been constructed in such a way that the corresponding 
Minkowskian action is real [13]. For given Lorentz indices µ, ν, Gµν  denotes a dγ × dγ  

of the Abrikosov algebra [13, 17, 23]

 
{Gµν , Gκλ} = −

2

d − 1
gµνgκλ +

d

d − 1
(gµκgνλ + gµλgνκ), (2)

where d denotes the (Euclidean) spacetime dimension. In our formulas, we keep d some-
times general for illustrative purposes, but concentrate on d = 4 dimensional spacetime for 
the concrete application to studies of criticality. The matrices Gµν  can be spanned by a suit-
able set of Euclidean Dirac matrices γA, see Appendix A for further details. For spanning the 
nine matrices Gµν  together with the spin metric h, in total 10 Euclidean Dirac matrices are 
required, γ1, . . . , γ10. The corresponding Dirac algebra thus contains another Dirac matrix 
γ11 1). Further scalar interaction channels 
are also possible [22]. In Minkowski space, the model is relativistically invariant by virtue 
of the algebra (2) together with a mapping of SO(1,3) Lorentz transformations Λµ

ν  into the 
spin-base transformations SL(32,C), Λµ

ν → SLor(Λ) ∈ SL(32,C
Lorentz transformations of relativistic Luttinger spinors, see Appendix A of [13] for details.

1 3

Page 3 of 26   282 



International Journal of Theoretical Physics          (2025) 64:282 

By means of a Hubbard-Stratonovich transformation, the model of (1) is fully equivalent 

 
SFB =

ˆ

d4x

[

−ψ̄Gµν∂µ∂νψ − h̄φψ̄γ11ψ +
1

2
m̄2φ2

]

, (3)

which is obvious by using the equations of motion on the classical level or performing the 
Gaussian functional φ integral on a quantum level, provided the matching condition

 
ḡ =

h̄2

m̄2
 (4)

3
model as performed in [22]. In the present work, we generalize the model by considering a fully 

-
ing on the perturbatively renormalizable operators, we investigate the γ11 Yukawa model

 
S =

ˆ

d4x

[

− ψ̄Gµν∂µ∂νψ +
1

2
∂µφ∂µφ − h̄φψ̄γ11ψ +

1

2
m̄2φ2

+
λ̄

8
φ4

]

,  (5)

where we have included a scalar kinetic term and a self-interaction with bare coupling λ̄. 
Similar to the fermionic model (1), also the γ11 Yukawa model features a Z2 symmetry: the 
model is invariant under a simultaneous replacement of ψ → −e

i π

2
γ11ψ, ψ̄ → ψ̄e−i π

2
γ11 , 

and φ → −φ; note that ψ and ψ̄ are independent variables in the quantum theory. This Z2 
symmetry also inhibits a bare fermionic mass term. Here and in the following, we assume 

Nf

of one in d = 4, the model features the renormalizable coupling λ̄, the superrenormalizable 
Yukawa coupling h̄ and the scalar mass parameter m̄ which are a priori independent.

If the Z2 symmetry is broken by a scalar expectation value φ → v

σ-type mode as lowest excitation, whereas the 
fermions develop an imaginary mass gap at ±im2

ψ with m2

ψ = h̄v as smallest possible solu-
tions of the dispersion relation p2 = ±im2

ψ (ignoring further interactions). The corresponding 
free fermionic propagator has square root singularities in the complex p2 plane with a branch 
cut along the imaginary axis; these, however, combine in closed fermion loops to a gapped 
1/(p4 + m4

ψ) tum integrals, cf. [22].
It is instructive to compare the model (5) with a standard Yukawa model involving, e.g., 

Dirac fermions. This analogous case features the same three parameters, all of which exert 
24–28]. For instance, 

the mass parameter m̄2 governs the properties of the low-energy phase: for m̄2 larger than 
a critical value m̄2

cr
, the model remains in the symmetric phase with a massive scalar and 

massless fermions and h̄ and λ̄ governing their interactions. For m̄2 smaller than a critical 
v 

(determined by m̄2), all modes are gapped, and the couplings h̄ and λ̄ determine the result-
ing fermion mass and the mass of the scalar σ-type mode.
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Moreover, for generic initial values of the bare mass m̄2

scale Λ, also the dimensionful low-energy observables, e.g., the vacuum expectation values 

scale separation with v ≪ Λ

to the critical value m̄2

cr
. In the language of statistical physics, the standard Yukawa model 

with Dirac fermions has a second-order (quantum) phase transition with the scalar mass 
parameter serving as the control parameter. The long-range physics becomes insensitive to 

By contrast, the model (5
model is critical for generic choices of initial conditions, i.e., v ≪ Λ can be reached with-

are universal to a large degree, i.e., the mass spectrum is independent of the bare parameters 
for a large region in parameter space. In this region, the model (5) has only one parameter 
instead of the expected three; this one parameter essentially corresponds to a scale thus 

3 Renormalization Flow

While the model (5 -

the advantage of being able to account for threshold phenomena as they can occur in both 
the symmetric and the broken regime at various scales in the present model. Perturbative or 

-
ing simplifying limits.

29
Γk as a function of an RG scale parameter k,

 
∂tΓk =

1

2
STr

[

∂tRk

Γ
(2)
k

+ Rk

]

, (6)

where ∂t = k d
dk

, and Rk 30–
35] for details. The bare action (5) of our model serves as the initial condition for Γk at a 
UV scale, Γk=Λ = S. At k = 0

i.e., the 1PI generating functional Γk=0 = Γ.

Our approximation to solve the Wetterich equation is based on the ansatz

 
Γk =

ˆ

d4x

[

− Zψψ̄Gµν∂µ∂νψ +
Zφ

2
∂µφ∂µφ − h̄φψ̄γ11ψ + U(φ)

]

,  (7)

U
the Yukawa coupling h̄ and the wave function renormalizations Zψ,φ are considered to be k 
dependent. This ansatz corresponds to an improved local potential approximation (so-called 
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LPA’) which can be considered as a leading order in a systematic derivative expansion of 
the action. This approximation is well tested in a plethora of nonperturbative analyses of 
Yukawa systems [36–49].

Upon insertion into the Wetterich (6), our ansatz (7 k-depen-

 
u(ρ) =

U(φ)

kd
, ρ =

Zφ

2

φ2

kd−2
. (8)

The dimensionless renormalized Yukawa coupling reads

 
h

2 =
h̄

2

Z2

ψZφk6−d
. (9)

 ηψ,φ = −∂t ln Zψ,φ. (10)

 ∂tu(ρ) = − d u + (d − 2 + ηφ)ρu′ + 2vd

[

ld
0 (u′ + 2ρu′′; ηφ) − Nfdγ l

(L) d

0

(

2ρh2; ηψ

)

]

,  (11)

where primes denote derivatives with respect to the invariant ρ. The phase space factor 
v−1

d = 2d+1πd/2Γ(d/2) reduces to v4 = 1/(32π2) in d = 4. Here and in the following, 
the functions l (and m used below) represent threshold functions which encode the result of 
the regularized loop integration. For zero arguments, they yield simple positive constants. 

depends on the choice of the regulator, details are given in Appendix B
Yukawa coupling yields

 ∂th
2 = − (2 − 2ηψ − ηφ)h2 + 8vd h4

kl
(LB) d

1,1 (ω1, ω2; ηψ, ηφ) ,  (12)

where

 ω1 = 2 κ h2, ω2 = u′(κ) + 2κu′′(κ) , (13)

and κ = ρmin denotes the minimum of the potential such that u′(κ) = 0 for κ �= 0. The 

given by

 
ηψ =

16

d(d + 2)
vdh2m

(LB),d

1,2 (ω1, ω2; ηψ, ηφ),  (14)
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ηφ =
8vd

d
κ(3u′′ + 2κu′′′)2md

2,2(ω2; ηφ)

+
8vd

d
Nfdγh2

(

m
(L),d

4
(ω1, ηψ) − 2h2

κm
(L),d

2
(ω1, ηψ)

)

.
 (15)

Upon insertion of the solutions of (15), (14) into (11), (12
and of the Yukawa coupling can be integrated and the low energy observables can be deter-
mined within the present ansatz.

-

expand about the nontrivial minimum κ > 0 in the symmetry broken regime (SSB),

 

u(ρ) ≃



























Np
∑

n=1

unρn, (SYM),

Np
∑

n=2

un(ρ − κ)n, (SSB),

 (16)

where Np

operators included for the parametrization of the potential. In the simplest approximation, 
Np = 2, we use

 
u(ρ) ≃ ǫρ +

1

2
λρ2 (SYM), u(ρ) ≃

1

2
λ(ρ − κ)2 (SSB), (17)

such that ǫ = m̄
2

Zφk2  denotes the dimensionless renormalized mass, λ ≡ 2u2 =
λ̄

Z2

φ
k4−d  the 

renormalized scalar φ4 coupling, and κ = v
2

2kd−2  is the dimensionless version of the expec-
v =

√

Zφφmin in the SSB regime. Once the RG 
k, we can straightforwardly determine estimates 

symmetry breaking, we obtain the vacuum expectation value, the scalar σ-type mass and 
the fermion mass from

 v = k
√

2κ|k→0, mσ = k
√

2λκ|k→0, mψ = k
4
√

2κh2|k→0 (18)

where we have used d = 4, and the fermion mass mψ  gaps the spectrum of the Luttinger 
fermions along the imaginary axis in the p2 plane [22].

4 Leading-Order Polynomial Expansion

ǫ and the marginal couplings h2 and λ.

1 3
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In a conventional perturbative expansion, we would focus on the deep Euclidean region 

-

ǫ > 0 and κ = 0, implying ω1 = 0, ω2 = ǫ -
tions of the relevant and marginal couplings yields

 
∂tǫ = − (2 − ηφ)ǫ −

3
(

1 −
ηφ

6

)

32π2

λ

(1 + ǫ)2
+

Nfdγ

(

1 −
ηψ

6

)

8π2
h2,  (19)

 
∂tλ =2ηφλ +

9
(

1 −
ηφ

6

)

16π2

λ2

(1 + ǫ)3
−

Nfdγ

(

1 −
ηψ

6

)

2π2
h4,  (20)

 
∂th

2 = − (2 − 2ηψ − ηφ)h2 +
1

8π2

h4

(1 + ǫ)

[

2
(

1 −
ηψ

6

)

+
1 −

ηφ

6

1 + ǫ

]

.  (21)

To this order, the expansion of the anomalous dimensions reads

 
ηψ =

(

1 −
ηφ

2

)

48π2

h2

(1 + ǫ)2
,  (22)

 
ηφ =

5Nfdγ

(

1 −
ηψ

5

)

16π2
h2.  (23)

setting ǫ = 0 ηψ,φ into (19)-(21) and 
a subsequent expansion to lowest-coupling order.

4.1 Large-Nf Analysis

Nf. For 
this, we assume Nfdγ ≫ 1, but Nfdγh2 = const, implying that h2

∼ 1/(Nfdγ) ≪ 1. Since 
dγ = 32, already Nf = 1 Nf

From (22), we deduce that ηψ ≃ 0 in this limit, whereas ηφ contributes fully to leading 
21) reduces to

 ∂th
2 = −(2 − ηφ)h2 + O(1/(Nfdγ)), (24)

independently of the size of ǫ ≥ 0. For a given value of Nf and upon insertion of ηφ ∼ h2, 
the right-hand side corresponds to a parabola in h2 with two zeros. These zeros correspond 

h
2

= 0

 
h

2

∗
=

32π2

5Nfdγ

⇔ ηφ = 2 for Nfdγ → ∞. (25)
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20), also λ exhib-

 
λ∗ =

128π2

25Nfdγ

for Nfdγ → ∞, (26)

which demonstrates that also λ∗ scales like ∼ 1/(Nfdγ) in a large-Nf analysis. It is straight-
(λ, h2) plane. This is illus-

trated in Fig. 1
depicted in the (λ, h2) plane.

of the stability matrix B,

Fig. 1 Phase diagram of the γ11 Yukawa model with Luttinger fermions, in the plane of the dimensionless 
scalar self-interaction λ and the dimensionless Yukawa coupling h2

obtained from the full (20)-(21) with ǫ = 10 and for Nf = 1, dγ = 32
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θ = −eig{B}, Bij =

∂(∂tgi)

∂gj

, gi = h2, ǫ, λ, . . . , (27)

are

 θh2 = −2, θλ = −4, for Nfdγ → ∞, (28)

rapidly. In conclusion, the two couplings thus do not represent physical parameters since the 

the remaining (19

 
∂tǫ =

4

5
, for Nfdγ → ∞, (29)

as a consequence of the large scalar anomalous dimension ηφ = 2. The latter, in fact, corre-
sponds precisely to the value that renders the mass parameter from relevant near the Gauss-

θm = 0

for ǫ at the high scale Λ to some value ǫΛ > 0, the solution to (29) reads

 
ǫ(k) = ǫΛ +

4

5
ln

k

Λ
, (30)

which shows that the mass parameter ǫ -
sitioning into the SSB regime with ǫ(kSSB) = 0 at

 kSSB = Λe−
5

4
ǫΛ . (31)

We observe that kSSB ≪ Λ is natural for generic choices of ǫΛ. For instance: in order 
to have kSSB being n orders of magnitude smaller than Λ, we only need to choose 
ǫΛ = n

4

5
ln(10) ≃ 1.8 n kSSB 

from Λ. The initial conditions for h2 and λ are even less relevant, since they are quickly 

Once ǫ(k) has dropped below zero for k < kSSB, (19)-(22) are no longer valid but have 
to be replaced by their analogues accounting for a nontrivial minimum κ
potential u(ρ). Around k ∼ kSSB, all couplings start to run fast. However, once the (dimen-
sionless) minimum κ ω1,2 ∼ κ. As a con-
sequence, all threshold functions essentially drop to zero quickly describing the decoupling 

dimensionful physical observables such as those listed in (18) approach constant values; the 

We emphasize that the large-Nf limit does not feature a symmetric phase, independently 
of the initial conditions. Of course, large initial values for the scalar mass term ǫΛ ≫ 1 
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unavoidably end in the broken phase as is obvious from (30). In the language of statistical 
physics, this is reminiscent to the phenomenon of self-organized criticality: independently 
of how far the seeming control parameter ǫΛ is chosen away from a (naively anticipated) 

ǫΛ > 0 is chosen away 
from the regime transition ǫ = 0

in the (h2, λ) plane, i.e., the closer is the system tuned to criticality with more pronounced 
universal features. Nevertheless, the large-Nf

with all long-range observables being naturally much smaller than the high-energy scale Λ.
nordic walking pro-

posed in [50] for a 2+1 dimensional solid-state system, and suggested as a novel ingredient 

region in the β function of a relevant coupling. In the proposal of [50], this can be arranged 

it is the scalar mass term that exhibits nordic-walking behavior by virtue of a fully IR attrac-
β function 

contributions seems necessary.

4.2 Perturbative Analysis

The preceding large-Nf analysis is, in fact, more general as naively expected, not only because 
Nfdγ  is large even for Nf = 1 19)-(22) perturbatively with-

Nfdγ . In addition to the polynomial (perturbative) 
dependence on the couplings h2 and λ, the equations depend non-linearly on ǫ.

In the limit of large ǫ, we observe that the right-hand sides of (19)-(22) reproduce exactly 
Nf limit of the preceding subsection. We conclude that the 

large-Nf analysis also applies to the perturbative large-ǫ regime, the latter potentially receiv-
ing 1/Nf h

2

∗
 and λ∗ are perturbatively small for 

Nf.
In a straightforward naive perturbative expansion for small couplings h

2 and λ, the 
anomalous dimensions simplify to

 
ηψ =

h2

48π2(1 + ǫ)2
, ηφ =

5h2Nfdγ

16π2
. (32)

19)-(21) and an expansion to leading order in the cou-

Nf limit, there is an improved perturbative expansion which is quantitatively more accurate 

point is characterized by a scalar anomalous dimension ηφ ≃ 2 + O(1/Nf)

point values for h2 and λ scale as ∼ 1/Nf. Inserting this scaling into (14), we observe that 
ηψ  scales like ∼ 1/N2

f
∼ h

2 near the Gaussian one. 
32) to 

lowest perturbative order, but ηψ ∼ 0 + O(1/N2

f
) at higher order. Still, we keep ηφ as in 

1 3
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(32) also at higher order, since it appropriately accounts for ηφ ≃ 2 + O(1/Nf). As a result, 
we obtain

 
∂tǫ = −

(

2 −
5Nfdγ

16π2
h2

)

ǫ −
3λ

32π2(1 + ǫ)2
+

Nfdγ

8π2
h2

(

1 +
5λ

128π2(1 + ǫ)2

)

,  (33)

 
∂tλ =

5Nfdγ

8π2
h2λ −

Nfdγ

2π2
h4 +

9λ2

16π2(1 + ǫ)3

(

1 −
5Nfdγ

96π2
h2

)

,  (34)

 
∂th

2 = − 2h2 +
5Nfdγ

16π2
h4 +

5 + 3ǫ

12π2(1 + ǫ)2
h4. −

5Nfdγ

768π4(1 + ǫ)2
h6.  (35)

Conventional perturbative results in the deep Euclidean region are obtained keeping only 
the leading powers in h2 and λ and by setting ǫ = 0 in the denominator (and in (35) also 
in the numerator). The few terms that would formally be of higher order, such as the term 
∼ h

2λ in (33), the term ∼ λ
2h2 in (34), and the term ∼ h

6 in (35) arise from the anomalous 
dimension ηφ; they account for the possibility that this anomalous dimension can become 
large ηφ ∼ O(1)

perturbative spirit would not modify the following results qualitatively.
From (35

point for any Nf and ǫ ≥ 0; for instance, ignoring the subleading term ∼ h
6 in (35), the 

 
h

2

∗
=

(

5Nfdγ

32π2
+

5 + 3ǫ

24π2(1 + ǫ)2

)

−1

. (36)

At large-Nf, or alternatively large ǫ, we rediscover the result of the preceding subsection, 
(25). However, even in the extreme opposite limit of ǫ = 0 and for Nf = 1, the numerical 
value for h2

∗
 deviates from the large-Nf limit only by a few percent.

The same conclusion holds for the scalar self-interaction λ
λ∗ upon insertion of (36) into (34). The somewhat extensive result can be worked out ana-
lytically in a straightforward fashion; here we simply note that the large-Nf result of (26) is 
rediscovered in the corresponding limit (and also for large ǫ); in the extreme opposite limit 
of Nf = 1 and ǫ = 0, the result deviates only on the few percent level.

(h2, λ) plane remains fully IR attractive for any 
value of Nf and ǫ ≥ 0

 θh2 = −2, θλ = [−4, −3.940 . . . ], (pert.), (37)

where θλ as a function of Nf and ǫ varies in the given interval on the few percent level; the 
ǫ.

-

 ∂tǫ = cǫ, (pert.), (38)
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where cǫ = cǫ(ǫ, Nf) is a slowly varying positive function of ǫ and Nf which remains in 
the vicinity of its large-Nf value cǫ|Nf→∞ = 4/5, cf. (29). E.g., for ǫ → ∞ but any Nf, we 

cǫ = (4/5) − 1/(20Nf). In the opposite limit with ǫ = 0 and Nf = 1, cǫ is only about 
1 percent larger.

In summary, our conclusions of the large-Nf analysis remain valid in the whole per-

rapidly approached by the Yukawa coupling and the scalar self-interaction for any initial 

relevant direction, but it is only marginal featuring a logarithmically slow running towards 
the regime of chiral symmetry breaking. Again, we conclude that a large scale separation 
kSSB ≪ Λ is natural for generic choices of the initial conditions.

5 Functional RG Flow

11)-(15) without any assumption on the size of Nf 
or the values of the couplings. While there are powerful methods available to solve also the 

11 51–59], we use a simple 
polynomial expansion about the minimum as parametrized in (16). This gives us access to 
the spectral information of the Yukawa system, and we can monitor the convergence of this 
expansion as a function of the polynomial order Np.

At the initial scale k = Λ, we impose nontrivial initial conditions on all perturbatively 
marginal or relevant couplings necessary in order to render the theory fully interacting, i.e., 
choose initial values for ǫΛ, h2

Λ
> 0; for simplicity, we set all other un≥2 = 0 (including 

λΛ) at k = Λ

negative (RG irrelevant) critical exponent, generic nontrivial initial conditions for all other 
un≥2

As for the initial conditions for ǫΛ and h2

Λ

negative ǫΛ < 0 (or small ǫΛ > 0 h
2

Λ
-

paratively quickly into) the broken regime where all modes become massive and decouple 
quickly. In this case, kSSB � Λ remains fairly close to the high scale. The resulting dimen-
sionful quantities such as the vacuum expectation value v or the particle masses mσ  or 
mψ

ǫΛ � O(1), and perturbative or 
medium large initial Yukawa couplings h2

Λ

h, λ = u2, and all other un, while ǫ runs 
logarithmically slowly towards zero and then into the SSB regime, such that kSSB ≪ Λ. No 

put the system into the symmetric regime, e.g., with a large positive ǫΛ, the more RG time the 

of universality, and we can express all dimensionful quantities in units of a single scale.
The degree of universality of the long-range observables is governed by the RG time spent 

tSSB = ln kSSB

Λ
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critical exponents, the non-universal corrections contribute at most with the largest exponent 
θh2 = −2, cf. (28), such that corrections to universality scale maximally with ∼ (kSSB/Λ)2. 
Therefore, 2(log

10
e)|tSSB| ≃ 0.82|tSSB| serves as an estimate for the number of digits of a 

2, we depict the 
curves in the (h2

Λ
, ǫΛ) plane of initial conditions for which we obtain tSSB = −5, −10, −20 

for the Nf = 1 (dγ = 32) model. The shaded regions above these curves exhibit universality 
of the long-range observables at least to this estimated degree. Also, we haven’t found any 

λΛ on these curves. This 
is in agreement with the even more subleading critical exponent θλ ≃ −4 which induces a 
rapid die out of the scalar self-coupling. In conclusion, a large region in the space of initial 

generic
As we are mainly interested in this universal regime which we interpret as the analogue 

t = ln k
Λ

 in the symmetric regime, in order for the couplings to 
-

tSSB � −10, i.e. kSSB/Λ � 10−5

our numerical accuracy. For concrete computations, we set h2

Λ
= 1, un,Λ = 0 and choose ǫΛ 

such that the universal regime will always be reached. For the cases Nf = 1, 2, ǫΛ has been 
set to 10. For larger Nf, the initial condition ǫΛ has been chosen somewhat larger such that 
the transition time tSSB � −10. This is, because larger Nf for h2

Λ

initial values for ηφ, cf. for instance (32), inducing a faster initial running until the couplings 

Fig. 2 Degree of universality in the (h2

Λ
, ǫΛ) plane of initial conditions for the Nf = 1(dγ = 32) model. 

The solid curves mark initial conditions for which tSSB = −5, −10, −20. The shaded regions above 
these curves correspond to generic initial conditions with a correspondingly increasing degree of univer-
sality. (The initial values of all the irrelevant couplings u

n≥2

tSSB ≤ −10 exhibiting a degree 
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In Fig. 3 -
v for various values of 

Nf. In all cases, the potential develops a nontrivial expectation value. Using d’Alembert’s 
ratio test, we have performed an estimate for the convergence radius of the polynomial 
expansion. Going up to 18th order in the expansion, the ratio test suggests that the conver-
gence radius is of the order 0.005 (in units of v); the corresponding highest-order results 
are shown in Fig. 3. (NB: The polynomial expansion is not able to resolve the convexity 

11) would lead to a convex potential, 
implying that the potential to the left of the minimum in Fig. 3
limit k → 0 [58, 60–63].)

minimum, we can straightforwardly determine the mass of the σ-like scalar excitation mσ  
as well as the fermionic mass gap mψ  according to (18). In the universal regime, their scale 
is clearly set by the vacuum expectation value v
λ and h2

mass parameter ǫ crosses zero at kSSB

For Nf = 1, the resulting values for the mass spectrum are shown in Fig. 4 as a function of 
the approximation order Np in units of the vacuum expectation value v. While small values 
of Np exhibit somewhat larger truncation artefacts, the convergence with increasing order 
of the truncation appears satisfactory; in particular for the highest orders Np = 20, 22, the 

mσ/v ≃ 1.36 for the sigma-
like mass of the scalar excitation and mψ/v ≃ 1.72 for the fermionic mass gap.

Fig. 3
ρ = 1

2
φ2

Nf and dγ = 32 in units of the resulting vacuum 
expectation value v. A polynomial expansion at 18

th order of the potential has been used, and initial con-
ditions at the UV scale Λ

values where the polynomial expansion passes D’Alembert’s ratio test for convergence

 

1 3

Page 15 of 26   282 



International Journal of Theoretical Physics          (2025) 64:282 

The dashed lines indicate the would-be value of the masses if computed from the partial 
h

2

∗
, λ∗ of (25), (26) in the large-Nf limit. More precisely, the estimate for 

mσ/v indicated by the blue dashed line corresponds to mσ/v ≃

√
λ∗ = 2π

5
, using (18) and 

the large-Nf 26); a similar estimate for mψ/v involves to choose a 
scale, since the Yukawa coupling in the original action is dimensionful. The relevant scale 
here is kSSB

point and subsequently decouples. Hence, the red dashed line in Fig. 4 is given by the esti-

mate mψ/v ≃

4
√

h2
∗

k2

SSB
√

v
, where we use the large-Nf 25) in addition 

to the numerical data for kSSB and v Nf corrections are on 
the few percent level, cf. (36
the estimates (dashed lines) in Fig. 4
ǫ � 0 O(10%)
that the properties of the long-range observables are essentially governed by the properties 

-
tion to the SSB regime, the hierarchy of the couplings is essentially preserved in the course 

The mass ratio mσ/mψ  is a particularly relevant prediction of our model for several 
reasons: from the viewpoint of the high-energy completion of the model discussed Sec-
tion 6 below, the scalar could arise as bi-fermionic bound state. In this context, the devia-
tion of the ratio from mσ ≃ 2mψ  is a measure for the binding energy of the scalar state. 
Also, for a comparison with other nonperturbative methods, we expect the mass ratio 

Fig. 4 Ratio of the scalar σ-type mass mσ  and the vacuum expectation value v (orange) and ratio of the 
fermionic mass gap mψ  and v (blue) for the Nf = 1 model (dγ = 32) as a function of the polynomial 
expansion Np. The initial conditions have been chosen such that the model is in the universal regime. The 

the large Nf limit, c.f. (25) and (26), as explained in the main text
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to play a useful role; e.g., lattice simulations typically have a direct access to spectral 
information via the study of spatial correlation functions. Our result for the mass ratio is 
shown in Fig. 5 Nf and for the highest truncation order 
Np = 22. As expected, we observe a variation on the percent level for small Nf, rapidly 
converging for larger Nf. The mass ratio shown in the plot for Nf = 5 agrees already on 
the per-mille level with mσ/mψ ≃ 0.786 computed for Nf = 100 as a large-Nf reference 
value.

From the viewpoint of the high-energy completion of the model where the scalar is a bi-
fermionic bound state, we conclude that the mass ratio near mσ/mψ ≃ 0.79 < 2 points to 
a deeply bound relativistic state where the binding energy exceeds the mass gap of a single 
fermionic constituent.

6 for initial condi-
tions in the universal regime (ǫΛ = 10, h2

Λ
= 1, un≥2 = 0) and the case Nf = 1. Near 

k � Λ (t � 0 ηφ ≃ 2 and 
remains there for a wide range of scales. This goes hand in hand with the fact that 
the scalar mass parameter no longer is a relevant operator but becomes marginal at 

quantitatively similar to the large-Nf 29). At the same time, ηφ ≃ 2 induces the 
h

2, λ, un>2 while keeping ηψ  numerically 
small as expected from (22 ǫ drops below 

Fig. 5 Ratio between the scalar σ-type mass mσ  and the fermion mass mψ

number Nf (dγ = 32). All data points have been produced within the Np = 22 truncation inside the 
universal regime
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zero, which in the case of Fig. 6 happens at exponentially small scales near tSSB ≈ −26, 
i.e., kSSB ≃ 5 × 10−12Λ. Here, ηφ starts to run fast towards zero. Once the RG scale 
drops below the scale of the vacuum expectation value, all modes become massive and 
decouple which implies that ηφ → 0 for t < tSSB.

Comparing the results for our model with the scenario for self-organized criticality in 
chiral Higgs-Yukawa models suggested by Bornholdt and Wetterich in [12], the scalar 
anomalous dimension ηφ plays the role of the mass anomalous dimension ω
[12]. The quantitative criterion for self-organized criticality suggested in [12] (Bornholdt-
Wetterich criterion),

 
〈ω〉 =

1

t0

ˆ

t0

0

dt ω(t) ≃ 2, t0 := ln
v

Λ
, (39)

ω = ηφ, as the scalar anomalous dimension is essentially constant in 
t ηφ ≃ 2. While (39
varying function ω(t)

Wetterich criterion in a straightforward fashion. In contrast to the scenario developed in [12], 
our model bridges the wide ranges of scales between k = Λ and k ≃ v fully in the symmet-

κ > 0

κ → κ∗ as studied in [12] is not needed for self-organized criticality as featured by our model.

Fig. 6 Scalar anomalous dimension ηφ

The plot should be read from right to left (UV to IR): starting in the symmetric regime at t = 0 (k = Λ), 
ηφ ηφ = 2, c.f. (25), and remains there for a wide range of 
scales. After entering the broken phase towards small t, ηφ

Nf = 1, dγ = 32, Np = 18, ǫΛ = 10, h2

Λ
= 1, u

n≥2 = 0, yielding a transition scale of tSSB ≈ −26, 
i.e., kSSB ≃ 5 × 10−12Λ, as indicated by the gray dashed line
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6 High-Energy Completion of the Model

Λ. The Yukawa model 
exhibits a remarkable degree of universality as its long-range physics is governed by a 

direction.
Let us now concentrate on the high-energy behavior of the model by addressing the ques-

tion as to whether RG trajectories exist along which we can take the limit Λ → ∞. If so, the 
corresponding model is UV complete and could exist on all length scales.

fully repulsive in the Yukawa and all scalar self-couplings. Therefore, the only RG trajec-

the Gaussian one which would yield a trivial free theory. The fact that all Yukawa and scalar 

mass parameter ǫ runs logarithmically to +∞ for k → ∞.

 
g =

h2

ǫ
, (40)

which corresponds to the renormalized version of the matching condition of the partially 
bosonized purely fermionic γ11 model (with nondynamical scalars and zero scalar self cou-
pling) [22
model from (19) and (21), yielding

 

∂tg =2ηψg +
3

32π2

(

1 −
ηφ

6

)

λ

ǫ(1 + ǫ)2
g

−
1

8π2

[

Nfdγ

(

1 −
ηψ

6

)

−
ǫ

1 + ǫ

(

(

2 −
ηψ

3

)

+
1 −

ηφ

6

1 + ǫ

)]

g2.

 (41)

In order to understand the high-energy behavior, we note that ǫ grows large, implying 
ηψ → 0, while the coupling λ
ηφ. In the limit ǫ → ∞, we obtain

 
∂tg = −

1

8π2
(Nfdγ − 2)g2 (42)

γ11 model 
including the anticipated 1/Nf corrections [13, 22].
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Therefore, we can interpret the UV complete RG trajectories present in our Yukawa model 
-

purely fermionic γ11 model. The latter is UV complete, features dimensional transmutation, 
and exhibits the same long-range behavior as our Yukwawa model. We conclude that the UV 
complete trajectories in our Yukawa model and the fermionic γ11 model are in the same uni-

has demonstrated, the models are also in the same universality class even if the Yukawa model 

attractive in those couplings that would induce deviations from the purely fermionic descrip-

scale Λ, the long-range physics can deviate from the universal trajectory by corrections of the 
order ∼ 1/Λ|θi|, where θi corresponds to a suitable exponent of the irrelevant operators.

is a priori unrelated to the property of self-organized criticality: for this let us assume that a 
corresponding Yukawa theory with Dirac fermions was UV complete, e.g., with the Yukawa 
couling and the φ4 compling rendered asymptotically free by some mechanism. The cor-
responding couplings would still be marginal parameters of the theory, and, most impor-

conditions in order to separate an initial UV scale Λ from a gapped low-energy regime. By 
contrast, our present Yukawa model renders the scalar mass parameter marginal (and all 

of self-organized criticality.
This interpretation is also corroborated by the scalar anomalous dimension being ηφ ≃ 2 

behaves like

 
Zφ(k) ≃ Zφ(kIR)

k2

IR

k2
, for k → ∞ (43)

for kIR

normalizing the wave function renormalization naturally to Zφ(kIR) = 1 in the long-range 
limit, the wave function renormalization becomes small towards the UV. The kinetic term 

-
formation of a fermionic self-interaction. Of course, near the transition scale k ≃ kSSB, ηφ 
deviates from ηφ ≃ 2 and approaches ηφ ≃ 0 for k ≪ kSSB, implying that (43) receives 
some quantitative corrections; however, the scaling with ∼ 1/k2 towards higher energies 

of constant tSSB in Fig. 2 have almost constant slope: in the fermionic language, tSSB essen-
tially corresponds to the scale of the IR divergence of the coupling g
(42) towards the IR. Now, changing the initial conditions for ǫΛ and h2

Λ
 such that their ratio 

gΛ = h2
Λ

/ǫΛ g unchanged. The univer-
sal region in the full Yukawa model – if reduced to the UV-complete trajectory – thus corre-
sponds to initial conditions of the fermionic model in the perturbative weak coupling regime.
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7 Conclusions

The relativistic Yukawa model proposed in this work exhibits features that are both novel 
-

sional spacetime. In contrast to conventional models involving Dirac, Majorana or Weyl 

diagram of the model in the space spanned by the power-counting RG relevant and marginal 
couplings: for generic initial conditions (including those with an arbitrarily positive scalar 

point of the RG evolution at which the system can bridge a wide range of scales. While all 

exhibits a slow logarithmic drift towards small values.
The long-range behavior of the model is characterized by spontaneous symmetry break-

ing and mass gap generation in both the scalar and the fermionic sector. Remarkably, the 
low-energy scales such as the scalar condensate or mass gaps can be many orders of magni-

-
eters. In fact, the UV and IR scales are naturally many orders of magnitude apart for generic 
initial conditions, including those with couplings of order one and a scalar mass parameter 

Some of these exceptional properties of our Yukawa model are reminiscent to the phe-
nomenon of self-organized criticality in statistical or dynamical systems: identifying the RG 
time with the physical time in dynamical systems, our model inevitably runs towards a scale 
where it becomes critical in the sense of an onset of spontaneous symmetry breaking. At this 

which the dependence of the system on its initial condition is depleted and largely removed. 

the dimensionless couplings in terms of simple power-laws. The most prominent similarity 
to self-organized criticality is given by the slow logarithmic running of the (dimensionless) 
scalar mass parameter which plays the role of a slow driving force that gradually and inevi-
tably moves the model to criticality.

The present model therefore is a concrete realization of a scenario envisaged in [12] for 
addressing the issue of naturalness in elementary particle physics in terms of self-organized 
criticality. Whether or not the present mechanism can be used for corresponding model 
building in elementary particle physics is an open question. Possible pathways include add-
ing a separate Luttinger fermionic sector to the standard model, or embedding its fermionic 

13]. While speculative, it might 
be an inspiring observation to see that the universal scalar-to-fermion mass gap ratio of our 
model is quantitatively close to the Higgs-to-top mass ratio in the standard model.

Within the functional RG approach, we have been able to derive this mass-gap ratio 
together with a number of quantitative results for the mass spectrum. Provided the model 

-
tions, the long-range properties of the model are universal. While some of our nonperturba-

Nf techniques as used in this work as well, we 
believe that these quantitative long-range properties could be a prime example for the appli-
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Such techniques can also shed further light on the nature of the fermionic mass gap in our 
model which occurs in the form of square root singularities with a branch cut along the 
imaginary axis in the (Minkowskian) complex p2 plane and the question of the existence or 
inexistence of Luttinger fermions as asymptotic states [22]. Since such propagators do not 
feature a Lehmann-Källen spectral representation, we cannot draw an immediate conclusion 
about the positivity of the Hilbert space. Therefore, it is also an open question as to whether 
relativistic Luttinger fermions satisfy the spin-statistics or the CPT theorem. These ques-
tions may best be addressed in a Hamiltonian approach to quantization.

Finally, an attractive feature of our model is that it features a UV complete extension by vir-
tue of the asymptotically free purely fermionic model which is in the same universality class 
as our Yukawa model. Though our results for the Yukawa model are independent of this pos-
sible UV completion, the existence of such a scale-invariant high-energy limit may represent 
another motivation to explore such models with relativistic Luttinger fermions even further.

Appendix A: Abrikosov Algebra

For completeness, we recall a few aspects of the Abrikosov algebra [23] in (2) in a relativ-
istic context as studied in [13, 22].

While not explicitly needed, it is helpful to know that a representation of the Gµν  matrices 
can be constructed in terms of a Euclidean Dirac algebra {γA, γB} = 2δAB . For the present 
work, we work in four-dimensional Euclidean spacetime with metric g = diag(1, 1, 1, 1), 

 

G0i = −

√

2

3
γA=i, i = 1, 2, 3,

G12 = −

√

2

3
γ4, G23 = −

√

2

3
γ5, G31 = −

√

2

3
γ6,

G00 = − γ7, G11 = −
1

3
γ7 −

2
√

2

3
γ8,

G22 = −
1

3
γ7 +

√
2

3
γ8 −

√

2

3
γ9,

G33 = −
1

3
γ7 +

√
2

3
γ8 +

√

2

3
γ9,

 (A1)

in agreement with the Euclidean rotation of the Minkowskian version discussed in [22]. 
This representation can be related to that of [17] for d = 4 Euclidean dimensions through a 
spin-base transformation. While (A1) can be constructed from 9 Euclidean Dirac matrices 
γ1,...,9

spin metric h ψ̄ = ψ†h. As detailed in [13, 
22], this demands for an at least dγ = 32 dimensional representation of the Euclidean Dirac 
algebra, going along with two further anti-commuting elements γ10 and γ11. In the pres-
ent work, we use γ10 for the construction of the spin metric, h = γ1γ2γ3γ10, while γ11 is 

would alternatively be possible, cf. [22].
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Appendix B: Threshold Functions

-
tor functions in the literature [30, 36, 37, 64, 65]. As the Luttinger fermions come with a 

analogy to those involving, for instance, Dirac fermions.
For the regulator, we choose in the scalar and the fermionic sectors

 

Rk,φ(p2) =Zφp2(1 + rB(p2/k2)),

Rk,ψ(p2) =ZψGµνpµpν(1 + rL(p2/k2)),
 (A2)

where rB(y), rL(y) denote dimensionless regulator shape functions that encode the momen-
tum space regularization near p2

∼ k2. Introducing the following auxiliary functions related 
to the regularized momentum-space propagators

 
GB(ω) =

1

y(1 + rB) + ω
, GL(ω) =

1

y2(1 + rL)2 + ω
, (A3)

where y = p2/k2, the threshold functions involving Luttinger fermions occuring in the 

 
l
(L) d

0 (ω; η) =
k−d

4vd

ˆ

p

∂̃t ln G−1
L

(ω),  (A4)

 
l
(LB) d

1,1 (ω1, ω2; η1, η2) =
k−d

4vd

ˆ

p

∂̃tGL(ω1)GB(ω2),  (A5)

 
m

(LB),d

1,2 (ω1, ω2; η1, η2) = −
k−d

4vd

ˆ

p

dy y2∂̃t[(GB(ω2))′′(1 + rL)GL(ω1)],  (A6)

 

m
(L),d

4
(ω, η) = −

k−d

4vd

ˆ

p

y ∂̃t

{

[

(y(1 + rL)GL(ω))
′
]2

+
d

2
(1 + rL)2G2

L
(ω)

}

,

 (A7)

 
m

(L),d

2 (ω, η) = −
k−d

4vd

ˆ

p

y ∂̃t[(GL(ω))′]2,  (A8)

where, in practice, the derivative ∂̃t can be read as ∂̃t → (∂tr − ηr)∂r, 
´

p
≡

´

dd
p

(2π)d  indi-
cates the full momentum integral, and primes denote derivatives with respect to y.

For all concrete computations in the main text, we use the partially linear regulator 
(Litim regulator) [66, 67],
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rB = rL =

(

1

y
− 1

)

θ(1 − y), (A9)

which allows for an analytic evaluation of the loop momentum integration. The correspond-
ing threshold functions then read

 
l
(L) d

0 (ω; η) =
4

d

(

1 −
η

d + 2

) 1

1 + ω
,  (A10)

 

l
(LB) d

1,1 (ω1, ω2; η1, η2) =
2

d

1

(1 + ω1)(1 + ω2)

×

(

2

1 + ω1

(

1 −

η1

d + 2

)

+
1

1 + ω2

(

1 −

η2

d + 2

)

)

,

 (A11)

 

m
(LB),d

1,2 (ω1, ω2; η1, η2) =
1

2

1

(1 + ω1)(1 + ω2)2

×

(

d + 1 +
ω1 − 3

ω1 + 1
− η2

)

,

 (A12)

 
m

(L),d

4
(ω, η) =

(1 − ω)2

(1 + ω)4
+

2(d − η)

d − 2

1 − ω

(1 + ω)3
,  (A13)

 
m

(L),d

2 (ω, η) =
4

(1 + ω)4
.  (A14)

For completeness, we also list all other required threshold functions known from the litera-
ture [30, 36, 37, 64, 65]:

 
ld
0
(ω; η) =

2

d

(

1 −
η

d + 2

) 1

1 + ω
,  (A15)

 
md

2,2(ω; η) =
1

(1 + ω)4
.  (A16)

Because of the nonanalyticity of the Litim regulator, the m-type threshold functions 
δ(1 − y)θ(1 − y). This is 

a result of using the derivative expansion of the action as an ansatz; including full 

case, the problematic products occuring here can straightforwardly be cured by suitably 
smearing the singularity of the Heaviside function. Using a symmetric smearing, it can 

replacement δ(1 − y)θ(1 − y) →
1

2 δ(1 − y). This recipe is in agreement with the results 
used in the literature.
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