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Abstract
Optical thin-film coatings are integral to modern photonics and in particular to ultrafast lasers,
providing precise control of dispersion and reflectivity, thus enabling tailored pulse shaping.
Designing these coatings represents an inverse problem, requiring the mapping of desired optical
properties to physical designs, a task that poses major challenges for traditional heuristic methods,
which often rely on time-consuming, expert-guided iteration and can be constrained by the choice
of an initial starting point. Here, we present an artificial intelligence (AI) framework for optical
thin-film coating design that accelerates the design process, achieving excellent performance char-
acteristics without expert intervention. We discuss our AI approach and demonstrate the capab-
ilities of our algorithm by designing a complex broadband high-reflectivity mirror with state-of-
the-art performance characteristics including a−200fs2 group delay dispersion covering a spectral
range of 940 nm to 1120 nm.

1. Introduction

Optical coatings are indispensable in photonics, playing a critical role in many optical systems, such as
lasers, microscopes, and telescopes, as well as everyday items such as eyeglasses and cameras [1, 2]. These
coatings are designed to control light by providing high reflectance, specific spectral filter characteristics
[3], anti-reflective properties [4], tailored dispersion [5] or polarization characteristics. A thin film or
multilayer optical coating functions as an interference structure, where the optical properties are determ-
ined by the interference of light waves reflected at the layer interfaces [6, 7].

Despite the well-established analytical solutions for the forward problem, such as the transfer matrix
method (TMM) [8] derived from Maxwell’s equations [9, 10] , the design of optical interference coat-
ings remains a challenging inverse problem. The core challenge is to determine the optimal sequence
of materials and layer thicknesses that will produce a desired spectral response. For instance, designing
coatings that maintain reflectivity above 99.9% over an extended spectral range while tightly controlling
dispersion is a task that typically requires iterative refinements and expert knowledge. This design chal-
lenge represents a complex multiobjective optimization problem [11], in particular when multiple optical
properties such as reflectivity and group delay dispersion (GDD) must be optimized concurrently to
achieve the desired performance. Careful trade-offs are required to balance these objectives, and the
complexity increases further when additional parameters such as laser-induced damage threshold (LIDT)
[12], electric field strength limitations [13], or manufacturability constraints are considered.

Traditional coating optimization methods, exemplified by the widely used needle algorithm [6, 14],
incrementally add, remove, or modify thin layers to optimize optical performance. A significant
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challenge with these approaches is their high sensitivity to the initial starting design and the creation
and prioritization of the target function, which heavily influences the final outcome of the optimiza-
tion. Furthermore, these methods require significant computational resources and often rely on expert
guidance [15] to select a suitable starting point and navigate the optimization landscape. Each adjust-
ment is evaluated against a merit function, which measures how closely the coating meets the desired
optical target properties. Furthermore, evolutionary algorithms [16–19] have been widely used for coat-
ing optimization but suffer from slow convergence, making them inefficient for complex designs [11,
20]. More recently, deep learning methods have been explored for optical coating optimization [21–24].
These approaches utilize neural networks trained using pre-existing datasets to predict optical design
parameters; however, they typically lack scalability for multiple design requirements and are constrained
to specific parameter regimes. Recent advances, such as the work by Jiang and Fan [25], have provided
a crucial proof-of-concept by using a generative neural network to design anti-reflection coatings.
Although demonstrated in a simplified, single-objective and low-dimensional scenario, their method
suggests that generative neural networks could be effectively scaled to address multi-objective and high-
dimensional design problems. Bridging this gap is critical for complex applications, like optimizing both
reflectivity and dispersion of coatings for ultrafast lasers, but requires significant improvements in model
generalizability.

Here, we present a novel physics-informed artificial intelligence (AI) framework based on an autoen-
coder architecture that uses a neural network model to design optical coatings. Unlike traditional optim-
ization techniques, our approach benefits from gradient-based training, which captures complex relation-
ships between reflectivity, dispersion, and multilayer configurations.

A key feature of our model is its physics-informed loss function, which embeds the transfer matrix
theory directly into the learning process.

We validate our framework by designing a broadband dispersive mirror, without incorporating expert
input or knowledge about existing mirror designs into the design process. Our mirror design reaches
performance characteristics that include a reflectivity exceeding 99% combined with a flat GDD of
−200 fs2 across a broad spectral range (940–1120 nm) including material absorption.

2. Methods

The inverse design challenge underlying optical multi-layer coating design is illustrated in figure 1.
Designing these optical coatings involves optimizing multilayer structures to achieve specific optical
properties, such as high reflectivity or controlled dispersion. However, deriving the required layer struc-
ture from the desired properties is a complex inverse problem, traditionally solved using iterative numer-
ical techniques, often combined with expert-guided heuristics. Here, we formulate the optical coating
design problem as an inverse problem, where a neural network predicts material layer stacks based on
key optical properties such as reflectivity and dispersion. By integrating semi-supervised learning with
physics-informed constraints [26], we ensure that the generated designs remain physically valid while
optimizing for the desired optical performance. Unlike conventional machine learning approaches that
require large labeled datasets, our method does not rely on pre-existing coating designs. Instead, it learns
directly from physics-based constraints, allowing efficient and scalable design generation without the
need for manually curated training data [15, 27]. This ensures that generated designs adhere to funda-
mental optical principles, while enabling applicability to previously unexplored parameter spaces.

2.1. Physics-informed autoencoder framework
Our coating-design framework is schematically illustrated in figure 2. We start by encoding the desired
optical properties—such as reflectivity and wavelength—into a compact numerical representation using
an encoder. This encoded representation is then processed by a decoder to generate the corresponding
optical properties, such as reflectivity and dispersion.

In deep learning, an encoder typically maps high-dimensional input data into a lower-dimensional
latent space, preserving essential characteristics while enabling efficient reconstruction or prediction of
relevant outputs [28, 29]. However, in our case, instead of encoding the input into an abstract latent
space, the model directly predicts a physically interpretable parameter set corresponding to the pre-
dicted layer stack defined by a set of layer thicknesses. Here and in the following, we assume that each
multi-layer stack consists of a predefined number of layers ℓ + 2, arranged with two different alternating
optical refractive index values n1,2. This assumption simplifies the inverse design challenge and can be
expanded if needed, e.g. by taking more than two materials or a variable number of layers into account.
This mapping from optical target properties x,where x ∈ X , and X represents the input space, to the
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Figure 1. Schematic illustration of the inverse design challenge for optical thin film coatings. While optical properties can be
easily and accurately calculated for a given multi-layer stack, the inverse direction, finding a suitable layer stack for a target set of
optical properties represents a major challenge. Parts of this figure was created with ChatGPT, using GPT-4o model, (OpenAI).

Figure 2. High-level overview of our AI-driven optical coating design framework. The desired optical properties (input) are
mapped to a predicted layer stack, and a physics-based forward model reconstructs the optical properties X .

corresponding physical layer parameters d, where d⃗= (d0, . . . ,dℓ,dℓ+1) represents the thicknesses of the
stack layers, can be expressed in terms of a predicted internal layer vector z as:

z= fθ (x) = (d1, . . . ,dℓ) (1)

where f θ is the neural network of the encoder parameterized by θ, and z ∈ Rℓ denotes the thicknesses
of the ℓ layers. In a conventional autoencoder architecture [28, 29] a trained neural network is used as
a decoder, mapping the latent space to an output. In contrast, our approach replaces the decoding step
with a physics-based forward model. This model, based on the well-known TMM [8, 30], analytically
calculates linear light propagation through multiple interfaces, ensuring the basic principles defined by
Maxwell’s equations [11]. The TMM uses an index jump matrix, which depends on the refractive indices
of adjacent layers and the angle of incidence. The interaction at interfaces and within layers is captured
by propagation matrices (TP) and interface matrices (T), leading to a total transformation matrix which
can be expressed as:

Ttotal
(
n⃗, d⃗,ϕ

)
= T(n0,n1) ·TP (n1,d1,ϕ) ·T(nℓ,nℓ+1) ·TP (nℓ+1,dℓ+1,ϕ) . (2)

Both the propagation and interface matrices depend on the refractive index (⃗n), the thickness of the
layer (⃗d), and the incident angle of light (ϕ). This approach ensures that the neural network does not
need to learn the underlying physics of light propagation from existing data sets. Instead, the forward
model (Fn⃗,⃗d) directly enforces physical consistency, as indicated in figure 2.
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Figure 3. Generated target data: Sample reflectivity data points which are randomly distributed along the reflectivity axis, fol-
lowing a normal distribution centered at 99.75%, truncated to the reflectivity interval and equidistantly distributed along the
wavelength axis.

To train our neural network [31], we generate a randomized synthetic dataset of optical properties
resembling the targeted coating properties as illustrated in figure 3. This represents a departure from
the approach by Jiang and Fan [25], where exploration was initiated using uniformly distributed ran-
dom values as model inputs. Approximately 500 synthetic samples were generated, ensuring that the net-
work learns the underlying structure of the target reflectivity space (99.5%–100%). The sample count
was chosen to balance the diversity of the dataset with computational efficiency. The resulting randomly
distributed structured dataset facilitates mapping optical properties to coating designs with satisfactory
speed. Further experiments could determine the optimal sample size for improved generalization and
stability. The specific hyperparameters for the network architecture and training process are detailed in
the supplementary section.

2.2. Optimization objective
Deep neural networks effectively capture a highly non-linear mapping between input and output
domains [31], e.g. between optical properties and output material stacks. Our optimization strategy
models optical coating design as a minimization problem. The primary goal is to find the optimal set
of learnable parameters of the neural network, denoted by θ (i.e. its weights and biases), that minimizes
a composite loss function L(θ). For a chosen example target resembling a chirped mirror, this function
simultaneously optimizes reflectivity and GDD. The total loss function can be written as:

L(θ) = L1 (θ)+α · L2 (θ) . (3)

Here, L1(θ) represents the reflectivity loss, measuring deviation from the target reflectivity spectrum, and
L2(θ) is the GDD loss, ensuring the mirror dispersion remains within acceptable limits. The parameter
α is a dynamically adjusted weighting factor that governs the trade-off between reflectivity and GDD

optimization. We define L1(θ) as the mean squared error [26] between the target reflectivity x(i)j and the

predicted reflectivity x̂(i)j for a given wavelength index j and sample i:

L1 (θ) =
1

m

m∑
i=1

 n∑
j=1

(
x(i)j − x̂(i)j

)2 , (4)

where m is the total number of training samples (i.e. different synthetic optical targets), as described
in 2.1, and n is the number of discrete reflectivity points, as illustrated in figure 3. Each x(i) represents
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a full reflectivity spectrum (target) for sample i, and x̂(i) is the predicted spectrum generated from the
model. For GDD, instead of using a conventional loss, we apply a penalty function to deviations of GDD
beyond a predefined threshold. The penalty is selectively applied only when the GDD deviates beyond an
acceptable range, allowing flexibility in minor variations while enforcing strict adherence to constraints
for large deviations. The GDD loss can thus be written as:

L2 (θ) =
1

m

m∑
i=1

(
p∑

k=1

max
(
0, |g(i)k − gtarget| − t

))
. (5)

Here, p is the number of GDD features, g(i)k is the predicted GDD at index k at the sample i, gtarget is
the desired GDD value, and t is the allowable tolerance threshold. The tolerance threshold ensures that
minor GDD variations, which do not significantly impact the mirror performance, are not penalized,
mitigating overfitting to strict numerical values.

The weighting factor α is dynamically updated throughout the training, shifting the priority from
reflectivity optimization to dispersion correction over time. This enables a staged optimization approach.
In the early training phase, lower α values ensure that the model prioritizes reflectivity, whereas in
the later training phase, a higher α shifts the focus on fine-tuning the GDD constraints. This dynamic
adjustment accelerates convergence, prevents one objective from dominating training, and ensures bal-
anced optimization across reflectivity and dispersion requirements.

3. Results

To validate our AI-driven framework, we first confirm its ability to generate basic optical multi-layer
designs. The model successfully produces standard quarter-wave optical thickness (QWOT) stacks,
demonstrating its grasp of basic interference principles. Figures 4(a) and (b) displays reflectance (a) and
phase (b) of a standard QWOT design (8.9µm (total stack thickness)) calculated using the analytical
forward model (dashed blue) together with the AI model design (red) (8.5µm (total stack thickness))
obtained for a region of high-reflectance broad-bandwidth target (no GDD target considered) taking
identical layer materials (tantalum pentoxide (n∼ 2.08) and fused silica (n∼ 1.48) and number of lay-
ers for both designs into account. The optical constants for these materials are based on experimental
data obtained from an ion beam sputtering deposition process to ensure a realistic and practical simula-
tion basis which includes material absorption. The AI design displays QWOT-like characteristics reach-
ing a slightly higher maximum reflectance (99.95 %) compared to the QWOT (99.89 %). The slightly
improved design found by the AI model indicates that the QWOT is not the optimal design if material
absorption is taken into account.

Figures 4(c) and (d) display the reflectance characteristics of two AI-generated designs for other com-
mon multi-layer coating challenges. Figure 4(c) illustrates a short pass filter that reflects wavelengths
above a selected cut-off wavelength of 600 nm and figure 4(d) illustrates a narrow bandpass filter that
selectively transmits a narrow spectral range centered at 720 nm while blocking the surrounding regions.
The edge-pass filter reaches > 99.9% reflectivity above 700 nm while effectively blocking wavelengths
between 450 and 600 nm, matching the intended spectral characteristics. For all results displayed in
figure 4 no expert intervention was necessary and the designs were quickly obtained requiring about a
minute of computation time on a consumer-grade GPU (Nvidia 4090 RTX).

Following the performance tests on basic optical coatings, we test the performance of the AI model
on a significantly more demanding design. While prior work, such as that by Jiang and Fan [25], has
successfully demonstrated the potential of generative models for single-objective problems like anti-
reflection coatings, here we go beyond this by tackling a complex, multi-objective challenge highly rel-
evant to ultrafast laser optics: a broadband, high-reflectivity chirped mirror. The multi-objective tar-
get is to achieve high reflectivity (> 99%) over a broad spectral range (940–1120 nm) for p-polarized
light at a 5◦ angle of incidence, while simultaneously ensuring tight GDD control at −200 ± 15 fs2.
Our AI model generates a coating design that meets these demanding targets. In figure 5, we show the
reflectivity and GDD of this AI-derived layer-stack (solid red lines) and compare our result with state-
of-the-art commercially available simulated coatings that target similar performance goals (blue dashed
and brown dotted lines). Here, and in the following examples displayed, we use the same material com-
bination: tantalum pentoxide (n∼ 2.08) and fused silica (n∼ 1.48), considering a wavelength range of
400 nm to 1400 nm.
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Figure 4. Validation of the AI framework using basic optical coating designs. (a) AI-generated high-reflectance broad-bandwidth
mirror and an analytically calculated quarter-wave optical thickness (QWOT) stack (including absorption). (b) Corresponding
group delay dispersion (GDD) for the designs displayed in (a). (c) AI-generated edge pass filter, showing a gradual transition
from minimum reflectance (passband) to maximum reflectance (stopband). (d) AI-generated narrow bandpass filter featuring
high transmission at 720 nm and high reflectance in the surrounding spectral regions.

Our AI-driven model achieves high reflectivity across the target spectral bandwidth while meeting
tight GDD demands. However, we notice differences in comparison to the commercial reference designs.
As the exact target definition and material properties used for the reference designs are not available, the
data presented should not be used to benchmark the performance of the AI model against established
coating-design software tools. Instead, the results obtained using the AI model demonstrate the applic-
ability of our framework to demanding coating design problems. In addition, manufacturing tolerances
and constraints (e.g. layer deposition errors [32], LIDT [12], etc) have not been explicitly considered in
our approach.

In order to provide a more direct comparison and to further evaluate our approach, we used com-
mercial thin-film design software [33]. A comparison between our AI model result and two soft-
ware derived results is shown in figure 6. Both our AI-generated coating and the commercial software
designed coatings are created under identical constraints, i.e. using the same materials (tantalum pentox-
ide and fused silica) and identical target specifications. Under these conditions, the designs produced by
both methods (AI-based and commercial software), compared in figure 6, result in a total physical thick-
ness of approximately 9µm each. The resulting layer thickness distribution for our generated design is
provided in the supplementary material (figure 7). The same dispersion parameters (refractive index and
absorption values) were used in all three cases.

Both reference coatings (dashed blue and dotted brown lines) closely match our AI-generated design
in terms of reflectivity and GDD characteristics. These results indicate that our AI-driven approach
offers an efficient and automated alternative reaching comparable coating performance characteristics
as obtained using state-of-the-art coating design tools.
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Figure 5. Comparison of AI-designed coating (solid red lines) with state-of-the-art industrial designs (dashed blue and dotted
brown lines) for reflectivity (a) and GDD (b). The target reflectivity (>99%) and GDD (−200± 15fs2) used as input for our AI
model are indicated by shaded regions.

4. Conclusion and outlook

This study introduces a novel machine-learning-based framework for the design of multilayer optical
coatings. By combining an autoencoder-based neural network with a physics-informed loss function,
we achieved excellent coating design performance and efficiency. Our AI-driven approach has shown
that it can compete with current state-of-the-art optimization techniques. The method does not require
expert intervention or adaptation based on physics knowledge of the design process. This opens doors
for the automated design of high-performance coatings for ultrafast lasers and other applications. In
particular, our approach offers excellent possibilities to enter less explored design parameter spaces and
thus offers the potential to find entirely new coating architectures. Although our framework effectively
optimizes reflectivity and GDD, future work may incorporate LIDT [12], electric field strength limita-
tions, and manufacturing tolerances [13]. For instance, the LIDT, which is highly dependent on the peak
electric field intensity within the multilayer stack, can be integrated as an additional penalty term in our
composite loss function. The differentiable physics model can be extended to also calculate this electric
field profile, allowing the network to be explicitly penalized for designs that exceed a predefined damage
threshold. Future work may also include hybrid approaches that combine our model with data-driven
approaches known from classical machine learning that involve training and subsequent inference. This
may further enhance the accuracy, speed, and robustness of our design process while offering routes to
improved automation and exploitation of unexplored design parameter spaces.
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Figure 6. Comparison of the reflectivity (a) and GDD (b) performance of our AI-designed broadband dispersive coating with
designs generated using a commercial coating-design software [33]. The inset shows the full spectral performance over a broad
wavelength range. Similar target and material properties are considered for all three cases.
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Supplementary data

Design details: To provide further details on the coating designs discussed in this work, we present a
comparison of the layer thickness distributions for the three different designs discussed in figure 6: (1)
the AI-optimized design proposed in this work, (2) Commercial software design 1 and (3) Commercial
software design 2. A key difference between the derived designs is visible in the layer stacks, as visual-
ized in figure 7. Although AI-generated designs exhibit a relatively smooth layer distribution, software-
optimized designs include more extreme layer thickness variations. The total thicknesses of the designs
shown in figure 7 are 10.1 µ m, 9.34 µ m and 8.98 µ m respectively. For all designs, layer 0 is the incid-
ent layer, whereas the layer after the last layer is the substrate material.

Hyperparameter Settings: The neural network encoder and the training process utilize the hyperpara-
meters listed in table 1. We determine these values through a combination of common practices in deep
learning and empirical tuning for our specific optical design problem.
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Figure 7. Layer thickness distributions for the coating designs presented in figure 6: (a) AI-optimized design, (b) commercial
software design 1, and (c) commercial software design 2. The lower index materials are denoted as L and the higher index mater-
ial as H.

Table 1. Key hyperparameters for the encoder network and training process.

Hyperparameter Value

Encoder Architecture
Hidden layers 3
Neurons per layer 64, 64, 64, [Number of layers in stack]
Activation function ReLU (hidden), Sigmoid (output)
Output layer scaling Temperature scaling

Training parameters
Optimizer Adam
Learning rate 5 × 10−4

Batch size 32
Number of epochs 1200
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