
Academic Editor: Alexander Barkalov

Received: 6 October 2025

Revised: 29 October 2025

Accepted: 3 November 2025

Published: 8 November 2025

Citation: Anschütz, C.; Hein, J.;

Zhuang, H.; Kaluza, M.C. LaserCAD—

A Novel Parametric, Python-Based

Optical Design Software. Appl. Sci.

2025, 15, 11893. https://doi.org/

10.3390/app152211893

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

LaserCAD—A Novel Parametric, Python-Based Optical
Design Software

Clemens Anschütz 1,2,*, Joachim Hein 1,2 , He Zhuang 1 and Malte C. Kaluza 1,2

1 Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, Max Wien Platz 1,

07743 Jena, Germany
2 Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany

* Correspondence: clemens.anschuetz@uni-jena.de; Tel.: +49-3641-947285

Abstract

In this article, we present LaserCAD, an open-source, script-based software toolkit for

the design and visualization of optical setups based on parametric ray tracing. Unlike

conventional commercial tools, which focus on complex lens optimization and offer dense

GUIs with extensive parameters, LaserCAD is tailored for fast, intuitive modeling of laser

beam paths and opto-mechanical assemblies with minimal setup overhead. Written in

Python, it allows users to describe optical systems in a language close to geometrical optics,

using simple commands with sensible defaults for most parameters. Optical elements

can be automatically positioned including the required mounts. As a graphical backend,

FreeCAD renders 3D models of all components for interactive visualization and post-

processing. LaserCAD supports integration with other simulation tools and can automate

the creation of alignment aids for 3D printing. This makes it especially suitable for rapid

prototyping and lab-ready designs.
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1. Introduction

For the planning and the realization of sophisticated optical setups in laboratories,

a large number of software tools are available to support the user during the design and

the actual setup phase. For the design, the optical elements (e.g., mirrors, lenses, diffraction

gratings, laser crystals, etc.) can first be placed in a virtual laboratory space (e.g., on a

virtual optical breadboard) and the propagation of the light (e.g., a laser beam) is described

by tracing a bundle of light rays with an appropriate wavelength spectrum mimicking the

real (and laterally extended) beam along the intended path. Such a virtual setup, which

should resemble the real setup as closely as possible, can help to optimize the design and

to ensure that different optical elements do not interfere with the beam path where it is

not intended. Problems with the setup, which can be caused by overlap or blocking of the

elements and/or the beam, can be identified (and mitigated) before realizing the assembly

of the optical elements in the lab. A detailed and realistic planning becomes all the more

essential, the more optical elements are included in the actual setup. Such an approach

helps to save time and effort during the setup phase [1–4].

Most well-established ray-tracing software tools like Zemax, Fred, Comsol or

Optica [5–8] describe the propagation of realistic beams through optical setups by tracing

thousands of rays through the setup, including the correct and detailed description of

reflection, diffraction and wavelength-dependent refraction on complex lens surfaces or
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other optical elements in the setup. Such immensely powerful software tools have—among

others reasons—been developed for the optimization of setups with respect to achieving

minimal (and realistic) focal spot sizes of ray distributions at different positions in the

setup by means of geometrical optics. Furthermore, they come with extensive graphi-

cal user interfaces (GUIs) and give the user the possibility to choose from an impressive

amount of parameters and options to describe lenses and mirrors in a very precise way.

While these software solutions clearly provide the user with extremely powerful tools for

a large variety of classical optics design tasks, like the mitigation of aberration in multi-

element camera lenses, these programs can sometimes be less suited for the visualization

of laser setups before their actual construction in the lab. The very precise—but some-

times too complicated—description of optical elements and ray distributions can prove to

be time-consuming and sometimes unnecessary for setups using low divergence, quasi-

monochromatic beams. The programs offer a huge amount of options and parameters to set

for rather simple assemblies, often without offering reasonable default values, which com-

plicates the design where it might not be absolutely necessary. Especially opto-mechanical

elements, which may play a crucial role when it comes to the actual implementation in

the lab, are often not at all or only approximately included in the description with the

established software tools and require precise and detailed manual positioning and selec-

tion if available. On top of that, some of these tools may come with non-negligible license

costs and sometimes with no or rather intricate application programmer interfaces (APIs),

which might render the quick scripting, modularization and integration into other existing

simulation tools extremely time-consuming or even impossible.

For those reasons we decided to develop and implement a new software tool called

LaserCAD [9], which follows a Python-script based approach [10–12]. The idea behind

LaserCAD is that the setup is defined in a language close to geometric optics—e.g., us-

ing terms like propagation and add_on_axis —together with a list of available optical

elements requiring only a minimal number of parameters to be defined, while all values

come with default settings. All elements will by default be placed on the optical axis if not

specified differently and come with an automatically selected and adapted mount and post

assembly that can be changed easily whenever necessary. When executed in a standard

Python terminal, LaserCAD produces a comprehensive text output including name, type,

position and normal direction of each element and beam in the terminal for debugging. As

the graphical backend, we use FreeCAD [13], an open-source 3D computer-aided design

(CAD) software. When the script is executed in FreeCAD, each beam, element and mount

will be rendered and shown in an interactive window for visualization and post processing.

A key feature of LaserCAD is its purely script-based design philosophy, which re-

sembles the modular and extensible nature of Latex documents. This approach ensures

that optical setups are fully defined through concise Python scripts, making the system

lightweight, scalable, and easily integrable as a Python library. Despite this simplicity,

the framework remains highly flexible and can be expanded with user-defined elements,

analysis tools, or algorithms whenever required. A strong emphasis is placed on the in-

clusion of opto-mechanical components, which are incorporated by default in every setup.

These can be freely customized or extended, allowing users to represent realistic laboratory

conditions with minimal additional effort. The unique combination of a professional CAD

backend—enabling precise mechanical design, positioning, and scalability up to finite ele-

ment analysis—with a Python-based ray-tracing framework for optical simulation provides

an exceptionally powerful yet accessible tool. This integration allows users to perform

detailed optical and mechanical design within a single environment while maintaining

full extendability toward more complex algorithms, optimization procedures, or analysis

modules implemented as plug-ins.
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is a dictionary containing all relevant keyword arguments that need to be passed to the

draw functions, like the orientation or the color, which hence can be changed manually.

2.2. Rays and Beams

To include the path and visualize light rays or beams into the setup, two function

classes exist. The Ray class describes 1D-light rays (having no transverse extent) propagat-

ing in 3D space. The vector r describing the position of any point along such a ray can be

written as

r = p + La (1)

with the length L and p and a representing the starting point and the direction, respectively,

which are inherited from GeomObj. Any intersection of such a ray with an optical element

(OptElement, see Section 2.4) will delimit L, ensuring that the ray stops at this element

(and, e.g., creates a new ray propagating in a different direction). For the description of the

interaction with a dispersive element, e.g., the diffraction of a ray at a grating surface, each

ray receives the wavelength attribute λ from its initialization in the object constructor.

The Beam class (see Figure 1b) acts as the container class for a combination of rays

and comprises at least two rays: the inner ray, which describes the beam’s orientation

in 3D space and one (or more) outer ray, which determines the local beam waist and its

divergence. The default distribution of rays in a beam is the cone-shaped beam, consisting

of one inner ray defining the cone’s axis of symmetry and one outer ray propagating on the

cone’s surface. Other configurations, like square or hexagonal ray arrangements, as well as

1D rainbows with varying λ or Gaussian beams, can easily be defined.

2.3. Unit Mounts and Composed Mounts

Posts, mounts and all other sorts of optic holders are contained in the UnitMount

class (see Figure 1e). The core functionality is implemented by defining for each unit mount

a DockingObject, a basic GeomObject that describes the position and direction of the

next mechanical interface of the mount. Taking a mirror holder, the docking object would

be placed at the position of the junction between mount and post. In the same manner, posts

are also treated as mounts, connecting two points in space; in this specific case, the junction

of mount and post, alias the top side of the post, with its bottom side, alias the junction

between post and optical table. With this approach, both objects, mounts as well as posts,

can be described and handled with the UnitMount class. The ComposedMount class acts

as a container class (similar to the Composition class in Section 2.5) and concatenates the

unit mounts (e.g., Thorlabs™ KS2 and 0.5” post holder [14,15]) to one part. An example of

such a concatenation is shown in Figure 1f.

Visualization of the objects is realized by loading the corresponding 3D file in a

common format like stl or step into the FreeCAD scenery and shifting it to the position

given by the mount’s geom variable. Since most manufacturers offer 3D files in stl or step

format for their optomechanics, adding new holders is easy and can be achieved with

the help of a comprehensive tutorial, which can be found in the documentation of the

project [9]. LaserCAD incorporates by default suitable mount and post combinations for

each standard element and provides additional alternatives in a database, including a vast

variety of Thorlabs™ and Newport™ components. In addition, some adaptive holders

were implemented that change their size and angles automatically to hold the optics in

place, like 1” spacers, 56◦ adapters for thin film polarizers or 1.5”-to-1” adapter rings.

2.4. Components and Optical Elements

The Component class is the perform of complete optical elements. It adds the Mount

as a member object to the actual optical element (e.g., a lens) in the constructor. With
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the aperture attribute, the set_mount_to_default function will select a suitable mount

from an extensive catalog included in the program. The rearrange_subobjects functions,

which are called with every change in p and n, automatically keep the mount in the correct

position and orientation around the optical element. An example use case of a Component

could be a photodiode detector mounted on a post.

All specific optical elements like Mirror or Lens (see Figure 1c) inherit their properties

and functions from the OptElement class. These properties describe in detail how the

light interacts with this element via its next_ray(Rin) function. This will take an object

Rin of the Ray class as the incident ray and return a new ray Rout, with starting point

and direction changed according to the appropriate ray tracing algorithms for this optical

element as described in Section 3. The input rays and beams can be defined manually to

the function for testing, but they are mostly automatically handled by the Composition

class as described in the following section.

Each optical element contains its ABCD matrix for ray tracing, but also for analysis

and characterization of the setup. In the same manner, Kostenbauder matrices [16], either of

single elements or of complete compositions, are provided to the user to give the possibility

to evaluate spatio-temporal couplings of the beams introduced by the optical elements

of the setup up to 1st-order approximation. So far we have included plane, spherical,

cylindrical and rooftop mirrors; spherical lenses and gratings; refractive material blocks;

and off-axis parabolas.

2.5. Composition

The container class Composition is used to address the whole setup or any sub-

modules of it. It keeps track of the optical axis, which is modeled by a consecutive list of

center rays that are varied by each newly added optical element. This way, the composition

helps to place the optical elements centered around the beamline with as few parameters

as possible. The core functionalities of Composition are as follows:

• propagate(s): advances the endpoint on the optical axis by a distance of s mm.

• add_on_axis: adds optical elements to the end of the composition.

• add_fixed_element: adds an optical element without changing its position for off-axis

optics and multi-pass systems.

• compute_beams: starts with an initial ray configuration defined by the light_source

and then performs consecutive ray tracing steps as defined by the elements in their or-

der given by the attribute sequence (therefore LaserCAD is mostly built for sequential

ray tracing).

• draw: produces a sketch of the entire system including optical elements, their mounts

and beams.

Routines like rearrange_sub_objects that are automatically called whenever the

geom is changed, keep the relative distances and orientations of the elements within

the composition constant like in the other container classes. An example of a simple

Composition containing two lenses to form a telescope is shown in Figure 1d.

3. Ray Tracing Algorithms

The ray tracing algorithms follow the well-established standard equations that are

widely used in modern optics simulation tools [7,17–19]. Nevertheless, we will define these

equations in this context, as they define the scientific base for the comparison of LaserCAD’s

simulation results to those from other software tools. Choosing, e.g., a plane mirror as an
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example for an optical element (which is by default taken to be thin and planar), its front

surface can be described as a plane, which fulfills for all r ∈ R
3 in this plane

(r − Q)n = 0 (2)

with the mirror’s position Q (by default located at the center of the front surface) and its

normal n. Using the definition from Equation (1), a ray with starting point p and direction

a will propagate the length

L =
(Q − p) · n

a · n
, (3)

until it reaches the center of this mirror. Inserting this value of L in Equation (1) defines the

intersection point of the ray with the mirror’s front surface. For a spherical surface (i.e., a

surface being part of a sphere with radius R and center position C), the length L of the light

ray is given by

L = aD ±

√

(aD)2 + R2 − D2 (4)

with D = C − p being the vector pointing from the ray’s starting position to the sphere’s

center. The intersection point is again calculated by Equation (1) and marks the starting

point for the next ray. It is worth noting that we intentionally decided to let the rays be

reflected even when the intersection lies outside of the aperture of the element. By allowing

this, no rays are deleted during the calculation, and the 3D output enables the user to

quickly check for potential clipping of beams.

The direction b of the new ray depends on the incident ray’s direction a and on the

type of the optical element. In the context of a mirror, the law of reflection defines the new

ray’s direction

b = a − 2n(a · n), (5)

where n is the surface normal in the intersection point S between the mirror surface and

the ray. For a plane mirror, n is identical to the element’s normal; for a spherical mirror, the

normal can be calculated by the normalized distance of S − C.

Diffraction of a light ray at the surface of a reflection grating is calculated by adding

the reciprocal grating vector G to the parallel component k1p of the incident ray’s wave

vector k1. The reciprocal grating vector and wave vector are defined by

G =
2π

g
eL, k1 = ka =

2π

λ
a = k1p + k1n, (6)

where g is the line spacing, eL the unit vector pointing perpendicular to the grating lines

and the grating’s normal, and λ the wavelength of the incoming ray. The parallel (p) and

normal (n) components of the incoming ray’s wave vector are given by

k1n = (k1 · n)n, k1p = n × (k1 × n). (7)

Adding the reciprocal wave vector G m-times to the incoming ray’s parallel component

k1p gives the diffracted ray’s parallel wave vector component

k2p = k1p + mG (8)

with m being the diffraction order. Note that the absolute value of the wave vector remains

constant, since the wavelength does not change during the diffraction process. The output

wave vector k2 as well as the diffracted ray direction b reads

k2 = k2p −

√

k2 − k2
2pn b =

λ

2π
k2. (9)
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In addition to geometrical optics, LaserCAD also includes diffraction effects—as they

occur, e.g., when using finite focal spot sizes—by means of Gaussian optics. Gaussian

beams can be described by the combination of their central axis implemented as a 1D ray

and their complex q-parameter

q = x + ixR (15)

with x being the distance from the beam waist’s position on the axis and xR its Rayleigh

length [18,20]. Any effect of optical elements will be described by changing the axis analog

to the algorithms described above and then calculating qout(qin) according to the matrix

formalism for Gaussian beams [20,21]

qout(qin) =
Aqin + B

Cqin + D
. (16)

4. Code Examples

To show the general handling of LaserCAD, we will present a few use cases as exam-

ples. The following code first constructs a magnifying 2-lens Kepler-type telescope and

then sends a square beam through it, consisting of 5 × 5 individual rays, each initially

separated by 2 mm in the lateral direction. All length values in LaserCAD are given in mm,

beam divergence values are given in radians, and turning angles, e.g., of mirrors, are given

in degrees.

import LaserCAD.basic_optics as LC

sb = LC.SquareBeam(radius=5, ray_in_line=5)

lens1 = LC.Lens(f=100)

lens2 = LC.Lens(f=200)

lens2.aperture = 50.8

kt = LC.Composition()

kt.set_light_source(sb)

kt.propagate(100)

kt.add_on_axis(lens1)

kt.propagate(100+200)

kt.add_on_axis(lens2)

kt.propagate(200)

kt.draw()

Beams (or individual rays) and lenses are subsequently added to the Composition

container object, which handles the positioning of the elements by advancing the optical

axis according to the propagate function. The diameter of the second lens is changed by

the aperture command, which also causes an automatic change in the second lens’s mount

to a fitting 2” model. The 3D rendered model will be produced by the draw function;

the result is shown in Figure 3. Rays, lenses, default mounts and posts are all placed and

fit to the default beam height of 80 mm, a value that can be changed easily by altering the

position pos. The necessary line of code

kt.pos = (10, 20, 120)

will lead to the output of Figure 4, where a new 1/2” post holder and post were automati-

cally inserted to fit to the new beam height.
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be 25.284µm, resulting in a deviation of about 1‰. The report of these comparisons is

published in the project’s manual folder on GitHub [27].

5. Documentation

From the start, the project was programmed with priority on verbose code and well-

structured modules. All functions are explained with comments, and every essential

member function and class possesses a docstring. A test folder contains various test

scenarios for the different classes and their interactions. A detailed documentation based

on the academic approach of the DIVIO documentation system has been written [28].

Following this scheme, the documentation is divided into tutorials, how-to guides and a

discussion/reference part. The tutorials contain step-by-step instructions for some stand-

alone objects like lenses, mirrors or single beams and smaller setups. The code is divided

into tiny executable units, and many example pictures between the instructions show

the results to familiarize the user with the LaserCAD syntax and structure. The how-to

guides contain more complex scenarios with parametric dependencies, like telescopes or a

complete stretcher design. In addition, a guide for importing and adjusting new mounts

for customized setups is provided. In the discussion section the objects with their source

code and some explanation of how and why they were implemented in this way can be

found. In addition, some reports of more complex projects conducted in our group can be

found here, e.g., a detailed report and analysis of a regenerative stretcher-amplifier system

ray-traced by LaserCAD [27]. The documentation files can be found in the folder manual

and are all written in the markdown language so that they will be displayed on the GitHub

page [9].

6. Discussion

We designed an open-source parametric software toolkit for scripting and rendering

complex optical setups with few lines of code and high flexibility of used models and

objects. The vast variety of predefined professional optomechanics, together with easy-to-

adjust optics and customizable ray-tracing algorithms with well-set default values, make it

possible to visualize setups with a minimal amount of required parameters. Since the output

is produced by a state-of-the-art CAD program, the user has an unprecedented ability to

post-process and complete the output with further details and preconstructed objects like

vacuum chambers and more. To the best of our knowledge, this synergy, which forms a

unified workflow allowing both optical and mechanical aspects to be treated simultaneously,

renders the LaserCAD software framework unique among all comparable solutions.

Another application that shows the potential of LaserCAD is the automated generation

of alignment aids, such as spacers or simple mounts, which can subsequently be 3D printed

to facilitate the practical realization of the setup in the laboratory. This approach has already

been realized in our group to accelerate and streamline the construction of a compressor by

undergraduates. The use of the popular Python programming language not only makes the

software beginner-friendly but also enables possible collaborations with other ray-tracing,

machine learning and optimization software packages, either as directly imported Python

modules or via APIs to professional optic design software like Quadoa [29]. In this manner,

LaserCAD could be used for preliminary prototyping of projects before the optics positions

can be transferred to specialized simulation software tools.

In contrast to commercial software packages such as Zemax or Fred, the focus of Laser-

CAD does not lie in the high-performance tracing of millions of rays or in the microscopic

optimization of focal spot sizes. Instead, the main goal is the realistic visualization and

mechanical consistency of complete laboratory setups, using only the minimal number of

rays necessary to represent the optical beam path in a meaningful and computationally
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efficient way. This makes the program particularly suited for experimental planning and

educational purposes, where conceptual clarity and spatial awareness are more important

than sub-micron precision. In the near future we plan the inclusion of LightPipes [30] for

wave optics simulations.

7. Summary

We developed an open-source, Python-based software toolkit for the modular and

parametric design of optical setups. LaserCAD allows users to script complex assemblies

with minimal code while automatically including realistic opto-mechanical components.

The integration with FreeCAD provides detailed 3D visualization and enables seamless

transition to further mechanical design and analysis.

Future work will focus on expanding the framework toward wave-optical simulations,

automation, and the integration of external optimization libraries. This will further enhance

LaserCAD as a comprehensive and flexible environment for both optical and mechanical

system design.
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