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1. Introduction

In this talk we discuss our investigations of bbud and béud four-quark systems using the Born-
Oppenheimer approximation, which is a two-step approach. In the first step antistatic-antistatic
potentials in the presence of two light quarks are computed with lattice QCD (see Section 2). In the
second step, these potentials are used in appropriate coupled-channel Schrddinger equations, where
bound states as well as resonances can be predicted using standard techniques from non-relatvistic
quantum mechanics (see Section 3 and Section 4). Using such coupled-channel Schrédinger
equations as well as experimental results for B, B*, D and D* mesons allows to take into account
effects from the heavy quark spins, even though the antistatic-antistatic potentials are degenerate
with respect to these spins.

In the following sections we briefly summarize a completed study of a bbud tetraquark
resonance with quantum numbers I(JF) = 0(17), where details have recently been published in
Ref. [8]. We also present theoretical basics and new results for béud four-quark systems with
quantum numbers I(JF) = 0(0*) as well as I(J¥) = 0(1*), which have previously not been
investigated within the Born-Oppenheimer approximation.

2. The Antistatic-Antistatic-Light-Light Potentials V5(r) and V;(r)

Theoretical details of antistatic-antistatic potentials as well as their numerical computation
with lattice QCD are extensively discussed in Refs. [1-4]. In this work we use existing potentials
from Refs. [2], which were computed using Ny = 2 flavor ETMC gauge link ensembles [5, 6] and
extrapolated to physically light # and d quark masses. Relevant in the context of this work are the
two I = 0 potentials V5(r) and V; (r) representing the interaction of two pseudoscalar and/or vector
static light mesons. Suitable parameterizations of lattice QCD results for these potentials are

Vx(r) = ="Fe U1 x =5 (1)

with as = 0.34 +0.03, ds = 0.45*( 10 fm (see Ref. [2]) and a; = —0.10 + 0.07 and
d; = (0.28 + 0.017)fm (see Ref. [7]). The parameterizations are shown in Figure 1. For details we

refer to Section II of our recent publication [8].

1.0
— Vs(n)
051 — b

o
=)

Vx(nN[GeV]
| ]

|
=
n

|

-2.0 T ; T T T T
0.1 0.2 0.3 04 0.5 0.6 0.7

r[fm]

Figure 1: Parametrizations of lattice QCD results from Ref. [2] for the OO qq potentials Vs(r) and Vi(r).
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3. Coupled-Channel Schrodinger Equations

3.1 Identical Heavy Flavors: bbud with I(J¥) = 0(17)

In Ref. [8] we have derived the coupled-channel Schrodinger equation relevant for the bbud
system with 7(J¥) = 0(17). It is given by

2m 0 V2 . R
s — 5— + Hint,5=0 | ¢1=1,5=0(r) = E@r=1,5=0(r) (2)
0  2mp| 2upp
with ) )
d 2d L(L+1) d 2d 2
Ve 4 -7 =—+4+-—-= 3
dr?  rdr r2 o, dr? rdr r? )
(L represents the orbital angular momentum of the heavy antiquarks) and
_ L[ Vs +3Vi(r) VB(Vs(r) = V,(r)
Hint,s=0 = 7 ’ “)
2\V3(Vs(r) = V() 3Vs(r) + V()

where upp = myp /2 is the reduced b quark mass, S = 0 denotes the heavy spin and r is the radial
coordinate of the heavy antiquark separation. The 2 components of the wave function represent the
following meson-meson combinations:

1 -

T T
- > 1
Protso = (BB : %B*B*) _ (BB , %(B§B§+B;B; +B;B;)) . 5)

3.2 Different Heavy Flavors: béud with 1(JF) = 0(0%) and 1(J?) = 0(17)

To derive the coupled-channel Schrédinger equations for the béud systems one can closely
follow Refs. [7, 8] as sketched in the following.

béud systems at large b¢ separations r are meson pairs, where one of the two mesons is a B or
B* meson and the other meson is a D or D* meson. Consequently, the free Hamiltonian describing
non-interacting meson pairs in the center of mass frame has a 16 x 16 matrix structure,

ﬁZ

Hy=Mp ® 1yx4 + 1yxa @ Mp + ,
2:ubc

(6)

where Mg = diag(mpg, mp-,mp+, mp+) and Mp = diag(mp, mp+, mp+, mp-~) are diagonal matrices
containing the meson masses and up. = mpm,/(mp +m.) is the reduced mass of a b and a ¢ quark.
This Hamiltonian acts on a 16-component wave function for the relative coordinate of the heavy
quarks 7, where the components can be interpreted as

Y= (BD,BD;,BD;‘,BD; . BiD,B.D% B.D},B.D} , B,D,B,D}, B,D},B,D}

T
B.D,B.D),B.D}, B.D}) . (7)
To include interactions, one has to add the the potentials V5(r) and V;(r) discussed in Section 2.

One can show that these potentials do not correspond to simple meson pairs, as represented by the
components of ¥, but to linear combinations containing all four types of mesons, B, B*, D and D*.
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These linear combinations can be expressed in terms of a 16 X 16 matrix T using Fierz identities.
The interacting part of the Hamiltonian is then

Hint = TViiagT ™", Viiag = diag(Vs(r), ..., Vs(r), V;(r), ..., V;(r)). (8)

4x 12x
Combining Eq. (6) and Eq. (8) leads to the Schrédinger equation

HY(7) = (Ho + Him)lil(F) - EV (7). 9)

Because Hjy only depends on the radial coordinate r = |F|, but not on the direction of 7,
the orbital angular momentum L is conserved. Since the total angular momentum is a conserved
quantity, the total spin § is also conserved. Consequently, both L and S can be used as quantum
numbers. The former allows to reduce the partial differential equation (9) to an ordinary differential
equation in r, while the latter allows to decompose the 16 X 16 Hamiltonian into smaller blocks.

We are particularly interested in béud systems with quantum numbers 1(J¥) = 0(0*) and
1(JP) = 0(1%), since recent full lattice QCD computations indicate the existence of shallow bound
states for these systems [9—11]. After working out the /(JF) quantum numbers for each block of
the decomposed Hamiltonian using QCD symmetries and the Pauli principle (for details see e.g.
Section IILIII in Ref. [8]), one can read off the relevant coupled channel Schrodinger equations.

Schréodinger Equation for héud with 1(JF) = 0(0")
The coupled-channel Schrodinger equation for the béud system with 1(J) = 0(0%) is

mg +m 0 1 4 R .
(( B 0 b mg +mp |~ 2ipe dr? + Hint,S:O) ¢1-0,5=0(r) = E@¢r-0,5=0(r) (10)
* * c‘

with Hjn s=0 as defined in Eq. (4). The 2 components of the wave function represent the following
meson-meson combinations:

T T
> — 1 % 1 * * * * * *
$L=0,5=0 = (BD ; % D ) = (BD , %(BxDx + B, D;, +BZDZ)) ) (11)

Schrodinger Equation for hcud with I(JF) = 0(1%)
The coupled-channel Schrodinger equation for the béud system with I(JF) = 0(1%) is

mp+ +mp 0 0 1 dz
0 mp + mp- 0 - —— + Hinis=1 [fr=0,5=1,5. (1) = EG1=0,5=1,5.(F)
2upe dr
0 0 mp+ + mp+
(12)
with

Vs(r) +3V;(r) Vi(r) = Vs(r) V2(Vs(r) = V(1))
Hin,s=1 = 1 Vi(r) = Vs(r) Vs(r) +3V;(r)  V2(V;(r) = Vs(r)) |. (13)
V2(Vs(r) = V;(r)) N2(Vi(r) = Vs(r))  2(Vs(r) + V;(r))

The 3 components of the wave function represent the following meson-meson combinations:
w o T
$1=0,5=1,5, = (BZZD,BD;,TLSZ(B*,D*)) (14)

with T’ s, denoting a spherical tensor coupling the three spin orientations of a B* and of a D* meson
to a total spin § = 1 with z component §;.
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4. Scattering Formalism and the T matrix

Possibly existing bound states and resonances can be studied within the same formalism, by
writing the wave function as a sum of an incident plane wave and an emergent spherical wave and by
carrying out a partial wave expansion. Then, one can read off the T matrix and determine its poles in
the complex energy plane, which signal bound states or virtual bound states (for Re(Epole) < 2mp
and Im(Eoe) = 0) or resonances (for Re(Epole) > 2mp and Im(Ejo1e) < 0). For details we refer to
Section IV of our recent publication [8].

4.1 The T matrix for the bbud system with I1(JF) = 0(17)

After the aforementioned partial wave expansion the L = 1 wave function (5) becomes

Apgji(kppr) + xBa(r)/r

: , (15)
Ap:p-j1(kppr) + xpp(r)/r

Gr=1,5=0(r) =

where App and Ap-p- are the prefactors of the incident BB and B* B* waves, respectively, j| (kgpr)
and ji (kp-p+r) denote spherical Bessel functions with scattering momenta kgp = /2u(E — 2mp)
and kp-p- = \2u(E — 2mp-~) representing the L = 1 contribution to these incident plane waves
and ygp(r)/r and yp-p~(r)/r are the radial wave functions of the emergent BB and B* B* spherical
waves. Inserting ¢7.-1 s=o(r) from Eq. (15) into the Schrodinger equation (2) leads to

2mp o) 1(d2 2

0  2mp|  2upy \dr?

xBB(r) | _ H Apprji(kppr)
= —{1int,S=0 . .
xBB (1) App:rji(kppT)

As usual, the boundary conditions for the wave functions close to the origin are

Ya(r) o ¥ —1 = r2. For large r the wave functions y.(r) exclusively describe emergent
spherical waves and, thus, are proportional to spherical Hankel functions,

Ya(r) cirtgp.ah) (kor) — forr — coand (Ags, Ap-p) = (1,0) (17)
Yo(r) «irtppoh\ (kor) — forr — coand (Agp, Ag-p) = (0,1), (18)

where 4.5 denote entries of the T matrix. Thus, Eq. (17) and Eq. (18) allow to determine the 2 x 2
T matrix,

!BB:BB IBB;B*B*
T= ’ ’ . (19)
!p*B.BB 1B*B*.B*B*

4.2 T Matrices for the béud Systems with 1(J*) = 0(0*) and 1(J¥) = 0(1%)

One can proceed as sketched in Section 4.1. Because L = 0 in both cases one has to replace j;
by jo. Moreover, scattering momenta have to be defined according to the meson types associated
with each channel. At the end one arrives at a 2 x 2 T matrix for /(J) = 0(0") andata3 x3 T
matrix for /(JF) = 0(1%). Because of the page limit, we refrain from providing the corresponding
equations.
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5. Numerical Results

The following numerical results were generated using quark masses mj; = 4977 MeV and
m. = 1628 MeV taken from a quark model [12]. For the meson mass splittings we use
mp» —mp = 45MeV and mp- — mp = 138 MeV as quoted by the PDG [13]. We solved the
coupled-channel radial Schrédinger equations for the wave functions of the emergent wave y o (r)
for given complex energy E using a standard fourth order Runge-Kutta integrator (e.g. Eq. (16) in
the case of the bbud system with I(J¥) = 0(17)). Then we read off the corresponding T matrix
elements from the behavior of the resulting v, (r) at large r, using e.g. Eq. (17) and Eq. (18) for the
bbud system with 1(J¥) = 0(17). Finally, we determine the poles of the T matrix by numerically
searching for roots of 1/det(T). For details we refer again to our recent publication [8].

5.1 bbud Tetraquark Resonance with 1(JF) = 0(17)

Numerical results for the bbud system with 1(J¥) = 0(17) are extensively discussed in Ref.
[8]. Our main findings are the following:

(1) We found a pole of the T matrix on the (-, —)-Riemann sheet ! indicating a tetraquark
resonance with mass 2mp + 94.0’:15'3l MeV = 2mp- + 4.0122 MeV, i.e. slightly above the
B*B* threshold, and decay width I" = 140*%¢ MeV.

(2) The coupled channel Schrodiger equation (16), in particular the potential matrix (4), led to a
solid physical understanding, why there is a tetraquark resonance close to the B*B* threshold,
but not in the region of the BB threshold, as naively expected from our previous work [14]
using a simplified single-channel approach. The reason is that the attractive potential Vs(r)
dominates the B*B* channel, but is strongly suppressed in the BB channel, whereas the
situation is reversed for the repulsive potential V;(r).

(3) This theoretical result is supported by our computation of branching ratios, where we found
BRpp = 26*)% and BRp-+ = 74*3%, implying that a decay of the tetraquark resonance is
around three times more likely to a B* B* pair than to a BB pair.

5.2 béud virtual bound states with 7(JF) = 0(0") and 1(J?) = 0(1%)
Virtual Bound States

Using the same techniques as for the bbud tetraquark resonance with I(J*) = 0(17), we also
searched for poles of the T matrix in the complex energy plane for the two béud systems. These pole
searches were carried out on all four Riemann sheets for 7(JF) = 0(0*) and on all eight Riemann
sheets for 1(J¥) = 0(1*). For both systems we did neither find bound states nor resonances, but
virtual bound states, indicated by poles on the negative real axis on the (—, +)-sheet and on the

For n scattering channels there are n scattering momenta k, and 2" Riemann sheets for the complex energy E.
These sheets are labeled by the signs of the imaginary parts of the scattering momenta, e.g. by (sign(kpg), sign(kp+p+))
for the bbud system with I(JF) = 0(17). There is a one-to-one correspondence between bound states and poles on the
negative real axis of the physical Riemann sheet, which is characterized by having exclusively positive signs, e.g. the
(+, +) sheet in the case of 2-channel scattering.
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(-, +, +)-sheet, respectively. These poles are, however, rather far away from the lowest meson-
meson thresholds, Re(E)—(mp+mp) = —106’:?28 MeV and Re(E)—(mp-+mp) = —100‘?212 MeV.
Thus, it is questionable, whether they have a sizable effect on physical observables like scattering

rates or cross sections. We plan to investigate this in more detail in the near future.

Dependence on the Charm Quark Mass for 1(J¥) = 0(1%)

In Ref. [7] we used the same potentials and formalism discussed in Section 2 and Section 3 to
predict a bbud bound state with quantum numbers 1(J¥) = 0(1*) and binding energy
(mp + mp-) — E = 59’:33% MeV. This system, which has a BB* channel and a B*B* channel is
conceptually similar to the b¢éud system with the same quantum numbers. In particular, one can
show that, when setting m. = myp, mp = mp and mp+- = mpg- in the coupled channel Schrédinger
equation (12), one equation decouples and the remaining two equations are essentially identical to
those solved in Ref. [7]. We have studied this numerically by starting with Eq. (12) and physical
quark masses mj, and m, as provided at the beginning of Section 5 and then continously increasing
m, from its physical value 1628 MeV to the value of the b quark mass. At the same time we reduce
the mass splitting between the D and the D* meson according to
mpe —mp = @(WB* - mB)5 (20)
(&
which is the leading order in Heavy Quark Effective Theory [15]. The resulting pole energy as
function of m, is shown in Figure 2. One can see the expected transition from a virtual bound
state corresponding to a pole on the (—, +, +)-Riemann sheet to a bound state corresponding to a
pole on the physical (+, +, +)-Riemann sheet. The transition between the two sheets takes place at
me ~ 2930 MeV, where the pole is located at E = 0. For m. = mj, we recover the binding energy
(mp+mp) —FE = 59’:33O MeV predicted in Ref. [7], which is an excellent cross check and shows

8
consistency of this work and Ref. [7].
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Figure 2: The energy of the T matrix pole as function of the charm quark mass .. for the béud system with
quantum numbers I(JF) = 0(1*). The red triangular data point represents the full lattice QCD result from
Ref. [10].
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Comparison to Full Lattice QCD Results

Recent full lattice QCD studies of héud systems with quantum numbers 1(J¥) = 0(0*) and
I1(JP) = 0(1%) have predicted shallow bound states rather close to the BD threshold and the
B*D threshold, respectively [9-11] (the result from Ref. [10] for 1(JF) = 0(1%) is plotted in
Figure 2). It is interesting to note that the study from Ref. [10], which uses a very advanced lattice
QCD setup (large symmetric correlation matrices including both local and scattering interpolating
operators, Liischers finite volume method to carry out a scattering analysis), cannot rule out the
existence of shallow virtual bound states, even though genuine bound states are strongly favored.
In any case there is a sizable quantitative difference of these full lattice QCD results and our bcud
predictions from this work, which are based on lattice QCD potentials and the Born-Oppenheimer
approximation. A possible reason for that could be that the attraction of the potential Vs(r) was
underestimated in Refs. [1, 2]. To check this, we have recently started a recomputation of these
potentials using a significantly improved up-to-date lattice QCD setup [3, 4].
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