
P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
9
1

b̄ b̄ud Tetraquarks with O(PV) = 0(1−) and b̄c̄ud

Tetraquarks with O(PV) = 0(0+) and O(PV) = 0(1+) from

Lattice QCD Antistatic-Antistatic Potentials

Jakob Hoffmann,0,∗ Lasse Müller0 and Marc Wagner0,1

0Goethe-Universität Frankfurt am Main, Institut für Theoretische Physik, Max-von-Laue-Straße 1,

D-60438 Frankfurt am Main, Germany
1Helmholtz Research Academy Hesse for FAIR, Campus Riedberg, Max-von-Laue-Straße 12,

D-60438 Frankfurt am Main, Germany

E-mail: jhoffmann@itp.uni-frankfurt.de, lmueller@itp.uni-frankfurt.de,

mwagner@itp.uni-frankfurt.de

We study heavy spin effects in 1̄1̄D3 and 1̄2̄D3 four-quark systems using the Born-Oppenheimer

approximation and existing antistatic-antistatic potentials computed with lattice QCD. We report

about a recent refined investigation of the 1̄1̄D3 system with � (�%) = 0(1−), where we predicted

a tetraquark resonance slightly above the �∗�∗ threshold. Furthermore, we extend our Born-

Oppenheimer approach to 1̄2̄D3 four-quark systems. For quantum numbers � (�%) = 0(0+) as

well as � (�%) = 0(1+) we find virtual bound states rather far away from the lowest meson-meson

thresholds.

The 41st International Symposium on Lattice Field Theory (LATTICE2024)

28 July - 3 August 2024

Liverpool, UK

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons

Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/





P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
9
1

1̄1̄D3 and 1̄2̄D3 Tetraquarks from Lattice QCD Antistatic-Antistatic Potentials Jakob Hoffmann

3. Coupled-Channel Schrödinger Equations

3.1 Identical Heavy Flavors: 1̄1̄D3 with � (�%) = 0(1−)

In Ref. [8] we have derived the coupled-channel Schrödinger equation relevant for the 1̄1̄D3

system with � (�%) = 0(1−). It is given by((
2<� 0

0 2<�∗

)
− ∇2

2`11
+ �int,(=0

)
®i!=1,(=0(A) = � ®i!=1,(=0(A) (2)

with

∇2
=

32

3A2
+ 2

A

3

3A
− ! (! + 1)

A2

����
!=1

=
32

3A2
+ 2

A

3

3A
− 2

A2
(3)

(! represents the orbital angular momentum of the heavy antiquarks) and

�int,(=0 =
1

4

(
+5(A) + 3+ 9 (A)

√
3(+5(A) −+ 9 (A))√

3(+5(A) −+ 9 (A)) 3+5(A) ++ 9 (A)

)
, (4)

where `11 = <1/2 is the reduced 1 quark mass, ( = 0 denotes the heavy spin and A is the radial

coordinate of the heavy antiquark separation. The 2 components of the wave function represent the

following meson-meson combinations:

®i!=1,(=0 ≡
(
�� ,

1√
3
®�∗ ®�∗

))
=

(
�� ,

1√
3

(
�∗
G�

∗
G + �∗

H�
∗
H + �∗

I�
∗
I

)))
. (5)

3.2 Different Heavy Flavors: 1̄2̄D3 with � (�%) = 0(0+) and � (�%) = 0(1+)

To derive the coupled-channel Schrödinger equations for the 1̄2̄D3 systems one can closely

follow Refs. [7, 8] as sketched in the following.

1̄2̄D3 systems at large 1̄2̄ separations A are meson pairs, where one of the two mesons is a � or

�∗ meson and the other meson is a � or �∗ meson. Consequently, the free Hamiltonian describing

non-interacting meson pairs in the center of mass frame has a 16 × 16 matrix structure,

�0 = "� ⊗ ✶4×4 + ✶4×4 ⊗ "� + ®?2

2`12
, (6)

where "� = diag(<�, <�∗ , <�∗ , <�∗) and "� = diag(<� , <�∗ , <�∗ , <�∗) are diagonal matrices

containing the meson masses and `12 = <1<2/(<1 +<2) is the reduced mass of a 1 and a 2 quark.

This Hamiltonian acts on a 16-component wave function for the relative coordinate of the heavy

quarks ®A , where the components can be interpreted as

®Ψ ≡
(
��, ��∗

G , ��
∗
H , ��

∗
I , �∗

G�, �∗
G�

∗
G , �

∗
G�

∗
H , �

∗
G�

∗
I , �∗

H�, �∗
H�

∗
G , �

∗
H�

∗
H , �

∗
H�

∗
I ,

�∗
I�, �∗

I�
∗
G , �

∗
I�

∗
H , �

∗
I�

∗
I

))
. (7)

To include interactions, one has to add the the potentials+5(A) and+ 9 (A) discussed in Section 2.

One can show that these potentials do not correspond to simple meson pairs, as represented by the

components of ®Ψ, but to linear combinations containing all four types of mesons, �, �∗, � and �∗.
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These linear combinations can be expressed in terms of a 16 × 16 matrix ) using Fierz identities.

The interacting part of the Hamiltonian is then

�int = )+diag)
−1 , +diag = diag(+5(A), . . . , +5(A)︸               ︷︷               ︸

4×

, + 9 (A), . . . , + 9 (A)︸               ︷︷               ︸
12×

). (8)

Combining Eq. (6) and Eq. (8) leads to the Schrödinger equation

� ®Ψ(®A) =
(
�0 + �int

)
®Ψ(®A) = � ®Ψ(®A). (9)

Because �int only depends on the radial coordinate A = |®A |, but not on the direction of ®A ,
the orbital angular momentum ! is conserved. Since the total angular momentum is a conserved

quantity, the total spin ( is also conserved. Consequently, both ! and ( can be used as quantum

numbers. The former allows to reduce the partial differential equation (9) to an ordinary differential

equation in A, while the latter allows to decompose the 16 × 16 Hamiltonian into smaller blocks.

We are particularly interested in 1̄2̄D3 systems with quantum numbers � (�%) = 0(0+) and

� (�%) = 0(1+), since recent full lattice QCD computations indicate the existence of shallow bound

states for these systems [9–11]. After working out the � (�%) quantum numbers for each block of

the decomposed Hamiltonian using QCD symmetries and the Pauli principle (for details see e.g.

Section III.III in Ref. [8]), one can read off the relevant coupled channel Schrödinger equations.

Schrödinger Equation for 1̄2̄D3 with � (�%) = 0(0+)
The coupled-channel Schrödinger equation for the 1̄2̄D3 system with � (�%) = 0(0+) is((

<� + <� 0

0 <�∗ + <�∗

)
− 1

2`12

32

3A2
+ �int,(=0

)
®i!=0,(=0(A) = � ®i!=0,(=0(A) (10)

with �int,(=0 as defined in Eq. (4). The 2 components of the wave function represent the following

meson-meson combinations:

®i!=0,(=0 ≡
(
�� ,

1√
3
®�∗ ®�∗

))
=

(
�� ,

1√
3

(
�∗
G�

∗
G + �∗

H�
∗
H + �∗

I�
∗
I

)))
. (11)

Schrödinger Equation for 1̄2̄D3 with � (�%) = 0(1+)
The coupled-channel Schrödinger equation for the 1̄2̄D3 system with � (�%) = 0(1+) is

©­­
«
©­­
«
<�∗ + <� 0 0

0 <� + <�∗ 0

0 0 <�∗ + <�∗

ª®®
¬
− 1

2`12

32

3A2
+ �int,(=1

ª®®
¬
®i!=0,(=1,(I (A) = � ®i!=0,(=1,(I (A)

(12)

with

�int,(=1 =
1

4

©­­
«

+5(A) + 3+ 9 (A) + 9 (A) −+5(A)
√

2(+5(A) −+ 9 (A))
+ 9 (A) −+5(A) +5(A) + 3+ 9 (A)

√
2(+ 9 (A) −+5(A))√

2(+5(A) −+ 9 (A))
√

2(+ 9 (A) −+5(A)) 2(+5(A) ++ 9 (A))

ª®®
¬
. (13)

The 3 components of the wave function represent the following meson-meson combinations:

®i!=0,(=1,(I ≡
(
�∗
(I
�, ��∗

(I
, )1,(I ( ®�∗, ®�∗)

))
(14)

with)1,(I denoting a spherical tensor coupling the three spin orientations of a �∗ and of a �∗ meson

to a total spin ( = 1 with I component (I .

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
4
)
0
9
1

1̄1̄D3 and 1̄2̄D3 Tetraquarks from Lattice QCD Antistatic-Antistatic Potentials Jakob Hoffmann

4. Scattering Formalism and the T matrix

Possibly existing bound states and resonances can be studied within the same formalism, by

writing the wave function as a sum of an incident plane wave and an emergent spherical wave and by

carrying out a partial wave expansion. Then, one can read off the T matrix and determine its poles in

the complex energy plane, which signal bound states or virtual bound states (for Re(�pole) < 2<�

and Im(�pole) = 0) or resonances (for Re(�pole) > 2<� and Im(�pole) < 0). For details we refer to

Section IV of our recent publication [8].

4.1 The T matrix for the 1̄1̄D3 system with � (�%) = 0(1−)

After the aforementioned partial wave expansion the ! = 1 wave function (5) becomes

®i!=1,(=0(A) =
(

��� 91(:��A) + j�� (A)/A
��∗�∗ 91(:�∗�∗A) + j�∗�∗ (A)/A

)
, (15)

where ��� and ��∗�∗ are the prefactors of the incident �� and �∗�∗ waves, respectively, 91(:��A)
and 91(:�∗�∗A) denote spherical Bessel functions with scattering momenta :�� =

√
2`(� − 2<�)

and :�∗�∗ =

√
2`(� − 2<�∗) representing the ! = 1 contribution to these incident plane waves

and j�� (A)/A and j�∗�∗ (A)/A are the radial wave functions of the emergent �� and �∗�∗ spherical

waves. Inserting ®i!=1,(=0(A) from Eq. (15) into the Schrödinger equation (2) leads to

((
2<� 0

0 2<�∗

)
− 1

2`11

(
32

3A2
− 2

A2

)
+ �int,(=0 − �

) (
j�� (A)
j�∗�∗ (A)

)
= −�int,(=0

(
���A 91(:��A)

��∗�∗A 91(:�∗�∗A)

)
.

(16)

As usual, the boundary conditions for the wave functions close to the origin are

jU (A) ∝ A!+1 |!=1 = A2. For large A the wave functions jU (A) exclusively describe emergent

spherical waves and, thus, are proportional to spherical Hankel functions,

jU (A) ∝ 8AC��;Uℎ
(1)
1

(:UA) for A → ∞ and (���, ��∗�∗) = (1, 0) (17)

jU (A) ∝ 8AC�∗�∗;Uℎ
(1)
1

(:UA) for A → ∞ and (���, ��∗�∗) = (0, 1), (18)

where CU;V denote entries of the T matrix. Thus, Eq. (17) and Eq. (18) allow to determine the 2 × 2

T matrix,

T =

(
C��;�� C��;�∗�∗

C�∗�∗;�� C�∗�∗;�∗�∗

)
. (19)

4.2 T Matrices for the 1̄2̄D3 Systems with � (�%) = 0(0+) and � (�%) = 0(1+)

One can proceed as sketched in Section 4.1. Because ! = 0 in both cases one has to replace 91

by 90. Moreover, scattering momenta have to be defined according to the meson types associated

with each channel. At the end one arrives at a 2 × 2 T matrix for � (�%) = 0(0+) and at a 3 × 3 T

matrix for � (�%) = 0(1+). Because of the page limit, we refrain from providing the corresponding

equations.
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5. Numerical Results

The following numerical results were generated using quark masses <1 = 4977 MeV and

<2 = 1628 MeV taken from a quark model [12]. For the meson mass splittings we use

<�∗ − <� = 45 MeV and <�∗ − <� = 138 MeV as quoted by the PDG [13]. We solved the

coupled-channel radial Schrödinger equations for the wave functions of the emergent wave jU (A)
for given complex energy � using a standard fourth order Runge-Kutta integrator (e.g. Eq. (16) in

the case of the 1̄1̄D3 system with � (�%) = 0(1−)). Then we read off the corresponding T matrix

elements from the behavior of the resulting jU (A) at large A, using e.g. Eq. (17) and Eq. (18) for the

1̄1̄D3 system with � (�%) = 0(1−). Finally, we determine the poles of the T matrix by numerically

searching for roots of 1/det(T). For details we refer again to our recent publication [8].

5.1 1̄1̄D3 Tetraquark Resonance with � (�%) = 0(1−)

Numerical results for the 1̄1̄D3 system with � (�%) = 0(1−) are extensively discussed in Ref.

[8]. Our main findings are the following:

(1) We found a pole of the T matrix on the (−,−)-Riemann sheet 1 indicating a tetraquark

resonance with mass 2<� + 94.0+1.3
−5.4

MeV = 2<�∗ + 4.0+1.3
−5.4

MeV, i.e. slightly above the

�∗�∗ threshold, and decay width Γ = 140+86
−66

MeV.

(2) The coupled channel Schrödiger equation (16), in particular the potential matrix (4), led to a

solid physical understanding, why there is a tetraquark resonance close to the �∗�∗ threshold,

but not in the region of the �� threshold, as naively expected from our previous work [14]

using a simplified single-channel approach. The reason is that the attractive potential +5(A)
dominates the �∗�∗ channel, but is strongly suppressed in the �� channel, whereas the

situation is reversed for the repulsive potential + 9 (A).

(3) This theoretical result is supported by our computation of branching ratios, where we found

BR�� = 26+9
−4

% and BR�∗�∗ = 74+4
−9

%, implying that a decay of the tetraquark resonance is

around three times more likely to a �∗�∗ pair than to a �� pair.

5.2 1̄2̄D3 virtual bound states with � (�%) = 0(0+) and � (�%) = 0(1+)

Virtual Bound States

Using the same techniques as for the 1̄1̄D3 tetraquark resonance with � (�%) = 0(1−), we also

searched for poles of the T matrix in the complex energy plane for the two 1̄2̄D3 systems. These pole

searches were carried out on all four Riemann sheets for � (�%) = 0(0+) and on all eight Riemann

sheets for � (�%) = 0(1+). For both systems we did neither find bound states nor resonances, but

virtual bound states, indicated by poles on the negative real axis on the (−,+)-sheet and on the

1For = scattering channels there are = scattering momenta :U and 2= Riemann sheets for the complex energy � .

These sheets are labeled by the signs of the imaginary parts of the scattering momenta, e.g. by (sign(:��), sign(:�∗�∗ ))
for the 1̄1̄D3 system with � (�%) = 0(1−). There is a one-to-one correspondence between bound states and poles on the

negative real axis of the physical Riemann sheet, which is characterized by having exclusively positive signs, e.g. the

(+,+) sheet in the case of 2-channel scattering.

6
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Comparison to Full Lattice QCD Results

Recent full lattice QCD studies of 1̄2̄D3 systems with quantum numbers � (�%) = 0(0+) and

� (�%) = 0(1+) have predicted shallow bound states rather close to the �� threshold and the

�∗� threshold, respectively [9–11] (the result from Ref. [10] for � (�%) = 0(1+) is plotted in

Figure 2). It is interesting to note that the study from Ref. [10], which uses a very advanced lattice

QCD setup (large symmetric correlation matrices including both local and scattering interpolating

operators, Lüschers finite volume method to carry out a scattering analysis), cannot rule out the

existence of shallow virtual bound states, even though genuine bound states are strongly favored.

In any case there is a sizable quantitative difference of these full lattice QCD results and our 1̄2̄D3

predictions from this work, which are based on lattice QCD potentials and the Born-Oppenheimer

approximation. A possible reason for that could be that the attraction of the potential +5(A) was

underestimated in Refs. [1, 2]. To check this, we have recently started a recomputation of these

potentials using a significantly improved up-to-date lattice QCD setup [3, 4].
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