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Large-scale multiconfigurational calculations are conducted on experimentally significant transitions in Lr I

and its lanthanide homologue Lu I, exhibiting good agreement with recent theoretical and experimental results.

A single reference calculation is performed, allowing for substitutions from the core within a sufficiently

large active set to effectively capture the influence of the core on the valence shells, improving upon previous

multiconfigurational calculations. An additional calculation utilizing a multireference set is performed to account

for static correlation effects which contribute to the wave function. Reported energies for the two selected transi-

tions are 20 716 ± 550 cm−1 and 28 587 ± 650 cm−1 for 7s28s 2S1/2 → 7s27p 2Po
1/2 and 7s27d 2D3/2 → 7s27p 2Po

1/2,

respectively.

DOI: 10.1103/9p1l-xx4b

I. INTRODUCTION

Much interest in the actinides has been garnered recently

relating to the search for the “island of stability” [1]. The

nuclides of the heaviest elements are generally stabilized by

nuclear shell effects leading to lifetimes that allow for exper-

imental investigation, although the actual extent of the island

remains unknown [2]. Thus, the knowledge of the fundamen-

tal nuclear properties as well the influence of the nuclear shell

effects in these nuclei is important to understand the limits

of matter. Atomic theory can assist in this research by pre-

dicting suitable atomic levels in the heaviest elements, which

are unveiled using laser spectroscopic techniques. Detailed

laser spectroscopy results may be combined with theoretical

information on magnetic fields of the electronic shells, elec-

tric field gradients, or field shift parameters. This allows the

determination of nuclear moments or changes in the nuclear

size, respectively.

Such experimental and theoretical collaborations have

provided fruitful results for nobelium (No, Z = 102) [3], fer-

mium (Fm, Z = 100) [4], and for the first ionization potentials

of the heavy actinides [5]. There has been a recent focus

of attention on neutral lawrencium (Lr I, Z = 103), which

concludes the actinide series of elements with active 5f or-

bitals. While the first ionization potential was measured by
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surface ionization, laser spectroscopic results remain pending.

In addition, before the more precise hyperfine splittings of Lr I

can be measured, the “broad” energy level structure must first

be verified [1].

Various challenges arise from studying Lr I, for experi-

mentalists and theorists alike. Relativistic effects, as well as

those of QED are known to influence its atomic structure

[6–8]. A comparison between experiment and theory could

lead to an examination of the accuracy of multiconfigurational

Dirac-Hartree-Fock (MCDHF) based methods at predicting

atomic properties at high Z .

The challenges of measuring the atomic properties of

lawrencium experimentally are exacerbated by the low pro-

duction cross section of about 400 nb for the isotope 255Lr

in the fusion reaction of a 48Ca beam impinging on a 209Bi

target [9]. With a primary beam of 0.8 particle µA, typical

target thicknesses of 0.3 mg/cm2, and a separation efficiency

of 30%, this leads to production rates of about 0.4 atoms s−1.

High Z elements can be produced at the Separator for Heavy

Ion reaction Products (SHIP) at GSI Helmholtzzentrum für

Schwerionenforschung in Darmstadt [10,11] and are inves-

tigated by laser spectroscopy using the RAdiation-Detected

Resonance Ionization Spectroscopy (RADRIS) setup [12,13].

RADRIS, as it stands, can detect transitions from the

atomic ground state of Lr I (7s27p 2Po
1/2) with transition energies

between 20 000 and 30 000 cm−1, and with transition rates

larger than 107s−1. Experimental attempts have been made to

measure transitions in Lr I, with priority given to those with

the highest transition rates [14], but still the uncertainty of the

theoretical predictions requires a very large region of several

hundred cm−1 to be scanned.
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While the central scientific motivation for measuring Lr I is

driven by an interest in its atomic structure and the subsequent

extraction of nuclear properties, various other applications can

arise from studying the actinides, such as those in nuclear

medicine. Targeted alpha therapy is a particularly exciting

area of nuclear medicine in which α-emitting radionuclides

are attached to targeting vectors, which can be used to treat

various diseases [15].

The ground state of Lr I is predicted to have an opposite

parity relative to its lanthanide homologue, neutral lutetium

(Lu I) [16], which is attributed to strong relativistic effects.

The chemistry of Lr I and its similarity to other elements was

investigated by Xu and Pyykkö [17]. From the experimental

side, Sato et al. [18] measured the ionization potential of Lr I,

and Kwarsick et al. [19] concluded with the second ionization

potential. Sato et al. [5] experimentally verified that the 5 f

shell is fully filled at No and confirmed that the actinide series

ends with Lr.

Previous calculations of Lr I were conducted using a

variety of theoretical methods, including the relativistic cou-

pled cluster approach by Eliav et al. [20], and Fock-space

coupled-cluster (FSCC) by Borschevsky et al. [21]. A calcu-

lation of Lr I and other elements using the combination of

the configuration interaction with the linearized single-double

coupled cluster method (CI + all order) was reported by

Dzuba et al. [22]. Furthermore, Kahl et al. [8] applied the

relativistic coupled-cluster method with single, double, and

perturbative triple excitations [RCCSD(T)] alongside the con-

figuration interaction combined with many-body perturbation

theory (CI + MBPT). Moreover, Guo et al. [23] documented

the electron affinity and ionization potential of Lr I using the

relativistic coupled cluster method.

In addition, the multireference configuration interaction

model was used to provide energy levels and spectroscopic

properties of the Lr+ ion [24,25]. Energy levels for Lr-like

Rf+ were reported by Ramanantoanina et al. [26]. Previous

MCDHF calculations of Lr I were presented by Wijesundera

et al. [27], Zou and Froese Fischer [28], and Fritzsche et al.

[7].

In this paper, Lr I transitions of experimental interest are

investigated using the MCDHF method implemented in the

GRASP2018 package [29], with minor modifications to ensure

sufficient energy convergence and to include configurations

with principal quantum numbers n > 15.

II. THEORY

To obtain the energy levels of a many-electron system, the

eigenvalue problem can be utilized:

Ĥ� = E�. (1)

Here � is the atomic state function (ASF) and the Hamil-

tonian Ĥ represents the many-electron Dirac-Coulomb (DC)

Hamiltonian defined as

ĤDC =

N∑

i=1

[cαi · pi + c2(βi − I ) + Vnuc(ri )] +

N∑

j>i=1

1

ri j

, (2)

where ri j represents the distance between electrons i and j,

N is the total number of electrons in the system, c is the

speed of light, α and β are the Dirac matrices, and Vnuc(r)

is the nuclear potential arising from the two-parameter Fermi

distribution function [30]; atomic units (h̄ = e = me = 1) are

used throughout.

In the standard formulation of the MCDHF theory, the

function � for a given state is represented as a linear com-

bination of symmetry-adapted configuration state functions

(CSFs)

�(ŴπJM ) =

NCSF∑

i=1

ci�(γiπJM ). (3)

Here J is the total electronic angular momentum, M is its

projection, π is the parity, γi denotes the set of orbital oc-

cupancies and complete coupling tree of angular quantum

numbers unambiguously specifying the ith CSF, and Ŵ is the

identifying label, which contains all the other necessary infor-

mation to uniquely describe the state function. Configuration

mixing coefficients ci are obtained through diagonalization of

the Hamiltonian matrix.

The relativistic configuration interaction (RCI) method is

used to calculate configuration mixing coefficients ci without

altering the orbital shapes. Corrections to the DC Hamiltonian

such as the transverse photon interaction (which simplifies to

the Breit interaction in the low-frequency limit), and leading-

order QED corrections are included using RCI.

After obtaining a set of atomic state functions, the transi-

tion rates for an electric dipole transition between two atomic

states �i and � f can be calculated using the reduced transition

matrix element [31] of the electric dipole transition operator

D(1):

Mi f = 〈�i||D
(1)||� f 〉. (4)

Explicit expressions for the operator can be found in Refs.

[32–34]. In the Coulomb gauge, which is used in the present

calculations, the matrix element of the operator in the low-

frequency limit can be written as

1

E f − Ei

N∑

j=1

〈�i||∇
(1)( j)||� f 〉 . (5)

The latter expression is also referred to as the velocity form.

III. MODELS

Dirac-Hartree-Fock (DHF) wave functions of Lr I involve

only a single CSF for each total angular momentum J and par-

ity π , representing the simplest approximation of the atomic

system. However, DHF calculations are limited because they

do not fully account for electron-electron repulsion, as a result

of its mean-field approximation. To better account for the

repulsion between electrons, additional CSFs are systemati-

cally included into the wave function expansion. The electron

correlation energy is the energy due to unaccounted electron-

electron repulsion and is defined as the difference between

DHF calculations and verified experimental results from the

NIST ASD [35], which are assumed to be exact for the pur-

poses of this study. The CSFs accounting for the repulsion

of the electrons are built from an active set (AS) of orbitals.

The AS is systematically increased to include additional
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correlation orbitals as layers Li; a layer is defined as a set

of orbitals that includes at maximum one of each orbital an-

gular momentum symmetry, ℓ � 4 or ℓ = {s, p, d, f , g}. An

additional layer increases the AS such that the AS becomes

a union of the DHF spectroscopic orbitals and the layers,

represented as AS : DHF ∪ L1 ∪ L2 ∪ L3 for an AS involving

three layers.

The targeted states in Lr I are the ground state

7s27p 2Po
1/2 and the excited levels 7s28s 2S1/2, 7s26d 2D3/2,5/2 and

7s27d 2D3/2,5/2. The 7s27p 2Po
3/2 level is also included to ensure

that both the 7p1/2 and 7p3/2 orbitals are optimized. The results

of previous calculations suggest that energies and rates of

transitions from these excited states to the ground state are

within the requirements of RADRIS [8,13]. To ensure compu-

tational feasibility, the number of CSFs was chosen to balance

the accuracy of the wave function with the limitations of the

computational hardware.

In quantum chemistry, electron correlation is typically

divided into two categories, static correlation and dynamic

correlation. Static correlation arises in atomic systems when

levels are nearly degenerate in the DHF energies, whereas

dynamic correlation arises from the dynamic motions of elec-

trons within a correlated system [36]. Static correlation is

resolved in MCDHF by employing a multireference (MR) set

[37], while dynamic correlation is more challenging and is

resolved by systematically adding CSFs built from increas-

ing the active sets of orbitals. We perform a set of single

reference (SR) calculations to include core correlation con-

tributions to the wave function. A separate set of calculations

are performed to account for unincluded static correlation. By

including both types of these calculations, all major types of

electron correlation are accounted for.

Several factors indicate that the interelectronic interaction

involving the 5d and 5 f core subshells contributes to the

energy separations. In a heavy and neutral system, the screen-

ing effect of the inner shells diminishes the nuclear charge’s

influence more strongly, enhancing the core electrons influ-

ence upon the energy separations. Additionally, the unpaired

electron in Lr I strongly polarizes the core.

The calculation is divided up into four major stages or

models. With each sequential model, additional correlation

effects are included and the calculation is expected to become

more accurate. For the SR set, the calculations proceed as fol-

lows: Model One → Model Two → Model Three → Model

Four. For the MR set, the logical flow is: MR Model One

→ MR Model Two → MR Model Three. Although similar

procedures apply to the SR and MR models, the MR and SR

set calculations are performed independently and do not infer

from each other.

Model One. This stage of the calculations involves opti-

mizing the spectroscopic orbitals. The spectroscopic orbitals

are optimized using DHF, whereby no electron substitu-

tions are allowed from the reference set to ensure each

orbital has the correct number of nodes, or number of re-

gions where the wave function changes sign. The targeted

even parity levels are 7s28s 2S1/2, 7s26d 2D3/2,5/2, 7s27d 2D3/2,5/2

and the targeted odd parity levels are 7s27p 2Po
1/2,3/2. The

7s26d 2D3/2,5/2 levels are not included in Model Four due to

computational limitations.

In Lu I, analogous levels are targeted. The targeted even

parity levels are 6s27s 2S1/2, 6s25d 2D3/2,5/2 and the odd parity

levels are 6s26p 2Po
1/2,3/2. As the 6s26d 2D3/2,5/2 levels are rel-

atively high-lying in energy, these could not be optimized

correctly, and were not included in the calculation.

Model Two. The next stage of the calculations involves

generating and optimizing the correlation orbitals. The strat-

egy suggested by Papoulia et al. [38] was employed. The

MCDHF method as implemented in GRASP2018 is unable to

optimize all correlation orbitals simultaneously, requiring the

user to adopt the layer-by-layer optimization strategy [39].

Correlation orbitals are generated by allowing single and dou-

ble (SD) substitutions from the valence shells 6d, 7s, 7p, 7d ,

and 8s (5d, 6s, 6p, and 7s) in Lr I (Lu I). SD substitutions

are chosen to account for dynamic correlation by accurately

modeling electron-electron repulsions between two electrons.

The electric dipole transitions between the targeted states

in Lr I only involve valence electron jumps. While opti-

mizing the correlation orbitals, core substitutions were not

allowed to ensure the correlation orbitals better model elec-

tron correlation in the valence orbitals and are in a close

radial proximity to the valence as a result. The AS is sys-

tematically increased up to layer ten in Lr I with orbitals

L10 = {17s, 16p, 16d, 14 f , 13g}.

Model Three. The third stage of the calculation utilizes

the relativistic configuration interaction program RCI as imple-

mented in GRASP2018 [29]. SD electron substitutions from the

previously defined valence orbitals and the {6s, 6p} ({5s, 5p})

subshells in Lr I (Lu I) were allowed to expand the CSF basis

set and account for core correlation effects. Also at this stage

included in the Hamiltonian were further relativistic effects:

the transverse photon interaction (often referred to as the Breit

interaction, see Sec. 3.7 of Ref. [40]), as well as the leading

QED corrections, vacuum polarization and self-energy (see

Secs. 2.3 and 2.8 of Ref. [41]). Initial calculations suggest

these effects have only a minor impact on the energy separa-

tions, resulting in an average decrease in energy of the targeted

excited states relative to the ground state of 35 cm−1.

Figure 1 shows the average radius of the spectroscopic

subshells in Lr I. The correlation orbitals are optimized

to be in close proximity to the valence orbitals. Fur-

thermore, the {6s, 6p} subshells are close to the valence,

suggesting these would have the greatest effect on the

energy separations.

Model Four. In the fourth and largest model, RCI is run

to improve the wave-function representation by employing a

larger basis set. Further relativistic effects such as Breit, as

well as QED effects are included as a correction to the wave

function at this stage. SD electron substitutions are allowed in

Lr I (Lu I) from the {6s, 6p} ({5s, 5p}) subshells. In addition,

single and restricted double (SrD) substitutions are allowed

from the {5d, 5 f } ({4d, 4 f }) subshells [42]. The SrD substi-

tutions are a restriction to SD where in total two electrons

are substituted, however, at maximum only one electron may

be substituted from any of the {5d, 5 f } ({4d, 4 f }) subshells.

The 7s26d 2D3/2,5/2 levels could not be included in Model Four

due to computational limitations. The SrD method is designed

to model core-valence correlation effects without considering

costly core-core correlation effects, which are expected to

have a negligible impact on energy separations.
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FIG. 1. The average radii in Bohr radii of the spectroscopic rela-

tivistic radial orbitals in Lr I. Only radial orbitals with total angular

momentum j = l + 1/2 are included for clarity. The subshells are

colored based upon their average distance from the nucleus.

To address the effects of static correlation, a multirefer-

ence (MR) set is created which includes configurations with

the largest contribution to the wave function. To obtain the

configurations with the greatest contribution, a small test cal-

culation was conducted in SR with two layers using Model

Two. Configurations from this calculation were sorted by mix-

ing coefficient and added to the MR set until the cumulative

mixing coefficients reached 95% of the wavefunction. Calcu-

lations were performed with the MR set similarly to the main

SR calculation for consistency, with the exception that the MR

calculation does not use Model Four due to computational

limitations.

MR Model One. For the first stage of the MR calculation,

the Lr I MR set includes the odd parity configuration 7s6d7p

in addition to the 7s27p configuration and the even parity

configuration 7s7p2 in addition to the 7s28s, 7s26d and 7s27d

configurations. The spectroscopic orbitals were optimized us-

ing DHF. The targeted even parity levels were 7s28s 2S1/2,

7s26d 2D3/2,5/2, 7s27d 2D3/2,5/2 and the targeted odd parity levels

are 7s27p 2Po
1/2,3/2.

The calculation is repeated for lutetium, the Lu I MR set

includes the odd parity configuration 6s5d6p in addition to

the 6s26p configuration, and the even parity configurations

6s5d2, 6s6p2 are included in addition to the 6s27s, 6s25d

configurations. For Lu I, analogous levels were targeted. The

even parity targeted levels are 6s27s 2S1/2, 6s25d 2D3/2,5/2 and the

odd parity levels are 6s26p 2Po
1/2,3/2.

MR Model Two. In the second stage of the MR calculation,

correlation orbitals are generated and optimized. Correlation

orbitals are generated by allowing single and double (SD)

substitutions from the valence shells 6d, 7s, 7p, 7d and 8s

(5d, 6s, 6p and 7s) from the Lr I (Lu I) MR set.

MR Model Three. In the third and final stage of the MR cal-

culation, SD substitutions from the previously defined valence

shells and electron substitutions from the {6s, 6p} ({5s, 5p})

subshells were allowed to further expand the CSF basis and

consider core contributions. A calculation is performed on

the expanded CSF basis set using RCI, further relativistic and

QED effects are included as a correction to the wave function.

IV. RESULTS AND DISCUSSION

Figures 2(a)–2(f) show how the calculations converge as

the AS is systematically increased. The total energy of the

system decreases as the AS increases, however, the even and

odd parities will decrease at a different rate, agreeing at con-

vergence [43]. Allowing substitutions from the core magnifies

oscillations due to the large amounts of correlation associated

with the core, and increasing the size of the AS is required to

compensate this. Model Four is designed to capture all leading

dynamic correlation contributions, while the MR Model Three

calculations are designed to capture static correlation effects.

Unfortunately, it is not currently computationally feasible to

perform calculations of Lr I that fully account for both static

and dynamic correlation. To account for both types of electron

correlation, a method is proposed to calculate the change in

energy separations as a result of accounting for static electron

correlation.

Table I presents the results of the SR and MR calculations

of Lu I and Lr I. These indicate that using Model Four is essen-

tial for achieving good agreement between the even and odd

parity energy levels. However, Model Four is computationally

infeasible with the MR.

As a result, the contributions due to the MR are computed

by considering only the change in energy between SR Model

Three and MR Model Three for that level and the ground-state

level of the same parity.

Our method calculates the total energy by taking the value

of the energy for a level in Model Four and adding the energy

difference due to the inclusion of the MR set, which is derived

from the energy differences of levels with the same parity

ETotal = EDynamic + EStatic

= EModel Four + 
EMR. (6)

For the case of the 7s28s 2S1/2 energy level in Lr I (Table I),

the change in energy due to the inclusion of the MR set,


EMR, is computed as (22 003 − 4853) − (19 930 − 3145) =

365 cm−1, which can be then combined with the Model Four

result to give the total energy separation.

For all excited levels in Lr I, 
EMR is positive, meaning

that including the MR leads to an increase in parity-relative

energy separations. Similarly, the effect of accounting for

additional core correlation appears to be an increase in parity-

relative energy separations.
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FIG. 2. MCDHF calculations of the transition energy for the last four computational layers of Lr I (Lu I), as a function of computational

layer for the transition of 7s28s 2S1/2 → 7s27p 2Po
1/2 (6s27s 2S1/2 → 6s26p 2Po

1/2). The upper three subfigures (a)–(c) present the results for Lu I

while the lower three subfigures (d)–(f) present the results for Lr I. The subfigures from left to right show how the calculations evolve as the

computational model becomes larger and more core correlation is considered. The subfigures on the left (a), (d) show the transition energies

for Model Two, when only valence effects are considered. The middle subfigures (b), (e) show the transition energies for Model Three. The

subfigures to the right (c), (f) show the transition energies for Model Four. The calculations of Lr I are compared to the results of the previous

theoretical calculations using FSCC [21] and CI + MBPT [8], while the calculations of Lu I are compared to experimental values from NIST

[35].

Notably, after applying this method the 6s27s 2S1/2 level in

the Total column in Table I is remarkably close to the NIST

value. However, the 6s25d 2D5/2 level becomes further from

the NIST value. Possible explanations for this could include

an unbalanced MR between the ground and excited energy

levels. The 7s26d 2D3/2,5/2 levels could not be included in Model

Four due to computational limitations. Table II shows the

calculated transition rates in the Coulomb gauge for Lu I

and Lr I across the different models, and compares these to

both experiment and previous theory. Interestingly, the Lu I

calculations are close to the experimental values for Model

Two and the MR Model Three, but not accurate for Models

TABLE I. The calculated energy levels of Lr I and Lu I for different computational models, details on the different models are discussed

in Sec. III. The results are compared to NIST [35] where available, the values in the "Total" column are obtained by considering the effects of

both static and dynamic correlation.

Levels Energy (cm−1)

Element Configuration Term Model Two Model Three MR Model Three 
EMR Model Four Total NIST

Lu 6s25d 2D3/2 0 0 0 0 0 0 0

6s25d 2D5/2 1334 1695 1619 −76 1778 1702 1993

6s26p 2Po
1/2 590 3548 2358 0 3864 3864 4136

6s26p 2Po
3/2 3765 6866 5686 10 7220 7230 7476

6s27s 2S1/2 21353 23023 23523 500 23717 24217 24125

Lr 7s27p 2Po
1/2 0 0 0 0 0 0 −

7s26d 2D3/2 4907 3145 4853 0 − − −

7s26d 2D5/2 7106 6047 7763 8 − − −

7s27p 2Po
3/2 8133 8283 8540 257 8223 8480 −

7s28s 2S1/2 20658 19930 22003 365 20351 20716 −

7s27d 2D3/2 28543 27700 29922 514 28073 28587 −

7s27d 2D5/2 28694 27949 30166 509 28277 28786 −
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TABLE II. The calculated transition rates in the Coulomb gauge for Lu I and Lr I are showcased for different computational models, the

results of Lu I are compared to NIST [35] and Lr I is compared to CI + MBPT [8]. The Lu I transition rates of Models Two and Three had poor

energy separations and were scaled with the factor λ3
Calculated/λ

3
NIST where λ is the transition wavelength to allow comparison between models.

Upper levels Lower levels Einstein A coefficient (s−1)

Element Conf. Term Conf. Term Model Two Model Three Model Four MR Model Three NIST/CI+MBPT

Lu 6s27s 2S1/2 6s26p 2Po
1/2 3.14 × 107 4.10 × 107 4.21 × 107 3.21 × 107 3.20 × 107

6s27s 2S1/2 6s26p 2Po
3/2 5.23 × 107 6.94 × 107 7.25 × 107 5.45 × 107 4.9 × 107

Lr 7s28s 2S1/2 7s27p 2Po
1/2 3.13 × 107 3.41 × 107 3.30 × 107 3.38 × 107 3.31 × 107

7s27d 2D3/2 7s27p 2Po
1/2 5.03 × 107 4.91 × 107 4.61 × 107 3.95 × 107 6.14 × 107

7s28s 2S1/2 7s27p 2Po
3/2 3.31 × 107 3.34 × 107 3.39 × 107 2.88 × 107 3.57 × 107

7s27d 2D3/2 7s27p 2Po
3/2 9.57 × 106 9.80 × 106 9.75 × 106 6.94 × 106 1.21 × 107

7s27d 2D5/2 7s27p 2Po
3/2 3.68 × 107 5.19 × 107 5.19 × 107 3.92 × 107 5.39 × 107

Three and Four, this shows the importance of including the

MR when calculating transition rates.

Model Two can mimic the MR calculation by allowing

SD substitutions between the valence shells, allowing many

different configurations to be created. However, the same is

not true for Models Three and Four.

In Models Three and Four, where core substitutions are

allowed, if one electron moves from a valence shell to an-

other to make a new valence configuration, only one core

electron can be substituted due to the SD restriction. This sin-

gle core substitution is inadequate for accurately representing

electron-electron interactions in the core, resulting in the new

configuration having a relatively minimal contribution to the

system’s total energy. This may be resolved by either allowing

single, double and triple (SDT) electron substitutions or by

conducting a calculation with an MR set.

Given the difference in transition rates between Models

Three and Four are small, it is assumed that the difference

between MR Model Three and a hypothetical MR Model Four

would also be negligible. Therefore, results from experiment

and previous theory are compared to MR Model Three. As

Models Two and Three in Lr I yield energy separations that

deviate significantly from the NIST values, these transition

rates are adjusted by the factor λ3
Calculated/λ

3
NIST to align with

the experimental energy separations and to allow comparison

between models.

The Lu I and Lr I transition rates are compared to NIST

and CI + MBPT [8], respectively. The Lu I transition rates

show excellent agreement with experiment with the differ-

ences between NIST being 0.3 and 11% for the two calculated

transitions in Table II. The calculated transition rates of Lr

I also show good agreement with previous theory, especially

for transitions originating from the upper level of 7s28s 2S1/2,

which show deviations of 2.1% and 23% compared to CI +

MBPT. Although the transition rates from the 7s27d 2D3/2,5/2

upper levels are approximately 35% larger than the values in

MR Model Three, this discrepancy is within the uncertainity

of 40% estimated by Kahl et al. [8].

Table III presents a comparison between our calculated

results and previous theoretical values, with our results show-

ing the closest agreement with the recent CI + MBPT and

RCCSD(T) values reported by Kahl et al. [8]. Previous

MCDHF calculations reported the 7s27p 2Po
3/2 − 7s27p 2Po

1/2 en-

ergy to be lower than our value. This may be attributed to the

limited inclusion of electron correlation in those studies.

Our calculations improve upon those of Zou and Froese

Fischer [28] and Fritzsche et al. [7] which did not include

the effects of the g correlation orbitals and core contributions

from the 5d orbitals, respectively. The g correlation orbitals

are important for describing the actinides since these orbitals

have a direct dipole interaction with the 5f core orbitals [7].

Furthermore, due to the computational constraints that existed

at the time, convergence is not demonstrated in either work as

only two layers were included in the calculations.

Uncertainty

Assuming the uncertainties are independent and uncorre-

lated, the total energy uncertainty can be calculated as the

square root of the sum of the squares of the dynamic and static

energy uncertainties [44].

The uncertainty in energy is calculated for the transitions

from the upper levels 7s28s 2S1/2, 7s27d 2D3/2 to the ground state

7s27p 2Po
1/2. The static uncertainty is taken to be the differ-

TABLE III. The calculated energy levels of experimental significance of Lr I in comparison to previous theory.

Levels Energy (cm−1)

Configuration Term This work CI + MBPT [8] RCCSD(T) [8] FSCC [21] CI + all order [22] MCDHF [7] MCDHF [28]

7s27p 2Po
1/2 0 0 0 0 0 0 0

7s27p 2Po
3/2 8480 8606 8677 8413 8495 8138 7807

7s28s 2S1/2 20736 20485 20533 20118 20253 20405 −

7s27d 2D3/2 28607 28580 − 28118 − − −

7s27d 2D5/2 28806 28725 − 28385 − − −
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ence between the MR Model Three energy relative to the

lowest energy level of the same parity and the Model Three

energy relative the lowest energy level of the same parity in

Table I. This is calculated to be 365 cm−1 and 514 cm−1 for

the 7s28s 2S1/2 and 7s27d 2D3/2 levels, respectively.

The dynamic uncertainty is taken to be the difference be-

tween the NIST ASD and the Lu I Model Four values. The

corresponding level of the 7s28s 2S1/2 level in lutetium is the

6s27s 2S1/2 level, the dynamic uncertainty for this level is de-

termined to be 408 cm−1. The 7s27d 2D3/2 level has no lutetium

equivalent due to computational limitations, therefore it is

assumed the dynamic uncertainty for this level is the same

as for level 7s28s 2S1/2.

The total uncertainty can be obtained by taking the square

root of the sum of the squares of the two uncertainties, this

is then rounded to the nearest 50 cm−1. The uncertainty of

the 7s28s 2S1/2 level in Lr I is reported as 547 cm−1, rounded

to 550 cm−1 while the uncertainty of the 7s27d 2D3/2 level is

656 cm−1, rounded to 650 cm−1.

V. CONCLUSION

We report calculated values of experimentally significant

energy levels and corresponding transition rates of Lr I and

its lighter homologue Lu I, obtained using the MCDHF

method as implemented in GRASP2018. Calculations were per-

formed with various computational models with and without

a multireference set to capture different types of electron

correlation.

The reported transitions energies are 20 716 ± 550 cm−1

for the atomic transition 7s28s 2S1/2 → 7s27p 2Po
1/2 and

28 587 ± 650 cm−1 for the 7s27d 2D3/2 → 7s27p 2Po
1/2 atomic

transition. This work improves upon previous MCDHF

calculations by Zou and Froese Fischer [28] and Fritzsche

et al. [7] by demonstrating convergence and by considering

the effects of the g correlation orbitals and core contributions

from the 5d orbitals. Calculated energy levels and transition

rates of Lu I and Lr I exhibited good agreement with

experiment and previous theory, respectively. Our work on

Lr I appears to be in closest agreement with the theoretical

calculations performed using CI + MBPT and RCCSD(T)

[8]. The demonstrated agreement within different atomic

theory frameworks will help the effort of experimental level

search in Lr I as it clearly restrains the region which needs

to be investigated. The uncertainties of the calculated energy

levels, arising from limited computational resources, were

quantified and remain large compared to the discrepancies

observed in individual recent theoretical calculations.

Future calculations may include a multireference model

variationally to consider both static and dynamic correlation

within a large active set. To accomplish this, new methods

could be utilized such as independently optimized orbital sets

[45] or machine learning [46] to reduce the computational

load.
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[13] J. Warbinek, B. Anđelić, M. Block, P. Chhetri, A. Claessens, R.

Ferrer, F. Giacoppo, O. Kaleja, T. Kieck, E. Kim et al., Atoms

10, 41 (2022).

[14] J. Warbinek (private communication).

[15] B. J. B. Nelson, J. D. Andersson, and F. Wuest, Pharmaceutics

13, 49 (2020).

[16] J.-P. Desclaux and B. Fricke, Journal de Physique 41, 943

(1980).

062802-7



JOSEPH S. ANDREWS et al. PHYSICAL REVIEW A 112, 062802 (2025)

[17] W.-H. Xu and P. Pyykkö, Phys. Chem. Chem. Phys. 18, 17351

(2016).

[18] T. K. Sato, M. Asai, A. Borschevsky, T. Stora, N. Sato, Y.

Kaneya, K. Tsukada, Ch. E. Düllmann, K. Eberhardt, E. Eliav

et al., Nature (London) 520, 209 (2015).

[19] J. T. Kwarsick, J. L. Pore, J. M. Gates, K. E. Gregorich, J. K.

Gibson, J. Jian, G. K. Pang, and D. K. Shuh, J. Phys. Chem. A

125, 6818 (2021).

[20] E. Eliav, U. Kaldor, and Y. Ishikawa, Phys. Rev. A 52, 291

(1995).

[21] A. Borschevsky, E. Eliav, M. J. Vilkas, Y. Ishikawa, and U.

Kaldor, Euro. Phys. J. D 45, 115 (2007).

[22] V. A. Dzuba, M. S. Safronova, and U. I. Safronova, Phys. Rev.

A 90, 012504 (2014).

[23] Y. Guo, L. F. Pašteka, Y. Nagame, T. K. Sato, E. Eliav,

M. L. Reitsma, and A. Borschevsky, Phys. Rev. A 110, 022817

(2024).

[24] H. Ramanantoanina, A. Borschevsky, M. Block, and M.

Laatiaoui, Atoms 10, 48 (2022).

[25] H. Ramanantoanina, A. Borschevsky, M. Block, L. Viehland,

and M. Laatiaoui, Phys. Rev. A 108, 012802 (2023).

[26] H. Ramanantoanina, A. Borschevsky, M. Block, and M.

Laatiaoui, Phys. Rev. A 104, 022813 (2021).

[27] W. P. Wijesundera, S. H. Vosko, and F. A. Parpia, Phys. Rev. A

51, 278 (1995).

[28] Y. Zou and C. Froese Fischer, Phys. Rev. Lett. 88, 183001

(2002).

[29] C. Froese Fischer, G. Gaigalas, P. Jönsson, and J. Bieroń,

Comput. Phys. Commun. 237, 184 (2019).

[30] F. A. Parpia and A. K. Mohanty, Phys. Rev. A 46, 3735 (1992).

[31] B. Atalay, T. Brage, P. Jönsson, and H. Hartman, Astronomy &

Astrophysics 631, A29 (2019).

[32] I. P. Grant, J. Phys. B 7, 1458 (1974).

[33] Edited by I. P. Grant, Relativistic Quantum Theory of Atoms

and Molecules, Springer Series on Atomic, Optical, and Plasma

Physics, Vol. 40 (Springer, New York, 2007).

[34] W. R. Johnson, Atomic Structure Theory: Lectures on Atomic

Physics (Springer, Berlin, 2007).

[35] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team,

NIST Atomic Spectra Database (ver. 5.11) (National Insti-

tute of Standards and Technology, Gaithersburg, MD, 2023),

https://physics.nist.gov/asd.

[36] C. Froese Fischer, T. Brage, and P. Jönsson, Computational

Atomic Structure: An MCHF Approach (Institute of Physics,

Bristol, England, 1997).

[37] R. R. Li and M. R. Hoffmann, Advances in Quantum Chemistry

(Elsevier, Amsterdam, 2020), Vol. 81, pp. 105–141.

[38] A. Papoulia, J. Ekman, G. Gaigalas, M. Godefroid, S.

Gustafsson, H. Hartman, W. Li, L. Radžiūtė, P. Rynkun, S.
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