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Quantum reflection is a fascinating signature of the quantum vacuum that emerges from inhomogeneities
in the electromagnetic fields. In pursuit of the prospective real-world implementation of quantum reflection
in the back-reflection channel, we provide the first numerical estimates for the light-by-light scattering with
dipole pulses, which are known to provide the tightest focusing of light possible. For an all-optical setup
with a dipole pump and Gaussian probe of the same frequency, we find that the dominant signal signature is
related mainly to the back-reflection channel from 4-wave mixing. Focusing on this, we study the particular
case of a multiple focusing pulses configuration (belt configuration) as an approximation to the idealized
dipole pulse. Using Bayesian optimization methods, we determine optimal parameters that maximize the
detectability of a discernible back-reflection signal. Our study indicates that the optimization favors a three-
beam collision setup, which we further investigate both numerically and analytically.
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I. INTRODUCTION

Quantum vacuum fluctuations give rise to effective
nonlinear interactions between macroscopic electromag-
netic fields. Within the Standard Model of particle physics,
quantum electrodynamics describes the leading quantum
vacuum nonlinearities originating from the coupling of
electromagnetic fields via a virtual electron-positron loop
[1–4]. This interaction may alter the polarization, fre-
quency, and wave vector of the incident photons through
the fundamental quantum process known as “photon-
photon scattering” or “light-by-light scattering” [5–7].
At intensities far below the Schwinger limit, these effects

are typically very small (signals on the few-photon level),
especially compared to the huge laser background.
Therefore, measuring light-by-light scattering with real
photons is a significant experimental challenge.
However, the development of modern laser and detector
technologies makes it possible to propose [8–13] and

perform [13–17] the first potentially successful light-by-
light scattering experiments with real on-shell photons; for
experiments studying light-by-light scattering phenomena
using strong Coulomb fields see [18–22].
Since the signals are typically very small, one is

interested in finding discernible signatures that differ from
the background in their polarization [23], angular [8,24–26]
or frequency [27–30] properties. A particularly interesting
discernible signature is produced via quantum reflection,
which was first suggested by [31,32]. The authors found
that when a probe photon collides with an electromagnetic
field inhomogeneity of sufficient intensity and localization,
there is a nonzero probability for the probe photon to be
reflected. They also provided the first analytic estimates of
the magnitude of the effect, but, of course, these were
limited by simplifying assumptions regarding the electro-
magnetic field profile, e.g., the use of an infinite Rayleigh
range approximation [33].
To study more realistic field configurations and provide

more accurate estimates, one can use numerical Maxwell
solvers to model the background fields. For instance, the
authors of [34–36] use nonlinear Maxwell solvers to model
the nonlinear interaction of the fields. We resort to the
numerical approach first implemented in [37] that uses a
linear Maxwell solver to model the background fields and
the vacuum emission picture [38] to calculate the quantum
vacuum signal. In the vacuum emission picture, the signal
is separated from the large background, making it a
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convenient calculation tool that was applied in various
scenarios [1] and could be coupled in a straightforward way
with numerical optimization [39].
In this article, we look for the prospective real-world

implementation of quantum reflection that could yield a
sizable signal. Dipole pulses [40,41] have high focusing
efficiency and have been argued to benefit eþe− pair creation
[42,43]. They have also been considered for high-order
harmonic generation [44] and light-induced gravitational
effects [45]. Motivated by this, we consider a dipole pulse
to be a promising candidate for the back reflection of
incoming probe photons. We provide the first numerical
estimates for the light-by-light scattering with dipole pulses
and identify several configurations yielding the largest
reflected signal. For the equal frequency case, we find that
this reflected signal mainly originates from the back-reflected
channel of 4-wavemixing and focus on this signature inmore
detail. For this case, due to the 4π-focusing of a dipole pulse,
the signals remain background-dominated. To address this
issue, we study a multiple colliding pulses configuration as a
rough approximation to the dipole fields. Such a scenario
indeed makes the back-reflected signal discernible, albeit at
the expense of its magnitude. Additionally, we provide
optimal parameters for the probe orientation and polarization
of belt pulses to maximize the discernible back-reflected
signal. Optimizing energy distribution between belt pulses
shows that an even larger signal could be achieved with just
three pulses. Focusing on a subset of three pulse collisions
originating from our belt setup, we provide numerical and
analytical estimates for this case.
Our paper is structured as follows. We briefly summarize

the vacuum emission picture in Sec. II A, dipole fields in
Sec. II B, and details about the setting we consider in
Sec. II C. Numerical simulations are described in Sec. III A
and details about Bayesian optimization in Sec. III B. We
begin the results section by studying the collision of a
Gaussian pulse with a dipole pulse in Sec. IVA. This is
followed by considering a belt configuration in Sec. IV B
and a three pulse collision in Sec. IV C. Finally, we end with
conclusions in Sec. V.
Aside from a few exceptions where we intend to high-

light the explicit dependence on c and ℏ, throughout this
work we use the Heaviside-Lorentz system with natural
units ℏ ¼ c ¼ ϵ0 ¼ 1.

II. FORMALISM

A. Vacuum emission picture

Effective nonlinear interactions of electromagnetic fields
are described by the Heisenberg-Euler Lagrangian LHE [46].
For weak fields satisfying fjEj; cjBjg ≪ Ecr, with critical
electric field strength Ecr ¼ m2

ec3=ðeℏÞ ≃ 1.3 × 1018 V=m
and varying on typical spatiotemporal scales λ ≫ ƛC with
electron Compton wavelength ƛC ¼ ℏ=ðmecÞ ≃ 3.8 ×
10−13 m the leading contribution is given by [47]

L1-loop
HE ≃

m4
e

360π2

�
e
m2

e

�
4

ð4F 2 þ 7G2Þ; ð1Þ

where e is the elementary charge, me is the electron mass
and F ¼ 1

4
FμνFμν¼ 1

2
ðB2−E2Þ, G¼ 1

4
Fμν

⋆Fμν¼−ðB ·EÞ
are the electromagnetic field invariants. The leading-order
approximation is well justified for electromagnetic fields
attainable in current and near-future optical laser
experiments.
The vacuum emission picture [38] is a convenient way to

calculate quantum vacuum signals. The zero-to-single
signal photon transition amplitude to a state characterized
by a wave vector kμ ¼ ðω;kÞ, with ω ¼ jkj, and a
polarization vector ϵμðpÞðkÞ can be expressed as

SðpÞðkÞ ¼
ϵ�μðpÞðkÞffiffiffiffiffiffiffi

2k0
p

Z
d4xeikαx

α
jμðxÞjk0¼ω; ð2Þ

where

jμðxÞ ¼ 2∂ν
∂LHE

∂Fνμ ð3Þ

is the signal-photon current induced by the applied macro-
scopic electromagnetic fields Fμν.
Substituting Eq. (1) to Eqs. (2) and (3), we obtain for the

signal amplitude [29]

SðpÞðkÞ ¼ i
e
4π2

m2
e

45

�
e
m2

e

�
3 ϵ�μðpÞðkÞffiffiffiffiffiffiffi

2k0
p

Z
d4xeikαx

α

× ð4kνFνμF þ 7kν⋆FνμGÞjk0¼ω; ð4Þ

which has a cubic dependence on the electromagnetic field
strength tensor.
For several colliding pulses, it is often useful for the

analysis to split the signal amplitude into different channel
contributions. For later reference, we already want to
introduce this notation here. Omitting Lorentz indices,
the signal amplitude can be schematically written as

SðpÞðkÞ ¼
X
i;j;k

SijkðpÞðkÞ ∼
X
i;j;k

Z
d4xeikαx

α
FiFjFk; ð5Þ

where Fi corresponds to the electromagnetic field strength
tensor of the ith pulse and the sum is performed over all
possible combinations.
Modulus squaring the transition amplitude [Eq. (2)]

gives the differential number of signal photons

d3NðpÞðkÞ ¼
d3k
ð2πÞ3 jSðpÞðkÞj

2: ð6Þ

The polarization-insensitive signal photon spectrum is
obtained by summing over the transverse polarizations:
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d3NðkÞ ¼ P
p d

3NðpÞðkÞ. In this article, we focus only on
polarization-insensitive signals [for which we use the
notation Sijk similar to Eq. (5)]. The integration over all
possible signal-photon energies gives the polarization-
insensitive angular resolved signal photon density

d2N
d2Ω

ðϑ;φÞ ¼
Z

∞

0

dωω2

ð2πÞ3
X
p

jSðpÞðkÞj2; ð7Þ

with solid angle element d2Ω ¼ d cos ϑdφ.
We introduce the analogous quantity for background

fields d2Nbgr=d2Ωðϑ;φÞ and compare it with the signal one
to determine angularly discernible regions,

d2N
d2Ω

ðϑ;φÞ > d2Nbgr

d2Ω
ðϑ;φÞ: ð8Þ

Integration over these regions yields the total discernible
signal—Ndisc. Specifying the angular region of interest by
Ωdet and integrating over it gives us the total “detected”
signal

Ndet ¼
Z
Ωdet

dΩ
d2N
d2Ω

ðϑ;φÞ: ð9Þ

B. Dipole fields

Dipole pulses are exact and singularity-free solutions of
the free Maxwell equations, providing efficient focusing of
electromagnetic field energy [40,41]. Compared to focused
Gaussian pulses, optimal focusing of dipole pulses leads to
higher field amplitudes, which can result in the enhance-
ment of light-by-light scattering signatures [48]. Strong
field localization can be especially useful for enhancing
quantum reflection.
A dipole pulse is characterized by its type (electric dipole

↔ e dipole or magnetic dipole ↔ b dipole), the orientation
of its virtual dipole moment d, its wavelength, and its
duration. In an e dipole, the electric field dominates at the
focus; in a b dipole, the magnetic field does.
The electromagnetic field of an e-dipole pulse is given

by [Eqs. (23a) and (23b) from [40] ]

Bðt; rÞ ¼ −½n × d�
�
1

c2
g̈þðt; rÞ

r
þ 1

c
ġ−ðt; rÞ

r2

�
; ð10aÞ

Eðt; rÞ ¼ n × ½n × d�
rc2

g̈−ðt; rÞ þ
3nðn · dÞ − d

r3

×

�
r
c
ġþðt; rÞ þ g−ðt; rÞ

�
; ð10bÞ

where r ¼ jrj, n ¼ r=r is the unit radius vector, g�ðt; rÞ ¼
gðt − r=cÞ � gðtþ r=cÞ and gðtÞ is an arbitrary function. In
this work, we consider only dipole pulses with a Gaussian

temporal envelope gðtÞ ¼ expð−t2=ðτ=2Þ2Þ expð−iωtÞ,
where τ is the dipole pulse duration measured at 1=e2 of
the intensity and ω is its frequency.
The field distribution of a magnetic dipole pulse can be

obtained from Eq. (10) by using the following rule [40]:

Ee−dipole → Bb−dipole; Be−dipole → −Eb−dipole: ð11Þ

Figure 1 shows the dipole pulse’s electromagnetic
energy density, which is radially symmetric in the plane
perpendicular to the dipole moment (xz) and forms a
characteristic dipole emission pattern in other planes (xy
and yz). The effective focusing volume of energy density
concentration of a dipole pulse is much smaller than λ3 for
focused Gaussian pulses, therefore, achieving higher field
amplitudes and localization [40]. For our parameters, the
rough estimate of the volume bounded by the half height of
the energy density concentration is Vdp ¼ l2⊥ljj ≈ 0.093λ3,
where l⊥ ≈ 0.4λ and ljj ≈ 0.6λ are the characteristic exten-
sions in the transverse and longitudinal directions, respec-
tively (full width half maximum [FWHM]). Such effective
focusing of electromagnetic field energy was our main
motivation to consider a dipole pulse as a promising
candidate for quantum reflection.

FIG. 1. Electromagnetic energy density of a magnetic dipole
pulse in three planes (xz at y ¼ 0, xy at z ¼ 0, and yz at x ¼ 0) at
two time steps: (left column) t ¼ 0 (focus), (right column) t ¼ τ.
Dipole pulse parameters: W ¼ 40 J, λ ¼ 800 nm, dkey,
τFWHM ¼ 20 fs.
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C. Considered setting

We are interested in the optical (and near-IR) frequency
range with all pulses originating from PW-class lasers and
colliding at zero impact parameter. In this article, we
consider pulses with energies ranging from W ¼ 10 J to
W ¼ 40 J, the wavelength λ ¼ 800 nm and the pulse
duration τFWHM ¼ 20 fs measured at FWHM of the inten-
sity. In the simulations, we use a Gaussian temporal profile
expð−t2=ðτ=2Þ2Þ, where τ is the pulse duration measured at
1=e2 of the intensity. These durations are related by
τ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2= ln 2
p

τFWHM. The polarization of Gaussian pulses
is determined by the angle β, corresponding to ∢fEðt ¼ 0;
r ¼ 0Þ;exg in the frame of reference where the pulse
propagates along ez. Here ex and ez are the basis vectors
for the x and z axes, respectively.
In all considered scenarios, we provide the total vacuum

emission signal and name one pulse “the probe” only for
notational convenience. Let us note that we do not perform
any linearization in the probe field at the amplitude level at
this stage because for some setups there are several
channels contributing to the spectral region of interest.
As an observable, we focus on the back-reflected signal
with particular interest in the contribution generated by the
probe pulse. We determine it with subsequent channel
analysis and explicitly state if there are several channels
contributing to the back-reflected region. To quantify the
amount of back-reflected signal, we use a 10° × 10°
detector, which is large enough to capture the relevant
region, and study the signal dependence on the parameters
of the pulses. At the same time, it seems experimentally
reasonable: for instance, a 10 mm camera chip located 1 m
from the interaction point would require a 17× magnifi-
cation system.

III. NUMERICAL METHODS

A. Simulation

The algorithm to obtain realistic quantum vacuum signal
estimates was originally put forward in [37]. Their code
employed 1) a linear Maxwell solver to describe the
evolution of the external electromagnetic fields and 2)
the vacuum emission picture to determine the leading
quantum vacuum signal via Eq. (2). Such an approach
does not rely on simplifying assumptions and approxima-
tions regarding the spatiotemporal structure of the partici-
pating fields and can provide quantitatively accurate results
in experimentally relevant configurations.
To extend the physics case and provide a range of

additional utilities, we wrote our own code QUVAC [49] that
relies on the same core algorithm: linear Maxwell solver þ
vacuum emission picture. To remove some limitations of
the previous code, we added the possibility to calculate
channel-separated signals and use any combination of
analytic and Maxwell-propagated fields. Additional mod-
ularity and postprocessing utilities allowed us to achieve

almost seamless integration of grid scans and Bayesian
optimization. For faster computations, we added the pos-
sibility of lower precision calculations (float32) [50] and
parallelization.
We initialize the self-consistent Maxwell propagation by

constructing manifestly transverse fields based on an initial
model field configuration at focus (t ¼ 0) in the space
domain (for details, see Sec. III D of [37]). This field is then
propagated to other time steps according to the linear
Maxwell equations. For Gaussian pulses, we use the
leading-order paraxial Gaussian [51] as the model field
in the focus; for dipole pulses, we use Eq. (10) with a
Gaussian temporal envelope.

B. Bayesian optimization

Following [39], we use Bayesian optimization to effi-
ciently explore the parameter landscape of configurations
with several free parameters. We use the optimization
framework “Ax” [52] which provides a high-level imple-
mentation of Bayesian optimization. This framework is
integrated into our QUVAC package.
We start with five to 15 randomly sampled observations,

serving as a foundation for the Bayesian model initializa-
tion, and continue up to several tens of Bayes steps. The
optimization is dynamically parallelized between several
computational nodes.

IV. RESULTS

A. Dipole pulse

As described in Sec. II B, a dipole pulse has a very high
focusing efficiency of electromagnetic field energy and, as
a result, high field amplitudes and high intensity gradients
around the focus. Such field properties make it a promising
candidate for quantum reflection. In this section, we study
the characteristics and estimate the magnitude of the
reflected signal in the collision of a Gaussian probe pulse
and a dipole pump pulse.
In this section, we consider a Gaussian probe pulse with

energy W ¼ 20 J, wavelength λ ¼ 800 nm, duration
τFWHM ¼ 20 fs and waist size w0 ¼ 2λ, achieving maximal
intensity of Imax ¼ umax=2 ≈ 2.3 × 1022 W=cm2, where
u ¼ ðE2 þ B2Þ=2 is the electromagnetic energy density.
A magnetic dipole pump pulse has the following param-
eters: W ¼ 40 J, λ ¼ 800 nm, τFWHM ¼ 20 fs, achieving
maximal intensity of Imax ≈ 1.2 × 1024 W=cm2. Note that
the probe and the pump have the same frequency.
Figure 2 shows the angular signal photon spectra for

different orientations of the dipole moment. Recall, that
when two Gaussian pulses collide, the signal is centered
around their directions of propagation. For the dipole case,
we can see that the angular signal spectrum is very broad,
and it heavily depends on the dipole moment orientation.
Extended ringlike structures around the dipole moment axis
[bright for case (a) and dimmer for cases (b) and (c)]
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originate from the dipole self-scattering (see discussion
below). The forward probe channel around ðϑ;φÞ ¼
ð90°; 0°Þ is present for all cases, but the back-reflected
signature at ðϑ;φÞ ¼ ð90°; 180°Þ is suppressed for some
configurations [compare (a) with (b) and (c)]. The non-
trivial electromagnetic field structure of the dipole pulse
and the interplay between probe polarization and dipole
moment orientation lead to different “preferred” directions
of emission and angular features. For instance, when the
linearly polarized probe (β ¼ 0°) propagates along the
dipole moment, this leads to the appearance of an asym-
metry with respect to φ for case (a). Changing the
polarization of the probe to β ¼ 90° leads to the appearance
of an asymmetry with respect to ϑ. Phenomenologically,
this asymmetry could have the following origin. For the

magnetic dipole, only the magnetic field is present at the
focus, and it is aligned with the dipole moment. The electric
field lines form rings around the dipole moment axis. For
the linearly polarized probe propagating along the dipole
moment, the probe’s electric field would be parallel to the
dipole’s electric field on one side of the ring and antiparallel
on another, leading to the φ (or ϑ) asymmetry.
In terms of the total polarization-insensitive signal, the

Gaussian-dipole cases (a, b, c) yield Ntot ≈ ð348; 574; 416Þ
with Ndet ≈ ð0.25; 7.2; 2.8Þ in a 10° × 10° detector in the
back-reflected region of interest.
To more clearly see the difference between these cases,

Fig. 3 shows the lineouts from angular spectra at ϑ ¼ 90°.
Once again, in all dipole scenarios, the spectrum is very
broad. The dkey case has the largest peak in the back-
reflected direction, which is even higher than the one in the
forward direction (see the channel discussion below for an
explanation). The left-right asymmetry for the case dkex
can be seen here as well.
Now, let us try to uncover why the angular signal

spectrum from the dipole setup has such features. Recall
that a single paraxial Gaussian pulse has a very small
quantum vacuum signal due to self-scattering [37].
Conversely, a dipole pulse has a rich k spectrum, resulting
in a substantial self-scattering signal, which is shown in
Fig. 4 (compare this with Fig. 2(b): due to the difference in
scales for the signal, dark red in Fig. 4 corresponds to light
orange in Fig. 2, but the angular shape of self-scattering
remains the same). Similar to the background plot (and the
focus planes in Fig. 1), no signal is emitted along the virtual
dipole moment, and the slice perpendicular to it exhibits

FIG. 3. Lineout from the angular signal photon spectrum at
ϑ ¼ 90°. Different lines correspond to different collision scenar-
ios shown in Fig. 2. The blue-shaded region corresponds to the
detector for the back-reflected signal.

FIG. 2. Angular signal photon spectrum from the collision of a
Gaussian probe with a dipole pump. Probe pulse has the
following parameters: k̂ ¼ ex, W ¼ 20 J, λ ¼ 800 nm,
τFWHM ¼ 20 fs, w0 ¼ 2λ, β ¼ 0°. The probe collides with the
magnetic dipole pulse (W ¼ 40 J, λ ¼ 800 nm, τFWHM ¼ 20 fs)
with different dipole moment orientations. Green crosses show
the dipole moment axis. The blue square shows a 10° × 10°
detector for which we calculate the reflected signal (Ndet).
(a) dkex, Ntot ≈ 348; Ndet ≈ 0.25; (b) dkey, Ntot ≈ 574;
Ndet ≈ 7.2; (c) dkez, Ntot ≈ 416; Ndet ≈ 2.8.
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azimuthal symmetry. Note that, due to the 4π focusing, the
dipole background dominates almost everywhere and our
region of interest (10° × 10° detector) collected Ndet ≈
1.5 × 1020 photons from the background and Ndet ≈ 1.1
photons from the self-scattering. For the total signal in the
detector Ndet ≈ 7.2 from Fig. 2(b), this results in the signal-
to-background ratio ∼5 × 10−20. Let us note for complete-
ness that we chose the same frequency for the probe and the
dipole in our idealized setup on purpose because such a
configuration leads to the largest back-reflected signal due
to the energy-momentum conservation (the background
issue will be addressed in the next sections). Detuning the
frequency of the dipole and probe pulse leads to a rapid
decrease in back-reflected signal, showing that this back-
reflected signature mainly originates from the 4-wave
mixing channel rather than the pure quantum reflection.
Schematically, the dominant channels for the Gaussian-

Gaussian (G–G) and Gaussian-dipole (G–D) cases can be
written at the amplitude level in the following form (1
stands for the probe and 2 for the pump): SG−G ≈ S122 þ
S112 (S111 and S222 are present but highly suppressed),
SG−D ≈ S122 þ S112 þ S222 (S222 corresponds to the dipole
self-scattering). The interference between these terms plays
a substantial role in the signal photon spectrum. Recall that
the dkey case in Figs. 2 and 3 has a larger peak in the back-
reflected direction than in the forward one. Numerical
channel analysis (for details see Appendix A) showed that
this is due to 1) the S122 channel having a larger peak in the

back-reflected direction than in the forward one, 2) more
favorable interference between S122, S112 and S222 for the
reflected direction, and 3) the S112 channel contributing to
the reflected direction but not contributing to the forward
scattering.
Fixing colliding pulse parameters to the ones from Fig. 2

and manually varying only the dipole type, the orientation
of its dipole moment, and the probe polarization, we found
several configurations resulting in the largest back-reflected
signal. The case (b) in Fig. 2 is one of these configurations:
a b-dipole pulse with dkey and βprobe ¼ 0° (Eprobejj − ez,
Bprobejjey). Let us note that the dk − ey case would result in
a different signal due to the carrier envelope phase (CEP)
effect. The same signal is achieved for an e dipole with
dk − ez and βprobe ¼ 0°. Cases with different polarization
angles of the probe can be traced down to the aforemen-
tioned ones by a rotation of the coordinate frame around the
wave vector of the probe: for instance, a b dipole with dkez
and βprobe ¼ 90° (Eprobejjey, Bprobejjez) would result in the
same back-reflected signal.
To make sure that we found the optimal configuration,

we ran a Bayesian optimization for three parameters: b-
dipole moment orientation (ϑd;φd) and probe polarization
(βprobe). All other parameters were similar to the ones from
Fig. 2. The results are shown on Fig. 5 which suggests that
the optimum lies around ðϑ�d;φ�

d; β
�
probeÞ ≈ ð0°; 360°; 90°Þ

(this corresponds to djjez and Eprobejjey) achieving
Ndet ≈ 7.2. Note that for the special case of dkez with
ϑ�d ¼ 0° the polar angle φ�

d is not defined. With βprobe ¼ 90°
this setup is equivalent to the one from Fig. 2(b).
Overall, colliding a Gaussian probe with a dipole pulse of

the same oscillation frequency results in a significant back-
reflected signal, which is “contaminated” by other channels,
including dipole self-scattering. We determine the optimal
alignment between the dipole moment and the probe polari-
zation tomaximize the back-reflected signal. Unfortunately, a
large dipole background renders this signature indiscernible:
in the region of interest, the signal-to-background ratio is
extremely low. In the next sections, we explore avenues to
address this background issue.

B. Multiple colliding pulses in a belt configuration

In the previous section, we found that the collision of a
Gaussian probe with a dipole pulse of the same frequency
produces a sizable back-reflected signal. However, the
dipole setup faces two serious issues: 1) a large dipole
background makes the reflected signature not discernible,
and 2) producing dipole pulses in the laboratory is very
challenging. For a potential experimental measurement, it
would be crucial to find a setup that both keeps the relevant
spectral modes from the dipole pulse, achieving a sizable
back-reflected signal, and does not have any background in
the region of interest.

FIG. 4. Angular background and signal photon spectrum from a
single magnetic dipole pulse. Dipole pulse parameters:
W ¼ 40 J, λ ¼ 800 nm, dkey, τFWHM ¼ 20 fs. Green crosses
show the dipole moment axis. The blue square shows a 10° × 10°
detector. The dipole background results in Ntot ≈ 4 × 1022,Ndet ≈
1.5 × 1020 and the dipole self-scattering results in Ntot ≈ 289,
Ndet ≈ 1.1.
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It was proposed in [53] to use multiple colliding pulses
arranged in a specific geometry to achieve high focusing.
The multiple pulse configuration approximates the dipole
pulse: the more pulses are taken, the closer the electromag-
netic fields (and k spectrum) resemble those of a dipole
wave. Therefore, choosing a configuration with no pulses
propagating close to the back-reflected directionmight solve
the background problem, making the back-reflected signa-
ture discernible.
In this section, we consider a particular case of a multiple

pulse focusing setup: four focused Gaussian pulses
arranged in a belt configuration. Figure 6 shows the
geometry of the considered scenario: four pulses form a
belt in the xy plane (the optical axis of each pulse is
perpendicular to those of its neighbors), and a probe pulse
hits the belt plane at 45° in between the pulses described by
wave vectors k1 and k4. From now on, we refer to the four
pulses in a belt as “belt configuration” and the whole five
pulse setup (with probe) as “belt collision scenario.”
Figure 7 shows the angular background and signal photon

spectrum for the belt collision scenario. On the background
plot, four distinct spots are clearly visible on the equator—
they correspond to the belt pulses; the remaining bright spot
around (ϑ ¼ 45°;φ ¼ 0°) is the probe pulse. On the signal

plot, in addition to the peaks related to the direction of the
background pulses, we see three potentially discernible
signatures: back-reflected (ϑ ¼ 135°;φ ¼ 180°), back-
angle-reflected (ϑ ¼ 135°;φ ¼ 0°), and forward-angle-
reflected (ϑ ¼ 45°;φ ¼ 180°). For the chosen parameters
in 10° × 10° detectors we get Nback-reflected

det ≈ 1.2 (signal-to-
background ratio≈5 × 105),Nforward-angle-reflected

det ≈ 0.26 (sig-
nal-to-background ratio ≈1 × 105) and a negligible amount
of back-angle-reflected signal.
To understand the origin of these discernible signatures,

recall from Eq. (5) that every signal channel scales cubically
with the field. In multipulse collisions, any pair or triplet of
participating pulses corresponds to a separate channel (self-
scattering channels are suppressed for focused Gaussian
pulses). For our setup in Fig. 6, some viable combinations
satisfying energy-momentum conservation are (p for probe):
Sp13; S113; S123, and so on. Each of the channels might result
in a separate angularly or spectrally resolved signature. Since
we are interested in an elastic back-reflected signature, we
consider all pulses to have the same wavelength, so only
angular signatures will be prominent. Moreover, this signa-
ture should be linear in the probe field, which limits the
number of channels that might contribute to

P
4
i;j¼1 S

pij.
From the plane wave estimates for our setup, we expect the
following angular signatures (see Fig. 8): 1) back-reflected
(ϑ¼135°;φ¼180°), 2) back-angle-reflected (ϑ ¼ 135°;
φ ¼ 0°), and 3) forward-angle-reflected (ϑ ¼ 45°;
φ ¼ 180°). The back-reflected signal is produced by (þ sign
stands for the absorption of a photon,− sign for its emission)
ksignal ¼ k1 þ k3 − kprobe and ksignal ¼ k2þ
k4 − kprobe, back-angle-reflected by ksignal ¼ k1 þ k4 −
kprobe and forward-angle-reflected by ksignal ¼ k1 þ k2 −
kprobe and ksignal ¼ k3 þ k4 − kprobe. The finite transverse
and temporal extent of the pulses relaxes the plane-wave
energy-momentum conservation condition. Observed signa-
tures are consistent with this 4-wave mixing interpretation.
When the probe propagates closer to the xy plane

(ϑprobe → 90°), its interaction volume with the belt

FIG. 5. Optimization results in three-dimensional parameter
space: b-dipole moment orientation (ϑd;φd) and probe polari-
zation (βprobe). The optimization objective was to maximize the
signal in a 10° × 10° detector around ðϑ;φÞ ¼ ð90°; 180°Þ. Probe
and dipole pulse parameters are similar to Fig. 2. Found optimum
is ðϑ�d;φ�

d; β
�
probeÞ ≈ ð0°; 360°; 90°Þ achieving Ndet ≈ 7.2. The

optimum corresponds to djjez and Eprobejjey.

FIG. 6. Schematic diagram of a belt collision scenario.
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configuration increases, leading to a larger total back-
reflected signal. At the same time, starting from some
optimal ϑ�probe, the total discernible signal decreases as
ϑprobe → 90° due to the background from belt pulses (see
discernible mask on Fig. 7). We chose ϑprobe ¼ 45° to have
a sizable signal and good signal-to-background ratio. As for
the azimuthal angle φprobe, we chose it so that the probe lies
symmetrically between the pulses characterized by wave
vectors k1 and k4. In this way, the signals coming from the
fields ðkprobe;k1;k3Þ and ðkprobe;k2;k4Þ equally contrib-
ute to the same back-reflected signature (recall the channel
discussion after Fig. 6). Breaking this symmetry would
result in different interaction volumes between the probe
and pairs of pulses ðk1;k3Þ and ðk2;k4Þ.

To test that we chose a reasonable probe orientation, we
performed a 2D Bayesian optimization for the probe’s
propagation direction ðϑprobe;φprobeÞ. The results are shown
in Fig. 9. Note that this optimization plot differs from
others: here, the color corresponds to the mean and variance
of the Gaussian process surrogate model fitted to the
observations. When the color does not overlap with
observations (squares), it does not represent the “true”
amount of the discernible signal obtained from simulations
but rather the model’s “belief” (mean and variance) of what
the value would be. For a two-dimensional parameter
space, it could be represented nicely, but for higher-
dimensional parameter spaces, it becomes challenging
for visualization and interpretation. The results suggest
that the maximal discernible signal is achieved for the
configuration ðϑ�probe;φ�

probeÞ ≈ ð45.9°; 0°Þ, which is very
close to our setup. Note that the symmetric configurations
with ðϑ�probe;φ�

probeÞ ≈ ð45.9°; 90°Þ and ð45.9°; 180°Þ result
in the same amount of discernible signal. For ϑprobe → 90°
the discernible signal almost vanishes. Discernibility in this
case (and optimal ϑ�probe) is closely linked to the focusing of
background pulses: the setups with weaker focusing would
have larger discernible area (recall discernible map from
Fig. 7) producing sizable discernible signal even for larger
ϑprobe and shifting the optimal collision angle closer to the
xy plane (ϑ�probe → 90° as w0 → ∞). On the variance plot,
the areas around observations have low variance, which
increases the further one goes in the “unexplored” area.
To find the optimal polarization configuration between

the belt pulses, we launched a 4D Bayesian optimization.
The results are shown in Fig. 10. They suggest that for a
fixed polarization of the probe βprobe, several equivalent
optimal configurations result in the same amount of
detected signal [e.g., ðβ1; β2; β3; β4Þ ¼ ð0°; 90°; 90°; 0°Þ
and ðβ1; β2; β3; β4Þ ¼ ð180°; 90°; 90°; 180°Þ]. Changing
probe polarization shifts the optimum (see Appendix B
for a more detailed discussion in the context of three pulse

FIG. 8. Schematic diagram of expected signals allowed by
plane-wave energy-momentum conservation in a belt collision
scenario.

FIG. 7. Angular background and signal photon spectrum and
discernible mask from the collision of a Gaussian probe with a belt
configuration. Probe parameters: W ¼ 20 J, λ ¼ 800 nm,
w0 ¼ 2λ, τFWHM ¼ 20 fs, ðϑprobe;φprobeÞ ¼ ð45°; 0°Þ,
βprobe ¼ 0°. The belt consists of four pulses (i ¼ 1..4) with W ¼
10 J each, ðϑb;i;φb;iÞ ¼ ð90°; 90° × i − 45°Þ and polarization
angles β1 ¼ β4 ¼ 0°; β2 ¼ β3 ¼ 90° (other parameters are similar
to the probe). Blue squares show 10° × 10° detector regions.
Signal around ðϑ;φÞ ¼ ð135°; 180°Þ is back reflected with
Ndet ≈ 1.2, signal around ðϑ;φÞ ¼ ð45°; 180°Þ is forward-angle-
reflected with Ndet ≈ 0.26.
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collisions). In this optimization setting, we chose the probe
to lie in the belt plane (which results in a larger total signal
compared to our setup in Fig. 7) to minimize the computa-
tional cost.
Recall from Eq. (5) that every signal channel scales

cubically with the field, and the back-reflected channel is
linear in the probe field and quadratic in the pump field. For
a fixed energy budgetW0, the maximal total back-reflected
signal is achieved when the probe gets Wprobe ¼ 1=3W0

and the pump gets Wpump ¼ 2=3W0. For our setup, we
choose these optimal values where Wpump is equally
distributed between four pulses, resulting in
Wbelt pulse ¼ 1=6W0. To test that such energy distribution

indeed maximizes the back-reflected signal, we launched
another Bayesian optimization where we had a fixed energy
budget for belt pulses equal to Wpump, and the energies
of three pulses were optimized parameters (W1, W2, W3)
with a constraint W1 þW2 þW3 ≤ Wpump and W4 ¼
Wpump −W1 −W2 −W3. Figure 11 shows the optimization
results, which suggest that removing two pulses from the
belt configuration (redistributing Wpump between only two
remaining ones) leads to an even larger back-reflected
signal. The optimization converged to the configuration
where W2 and W4 are removed, but we see equally bright
trials when W1 and W3 are removed. Both of these three
pulse configurations are equivalent.
Overall, replacing a dipole pulse with a belt configura-

tion produces a sizable discernible back-reflected signal,
improving upon the previous setup. We provide a channel
analysis of signals from the belt configuration and the
optimal values for the probe orientation, polarization of the

FIG. 10. Optimization results in four-dimensional parameter
space: the linear polarization angle of the different belt pulses
ðβ1; β2; β3; β4Þ. The optimization objective was to maximize
the number of photons in a 10° × 10° detector around
ðϑ;φÞ ¼ ð90°; 180°Þ. The probe collides with a belt configuration
consisting of four focused Gaussian pulses at an angle of
ϑprobe ¼ 90°, the polarization of the probe is fixed to βprobe ¼ 0°.
Other parameters are similar to Fig. 7. Found optimum is
ðβ�1; β�2; β�3; β�4Þ ≈ ð0°; 90°; 90°; 0°Þ achieving Ndet ≈ 2.3.

FIG. 9. Optimization results in two-dimensional parameter
space: the propagation direction of the probe ðϑprobe;φprobeÞ.
Colormaps correspond to (top) the mean and (bottom) variance of
the fitted Gaussian process surrogate model. The optimization
objective was to maximize the total discernible signal. The probe
collides with a belt configuration consisting of four focused
Gaussian pulses with polarizations β1 ¼ β2 ¼ β3 ¼ β4 ¼ 0°.
Other parameters are similar to Fig. 7. Found optimum is
ðϑ�probe;φ�

probeÞ ≈ ð45.9°; 0°Þ achieving Ndisc ≈ 0.97. The top plot
shows us that there are three equivalent configurations with
ϑprobe ≈ 45.9°: 1) φprobe ¼ 0° ↔ probe propagates between pair
of pulses described by ðk4;k1Þ, 2) φprobe ¼ 90° ↔ between
ðk1;k2Þ, 3) φprobe ¼ 180° ↔ between ðk2;k3Þ. These configu-
rations result in the same total discernible signal, and optimiza-
tion converged to one of them. When ϑprobe is too large, no sizable
discernible signal could be detected. The bottom plot shows that
around the observation points the variance is zero (as expected),
while in unexplored parameter regions it still remains small.
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belt pulses, and energy distribution between them. In
particular, energy distribution optimization shows that
removing two pulses from the five-pulse belt setup leads
to an even larger back-reflected signal. From an exper-
imental point of view, the more pulses collide, the harder it
is to precisely overlap them temporally and spatially (due to
jitter), making a three-pulse setup a favorable choice. In the
next section, we will explore this setup.

C. Three pulse collision

In the previous section, we found that the three pulse
setup yields a larger amount of total back-reflected signal in
the region of interest than the five pulse belt setup. Three
pulse setups were extensively studied in the light-by-light
scattering context: first analytic estimates [54,55], setups
with different optical frequencies [16,27,28,36,56–58],
setups with an x-ray pulse [28,59,60], setups with a pulse

carrying orbital angular momentum (OAM) [61], photon
merging and splitting [62], general analytic study [30]. The
motivation of these setups is to leverage the third pulse to
produce the signal which would differ from the background
by its angular, frequency, polarization, or OAM properties,
or a combination of them. In this section, we focus on a
subset of three pulse setups: 1) every pulse has the same
frequency in the optical range, and 2) three pulses are
arranged in a specific planar geometry resulting from our
belt setup.
Our planar geometry for three pulses collision is shown

in Fig. 12. Two counter-propagating pulses form the pump,
and a probe pulse propagates at θc angle to it. The back-
reflected signal is formed by ksignal ¼ −kprobe þ k1 þ k2.
Note that this configuration results from Fig. 6 by removing
two counter-propagating belt pulses (e.g., k2, k4), relabel-
ing the remaining belt pulses to k1, k2 (e.g.,
k1 → k1;k3 → k2) and rotating the coordinate frame so
all three pulses lie on the equator (this is always possible for
our geometry since two pulses are counter-propagating).
The collision setting we consider closely resembles those

in [54,55,58,62]. The difference is that in our simulations,
the background fields are exact solutions of linear Maxwell
equations (without simplifying assumptions regarding the
electromagnetic field profile). Additionally, we focus
purely on the quasielastic back-reflected signature (signal
is at the probe’s frequency and in the direction opposite to
the probe propagation). It should be noted that it might be
experimentally challenging to realize the setup with two
exactly counter-propagating pulses (as considered here).
For pump pulses propagating at some angle, the energy-
momentum conservation would be modified, requiring the
probe to have a different frequency in order to produce a
sizable signal in the back-reflected direction. Eventually,
this would correspond to the setups discussed in [16,27,36].
Figure 13 shows the angular background and signal

photon spectrum for this scenario. The angles
ðφprobe;φ1;φ2Þ ¼ ð0°; 60°; 240°Þ were chosen to agree with
our initial belt setup. On the background plot, three spots
correspond to three pulses, and on the signal plot, the extra
spot at ðϑ;φÞ ¼ ð90°; 180°Þ corresponds to the back-
reflected signature. The chosen configuration results in

FIG. 12. Schematic diagram of a three pulse collision scenario.

FIG. 11. Optimization results in three-dimensional parameter
space: energy fraction of three pulses in the belt configuration
(W1; W2;W3). The energy fraction of the fourth pulse is
W4 ¼ 1 −W1 −W2 −W3. The total energy budget for the belt
pulses was fixed to Wpump ¼ 40 J. The optimization objective
was to maximize the signal in a 10° × 10° detector around
ðϑ;φÞ ¼ ð135°; 180°Þ. The polarization of pulses is β1 ¼ β2 ¼
β3 ¼ β4 ¼ 0°, other parameters are similar to Fig. 7. Found
optimum is ðW�

1;W
�
2; W

�
3; W

�
4Þ ≈ ð0.5; 0; 0.5; 0Þ achieving

Ndet ≈ 0.32.
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Ndet ≈ 1.5 signal photons in the detector region (signal-to-
background ratio ≈1 × 105). Compared to the belt setup,
the absence of two additional background pulses increases
the potential discernible area. As a result, by moving the
optical axis of pump pulses closer to the optical axis of
the probe it is possible to slightly increase the signal at the
expense of signal-to-background ratio [e.g., the setup with
ðφprobe;φ1;φ2Þ ¼ ð0°; 55°; 235°Þ results in Ndet ≈ 1.8 and
signal-to-background ratio ≈11].
We chose the optimal polarization angles from the

previous setup. To test if this is reasonable, we also provide
a simple plane-wave-based analytic estimate for the polari-
zation prefactor in the vacuum emission amplitude (see
Appendix B). The analytic results suggest that the optimal
polarization configuration does not depend on θc [a smaller
θc increases the prefactor but does not affect the location of
the optimum ðβ�probe; β�1; β�2Þ] and for each fixed βprobe the
optimal β�1 ¼ βprobe, and β�1 þ β�2 ¼ 90°þ 180°n with
n ¼ 0 for βprobe < 90° and n ¼ 1 for 90° < βprobe < 180°.

Overall, we studied a subset of three pulse setups,
which is motivated by our belt setup and produces a
sizable discernible back-reflected signal. Being more
experimentally accessible than other considered scenarios
(dipole and belt), it still has a few challenges. First of all,
since our signals are at the frequency of driving lasers, it
would be especially crucial not to allow free electrons in the
region between the interaction point and the field-of-view
of the detector [58]. Second, timing and pointing jitter
between three pulses might result in a shot-to-shot signal
variability [58].

V. CONCLUSIONS

Dipole pulses are a particularly interesting field con-
figuration with a high focusing efficiency that has been
argued to have benefits for eþe− pair creation [42,43].
Motivated by this, a dipole pulse was considered to be a
promising candidate for the real-world implementation of
quantum reflection that could yield a sizable signal. First
numerical estimates for light-by-light scattering with dipole
pulses were provided, focusing on a signal observed in the
back-reflected direction relative to the probe. The optimal
orientation of dipole moment and probe polarization to
maximize the back-reflected signal was determined in an
equal-frequency setting, and it was found that the signal
mainly originates from a specific 4-wave mixing channel
rather than from pure quantum reflection from localized
inhomogeneous potentials. Unfortunately, despite the
dipole configuration having a solid amount of reflected
signal, it remains indistinguishable from the dominant
dipole background.
To address the background issue, we study the belt setup

(with four pulses forming the belt), which is a particular
case of a finite number of pulses approximation of the
dipole pulse. We show that such a configuration does result
in a discernible back-reflected signature. The optimal probe
propagation direction maximizing the discernible signal
and the polarization configuration enhancing the back-
reflected signal were determined. Following our optimiza-
tion results for the energy distribution between the belt
pulses, we study the planar three pulse geometry, which
yields an even larger back-reflected signal than the belt
setup. Among all considered scenarios, the three pulse
setup appears to be the most experimentally accessible,
though it remains challenging to implement in practice.
We developed and used the package QUVAC [49] to

obtain the results for this article (version 0.1.1 is
available [63]). The authors acknowledge the usage of
the HPC cluster “DRACO” of the University of Jena for
obtaining the numerical results presented in this article.
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APPENDIX A: CHANNELS IN THE DIPOLE
SETUP

Figure 14 shows the signal spectra originating from 222,
122 and 112 channels in the collision of a Gaussian probe
(1) with a dipole pulse (2). 122 and 112 plots were
calculated using the vacuum emission amplitude linearized
in one of the fields (this functionality is available in
QUVAC). Note that 222 and 122 channels are dominant,
and 122 channel has a larger peak in the back-reflected
direction than in the forward one. In the total vacuum
emission signal, the interference terms also play a signifi-
cant role, especially the interference between 222 and 122
channels.

APPENDIX B: POLARIZATION
CONFIGURATION FOR THREE PULSE SETUP

Here, we outline the procedure we used to estimate the
polarization prefactor in the emission amplitude.

Following [65], the single photon emission amplitude is
given by

SðpÞðkÞ ≈
1

45

m2

8π2
ieffiffiffiffiffi
2k

p
�

e
m2

�
3
Z

d4xeikx

× ½4F ðxÞFμνðxÞ þ 7GðxÞ�FμνðxÞ�f̂μνðpÞ; ðB1Þ

where f̂μνðpÞ ¼ kμϵ�νðpÞðkÞ − kνϵ�μðpÞðkÞ is the normalized field
strength tensor of the emitted photon in the momen-
tum space.
In spherical coordinates k̂ ¼ ðcosφ sinϑ; sinφ sinϑ;

cosϑÞ and photon polarization modes are given by
ϵμðpÞ ¼ ð0; epÞ

e1 ¼

0
B@

cosφ cosϑ

sinφ cos ϑ

− sinϑ

1
CA; e2 ¼

0
B@

− sinφ

cosφ

0

1
CA: ðB2Þ

We specify the background fields as plane waves with
defined k vector and directions of electric and magnetic
fields (for k ¼ ez, the polarization β ¼ 0° corresponds to
the Ê ¼ ex and B̂ ¼ ey). The geometry of the collision is
similar to Fig. 12. After the estimation of the background
field factor, we collect the terms that are linear in the
amplitude of each field (terms containing E1E2Eprobe).
Then we choose a k vector corresponding to background
reflection with respect to the probe: φ → 180°; ϑ → 90°.
Leaving only the factor depending on the polarization
angles, we get:

P ¼ −2838fcos 2ðβ1 þ βprobeÞ þ cos 2ðβ2 þ βprobeÞg þ 4f484 cos 2ðβ1 − βprobeÞ þ 973g cos ð2θcÞ
þ 5808 cos 2ðβ1 − βprobeÞ þ 1936 cos 2ðβ2 − βprobeÞfcos 2θc þ 3g − 1056 cos 2ðβ1 þ β2Þfcos 2θc þ 7g
− 66fcos 2ðβ1 þ βprobeÞ þ cos 2ðβ2 þ βprobeÞgf20 cos 2θc þ cos 4θcg þ 968 cos 2ðβ1 − β2Þ sin4 θc
− 176 sin ðβ1 − β2Þf88 sin ðβ1 þ β2 − 2βprobeÞ cos θc þ 3 sin ðβ1 þ β2 þ 2βprobeÞ½15 cos θc þ cos 3θc�g
þ 139 cos 4θc þ 13761: ðB3Þ

FIG. 14. Angular signal photon spectrum for particular channels from the collision of a Gaussian probe with a dipole pulse. Setup
parameters are similar to Fig. 2(b). Blue square shows 10° × 10° detector region. Left: 222 channel cubic in the dipole field corresponds
to dipole self-emission and yields Ntot ≈ 289; Ndet ≈ 1.15. Middle: 122 channel linear in the probe field corresponds to the back-
reflected signature we look for and yields Ntot ≈ 38; Ndet ≈ 1.62. Right: 112 channel linear in the dipole field yields
Ntot ≈ 4.4; Ndet ≈ 0.13.
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Since the structure of this expression is not particularly transparent, we plot it numerically for different polarizations
ðβ1; β2; βprobeÞ for θc ¼ 45° (Fig. 15) and θc ¼ 60° (Fig. 16). The figures indicate that for each fixed βprobe, there is an
optimal pair of ðβ1; β2Þ achieving the highest amplitude, which seems to be independent of βprobe. Additionally, the optimal
choice of ðβ1; β2; βprobeÞ seems to be independent from θc as well. Changing θc only changes the overall scaling with
θc → 0° leading to a larger amplitude.
The analytic findings agree with the optimization results in Fig. 17.

FIG. 15. Polarization prefactor [from Eq. (B3)] dependence on the polarization of individual beams (β1; β2; βprobe) for a fixed collision
angle θc ¼ 45°. The maximal prefactor value was normalized to 1, with a normalizing factor of ≈38072.

FIG. 16. Polarization prefactor [from Eq. (B3)] dependence on the polarization of individual beams (β1; β2; βprobe) for a fixed collision
angle θc ¼ 60°. The maximal prefactor value was normalized to 1, with a normalizing factor of ≈32329.
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