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 a b s t r a c t

It is shown that the directed flow of 𝜙-mesons in Au+Au collisions at √𝑠𝑁𝑁 = 3 GeV, is sensitive to the production 
and the absorption cross section of the 𝜙 in a nuclear medium. This provides a new observable to constrain the 
in-medium properties of the 𝜙 which is independent of its absolute production rate. STAR data disfavor any 
significant 𝜙-N absorption in dense nuclear matter and are consistent with a very small cross section of the 𝜙
comparable to the vacuum cross section. The similarity of the 𝜙-meson and proton directed flow also indicates 
that the 𝜙 is produced in conjunction with a baryon.

1.  Introduction

The properties of hadronic resonances in relativistic nuclear colli-
sions have been an important field of study as they can carry infor-
mation on the properties of the QCD medium produced in such col-
lisions [1–16]. During the hadronic phase of such collisions the var-
ious produced hadrons and their resonances interact, decay and re-
scatter copiously which allows to study scattering processes which 
cannot be produced in any other experimental setup. The investiga-
tion of resonances also has a long established experimental history 
with major contributions from experiments at GSI, BNL and CERN 
[17–32]. While for example the vector decay of the 𝜌-meson, into a 
di-lepton, tells us something about the dense phase (see e.g. [33–38]), 
the hadronic decay of the 𝐾∗-meson allows us to infer the lifetime 
of the hadronic phase [39,40]. It has also been suggested, that the 
rescattering of the 𝑓0 resonance may even be sensitive to its quark
structure [41].

The 𝜙-meson (and its charmed counterpart the 𝐽∕𝜓) is of particular 
interest. In the vacuum, the lifetime of the 𝜙 (𝜏𝜙 ≈ 40 fm∕𝑐) is longer 
than the expected lifetime of a fireball created in nuclear reactions and 
the inelastic 𝜙 + nucleon → 𝑋 cross section is considered small [42]. This 
may change in the dense nuclear medium due to interactions. Several 
studies have tried to measure the absorption cross section of the 𝜙 in 
nuclear matter by comparing the total production cross section in col-
lisions of protons with nuclei of different mass number 𝐴 [43–45]. The 
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measurement presented in these works is based on the assumption, that 
the 𝜙 production cross section in p+𝐴 scattering, in the absence of any 
further interactions, is simply proportional to some power of the mass 
number 𝐴 of the target nucleus. It is found that the measured 𝜙 produc-
tion in large target nuclei, when scaled to the cross section in p+C, is 
significantly lower than what is expected from this simple scaling argu-
ment. The difference in the production cross section is then attributed 
to absorption of the 𝜙 in the target nucleus. It was concluded, that the 
absorption cross section of the 𝜙 in nuclear matter may be rather large, 
on the order of 𝜎abs ≈ 20 mb. Similar studies were done for the 𝐽∕𝜓 at 
CERN-SPS energies [46] suggesting also a rather large hadronic 𝐽∕𝜓
absorption cross section on the order of 7-8mb. Further studies of the 
𝐽∕𝜓 are also envisioned utilizing the enormous collision rate of the FAIR 
facility.

With respect to this line of argument we want to point out, that the 
reduction of the 𝜙 production in large target nuclei may simply be be-
cause the original production of the 𝜙 may show a different scaling with 
mass number 𝐴 and not because it is first produced and then absorbed. 
It was indeed shown in one of our previous publications [47] that the 
observed reduction of the 𝜙 production on different target nuclei as ob-
served by the ANKE experiment can very well be reproduced without 
any additional in-medium effect on the 𝜙 absorption cross section. In 
the present paper we want to present an alternative measurement which 
is able to distinguish between the two effects of reduced production vs. 
absorption inside dense matter.
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The production of the 𝜙, including full in-medium properties and 
cross sections, has also been discussed within the PHSD model recently 
[50] to better understand its production mechanism close to its elemen-
tary threshold energy.

In this work we will show how the in-medium absorption of the 𝜙-
meson can be inferred from flow data of the STAR experiment in a mea-
surement that is independent of the total production cross section.

The idea is that, after the 𝜙 has been produced in the nuclear reac-
tion, if it has only a very small in-medium cross section it will leave the 
system almost undisturbed and therefore inherit the flow of the parti-
cle it was produced with. This would be the proton in case of the STAR 
measurement. If the 𝜙 had a significant absorption and/or regeneration 
cross section in the medium, the directed flow would be significantly 
modified as we will see for other short lived resonances.

2.  UrQMD and resonances

We will employ the UrQMD transport model (v4.0) [51,52] to simu-
late the dynamics of Au+Au reactions at √𝑠𝑁𝑁 = 3 GeV and compare 
the results to recent (preliminary) STAR data. The STAR experiment has 
published the directed flow

𝑣1(𝑦) = ⟨𝑝𝑥∕𝑝𝑇 ⟩(𝑦) (1)

of different identified hadrons, where 𝑦 is the rapidity in the center of 
mass frame of the collision, 𝑝𝑥 is the momentum in x-direction and 𝑝𝑇  is 
the transverse momentum of a hadron. The averaging is done in a given 
rapidity bin 𝑦 and 𝑝𝑇  acceptance of the experiment.

The production of hadrons in the UrQMD transport model [51–53] 
proceeds through different channels: The excitation and de-excitation 
(decay) of hadronic resonances, of a string and the annihilation of a 
particle with its anti-particle. The probabilities of the different processes 
are governed by their reaction cross sections. These cross sections serve 
as input for the model and are taken, whenever possible, from experi-
mental measurements of elementary (binary) collisions. The basic input 
for our model calculations are the elementary hadron scattering cross 
sections in the vacuum. For some reactions, these are known and explic-
itly measured and for others they are inferred. For example, the 𝐾+ + 𝑝
cross section has been measured explicitly and this is what is used as 
input in the UrQMD simulations. The 𝜙 + 𝑝 cross section is not explic-
itly measured. What is used in the UrQMD model is calculated from 
detailed balance using the 𝜙 production cross section in p+p collisions 
[47] which is what we refer to as the default cross section. The 𝜙-meson 
production at near- and subthreshold energies is treated, in analogy to 
𝜌-meson production via the decay of a heavy resonance 𝑁∗ → 𝑁 + 𝜙
[47]. The 𝜙 absorption cross section is in turn coupled via detailed bal-
ance to the partial decay width. It is important to note that this process 
always couples the 𝜙 to its parent baryonic resonance and one would 

Fig. 1. [Color online] Directed flow of various hadrons as function of rapidity in the center of mass frame of the Au+Au collision at √𝑠𝑁𝑁 = 3 GeV for 10-40% most 
central reactions. Stable hadron flow is compared to STAR data. Different resonances are shown as red lines in every plot. For the 𝜙-meson, we compare results with 
the default absorption (red solid line) with a constant 20 mb absorption cross section (red dashed line). STAR data are taken from [48,49]. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. [Color online] Total inelastic cross section of 𝜙 + 𝑝→ 𝑁∗ as function of 
the invariant mass minus the sum of masses of the two hadrons. The black line 
corresponds to the cross section consistently calculated from the inverse of the 
production reaction, i.e. via detailed balance as implemented in the model.

assume that the meson inherits the flow properties from the baryons, 
i.e. following the baryon flow. This is different from what one would 
expect if the 𝜙 is produced e.g. from recombination of a pair of 𝑠 + 𝑠
quarks.

In order to describe the flow of bulk matter at STAR fixed target 
energies, the inclusion of a realistic equation of state (EoS), via the QMD 
potentials, is necessary. In the following we will employ the most recent 
version of the momentum dependent potentials from the CMF model 
which have been shown to describe proton and hyperon flow as well as 
strange hadron production yields as measured by the HADES and STAR 
experiments [54–56].

The flow of stable hadrons is extracted at their time of last interac-
tion, i.e. their kinetic freeze-out point. For observables involving decay-
ing resonances, an observable resonance is defined by following their 
decay products throughout the entire systems evolution, and if none of 
the decay products undergoes any rescattering the resonance is consid-
ered reconstructable and can be used in our flow analysis. This method 
is well established and is compatible with the experimentally employed 
invariant mass analysis [2,39,57].

3.  Results

Fig. 1 shows the directed flow as function of rapidity, for a variety 
of stable hadrons and resonances, in 10-40% most central Au+Au col-
lisions at √𝑠𝑁𝑁 = 3 GeV.

The proton (black solid lines) and hyperon (blue solid lines) flow is 
compared to experimental data from the STAR collaboration (black and 
blue star symbols) [48,58]. The model describes these data very well, 
indicating that the bulk evolution and bulk flow is well described by 
UrQMD.

The mesons are shown in the lower panels of Fig. 1 as orange and 
gray solid lines (positively and negatively charged pions) and as green 
and magenta solid lines (𝐾− and 𝐾+), whereas the STAR data [48] is 
shown as colored symbols. Both pions and (anti-)Kaons are also reason-
ably well described, although the pion flow in the model is slightly too 
large and Kaon flow slightly too small. The Kaon, unlike the 𝜙, cannot 
be absorbed through scattering with a nucleon due to the conservation 
of strangeness and only changes its momentum. This means, for the 
directed flow of Kaons, subtleties in the angular distribution of Kaon-
nucleon scattering may also play a role or may be related to the fact, 
that UrQMD-v4.0 does not include explicit meson potential interactions 
which can become relevant for the Kaons. This means that more ef-

fort has to be put into understanding the Kaon scattering (also in the 
medium) which is however not the topic of the present paper.

The red lines in all four panels show the resulting flow of recon-
structable resonances, the 𝜙 (top left), 𝜌0 (bottom left), Δ++ (top right) 
as well as the 𝐾∗ (bottom right). As one can clearly see, all resonances, 
except the 𝜙-meson, deviate significantly from the stable hadron flow 
and show a reduction of emission in the direction of the spectators. This 
is due to the complex dynamics of decay and regeneration that these res-
onances undergo due to their short lifetime and often large cross section 
of the resonance and its daughter particles with the nucleons.

The 𝜙-meson on the other hand, is either totally absorbed or not, 
making it a much cleaner probe. It either leaves the system completely 
undisturbed once it has been produced on the nucleon resonance or is 
absorbed by an elastic rescattering with a nucleon.

3.1. 𝜙 Absorption

To quantify what would happen if the 𝜙 had indeed a significantly 
larger absorption cross section (as was suggested e.g. in [43]), we com-
pare three different scenarios:

1. Scenario 1 (Default): This is the default scenario for the 𝜙 absorp-
tion where the 𝜙 +𝑁 ↔ 𝑁∗ cross section is constraint from detailed 
balance and the inverse production cross section in elementary p+p 
reactions as described in [47]. The resulting total inelastic cross sec-
tion is shown as black line in Fig. 2. Even for very small relative 
momenta the absorption cross section does not exceed 2 mb.

2. Scenario 2 (20 mb fixed): In this scenario we simply fix the 𝜙 +𝑁 ↔
𝑁∗ cross section to a constant value of 20 mb, in line with conclu-
sions drawn from [43]. This is shown as red line in Fig. 2. This fixed 
cross section violates detailed balance as the back reaction is not in-
creased accordingly. One may argue that this could be the proper 
treatment to compare to the cross section extracted in [43] as the 
total absorption would also include any additional production in the 
medium.

3. Scenario 3: The 𝜙 production cross section has been increased by a 
factor of 100 consistently with the absorption cross section to en-
sure detailed balance. This leads to a energy dependent cross section 
which is also shown as blue line in Fig. 2.

The resulting directed flow for these three scenarios is shown as red 
lines (solid and dashed) in the top left panel of Fig. 1. The increased 
absorption has a significant impact on the observed directed flow of the 
𝜙 and, similar to the other resonances, leads to a reduction of the flow 
for the 𝜙 in the direction of the spectators. The strong deviation is also 
observed to be independent of the actual production cross section.

When comparing to the (preliminary) data from the STAR experi-
ment [49], the calculation with a standard small absorption cross sec-
tion, not modified in the medium, best describes the data.

Despite the large statistical errors in the experimental data for large 
rapidities, the deviations from the data with small errors can be seen 
clearly. As one can also see, the increase of the directed flow towards 
large rapidities, is not a result of limited statistics but rather a result of 
the large absorption in the spectator. The effect is largest if a constant 
absorption cross section of 20mb is used.

4.  Conclusion

We have shown that the directed flow of the 𝜙-meson, as measured 
by the STAR collaboration in peripheral Au+Au collisions at √𝑠𝑁𝑁 = 3
GeV, is a sensitive probe of the absorption cross section of the 𝜙-meson 
in dense nuclear matter. In addition, this observable has the advantage 
that it is insensitive to the total production probability, which makes 
it more reliable than measurements of 𝜙 absorption in p+A collisions. 
The similar directed flow of the 𝜙 and the protons indicate that the 𝜙
inherits its flow from the baryon it was produced on, which supports the 
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idea of 𝜙 production in a secondary scattering of heavy baryonic states 
rather than early production, i.e. in a color string.

We propose to extend this study to the directed flow of the hidden 
charm 𝐽∕𝜓 , and therefore its absorption in nuclear matter, which allows 
to validate the surprisingly large 𝐽∕𝜓 absorption cross section extracted 
in previous studies. The CBM@FAIR experiment is in a prime position 
to provide these unique data, due to its high luminosity.
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