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It is shown that the directed flow of ¢-mesons in Au + Au collisions at /s, 5 = 3 GeV, is sensitive to the production
and the absorption cross section of the ¢ in a nuclear medium. This provides a new observable to constrain the
in-medium properties of the ¢ which is independent of its absolute production rate. STAR data disfavor any

significant ¢-N absorption in dense nuclear matter and are consistent with a very small cross section of the ¢
comparable to the vacuum cross section. The similarity of the ¢-meson and proton directed flow also indicates
that the ¢ is produced in conjunction with a baryon.

1. Introduction

The properties of hadronic resonances in relativistic nuclear colli-
sions have been an important field of study as they can carry infor-
mation on the properties of the QCD medium produced in such col-
lisions [1-16]. During the hadronic phase of such collisions the var-
ious produced hadrons and their resonances interact, decay and re-
scatter copiously which allows to study scattering processes which
cannot be produced in any other experimental setup. The investiga-
tion of resonances also has a long established experimental history
with major contributions from experiments at GSI, BNL and CERN
[17-32]. While for example the vector decay of the p-meson, into a
di-lepton, tells us something about the dense phase (see e.g. [33-38]),
the hadronic decay of the K*-meson allows us to infer the lifetime
of the hadronic phase [39,40]. It has also been suggested, that the
rescattering of the f, resonance may even be sensitive to its quark
structure [41].

The ¢-meson (and its charmed counterpart the J /y) is of particular
interest. In the vacuum, the lifetime of the ¢ (r¢ ~ 40 fm/c) is longer
than the expected lifetime of a fireball created in nuclear reactions and
the inelastic ¢ + nucleon — X cross section is considered small [42]. This
may change in the dense nuclear medium due to interactions. Several
studies have tried to measure the absorption cross section of the ¢ in
nuclear matter by comparing the total production cross section in col-
lisions of protons with nuclei of different mass number A [43-45]. The
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measurement presented in these works is based on the assumption, that
the ¢ production cross section in p + A scattering, in the absence of any
further interactions, is simply proportional to some power of the mass
number A of the target nucleus. It is found that the measured ¢ produc-
tion in large target nuclei, when scaled to the cross section in p+C, is
significantly lower than what is expected from this simple scaling argu-
ment. The difference in the production cross section is then attributed
to absorption of the ¢ in the target nucleus. It was concluded, that the
absorption cross section of the ¢ in nuclear matter may be rather large,
on the order of o,,, ~ 20 mb. Similar studies were done for the J/y at
CERN-SPS energies [46] suggesting also a rather large hadronic J /y
absorption cross section on the order of 7-8 mb. Further studies of the
J /w are also envisioned utilizing the enormous collision rate of the FAIR
facility.

With respect to this line of argument we want to point out, that the
reduction of the ¢ production in large target nuclei may simply be be-
cause the original production of the ¢ may show a different scaling with
mass number A and not because it is first produced and then absorbed.
It was indeed shown in one of our previous publications [47] that the
observed reduction of the ¢ production on different target nuclei as ob-
served by the ANKE experiment can very well be reproduced without
any additional in-medium effect on the ¢ absorption cross section. In
the present paper we want to present an alternative measurement which
is able to distinguish between the two effects of reduced production vs.
absorption inside dense matter.
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The production of the ¢, including full in-medium properties and
cross sections, has also been discussed within the PHSD model recently
[50] to better understand its production mechanism close to its elemen-
tary threshold energy.

In this work we will show how the in-medium absorption of the ¢-
meson can be inferred from flow data of the STAR experiment in a mea-
surement that is independent of the total production cross section.

The idea is that, after the ¢ has been produced in the nuclear reac-
tion, if it has only a very small in-medium cross section it will leave the
system almost undisturbed and therefore inherit the flow of the parti-
cle it was produced with. This would be the proton in case of the STAR
measurement. If the ¢ had a significant absorption and/or regeneration
cross section in the medium, the directed flow would be significantly
modified as we will see for other short lived resonances.

2. UrQMD and resonances

We will employ the UrQMD transport model (v4.0) [51,52] to simu-
late the dynamics of Au+ Au reactions at \/m =3 GeV and compare
the results to recent (preliminary) STAR data. The STAR experiment has
published the directed flow

v1(») = (P /Pr)¥) 1)
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of different identified hadrons, where y is the rapidity in the center of
mass frame of the collision, p, is the momentum in x-direction and p; is
the transverse momentum of a hadron. The averaging is done in a given
rapidity bin y and p; acceptance of the experiment.

The production of hadrons in the UrQMD transport model [51-53]
proceeds through different channels: The excitation and de-excitation
(decay) of hadronic resonances, of a string and the annihilation of a
particle with its anti-particle. The probabilities of the different processes
are governed by their reaction cross sections. These cross sections serve
as input for the model and are taken, whenever possible, from experi-
mental measurements of elementary (binary) collisions. The basic input
for our model calculations are the elementary hadron scattering cross
sections in the vacuum. For some reactions, these are known and explic-
itly measured and for others they are inferred. For example, the Kt + p
cross section has been measured explicitly and this is what is used as
input in the UrQMD simulations. The ¢ + p cross section is not explic-
itly measured. What is used in the UrQMD model is calculated from
detailed balance using the ¢ production cross section in p + p collisions
[47] which is what we refer to as the default cross section. The ¢-meson
production at near- and subthreshold energies is treated, in analogy to
p-meson production via the decay of a heavy resonance N* — N + ¢
[47]. The ¢ absorption cross section is in turn coupled via detailed bal-
ance to the partial decay width. It is important to note that this process
always couples the ¢ to its parent baryonic resonance and one would
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Fig. 1. [Color online] Directed flow of various hadrons as function of rapidity in the center of mass frame of the Au+ Au collision at \/m = 3 GeV for 10-40% most
central reactions. Stable hadron flow is compared to STAR data. Different resonances are shown as red lines in every plot. For the ¢-meson, we compare results with
the default absorption (red solid line) with a constant 20 mb absorption cross section (red dashed line). STAR data are taken from [48,49]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 2. [Color online] Total inelastic cross section of ¢ + p - N* as function of
the invariant mass minus the sum of masses of the two hadrons. The black line
corresponds to the cross section consistently calculated from the inverse of the
production reaction, i.e. via detailed balance as implemented in the model.

assume that the meson inherits the flow properties from the baryons,
i.e. following the baryon flow. This is different from what one would
expect if the ¢ is produced e.g. from recombination of a pair of s+
quarks.

In order to describe the flow of bulk matter at STAR fixed target
energies, the inclusion of a realistic equation of state (EoS), via the QMD
potentials, is necessary. In the following we will employ the most recent
version of the momentum dependent potentials from the CMF model
which have been shown to describe proton and hyperon flow as well as
strange hadron production yields as measured by the HADES and STAR
experiments [54-56].

The flow of stable hadrons is extracted at their time of last interac-
tion, i.e. their kinetic freeze-out point. For observables involving decay-
ing resonances, an observable resonance is defined by following their
decay products throughout the entire systems evolution, and if none of
the decay products undergoes any rescattering the resonance is consid-
ered reconstructable and can be used in our flow analysis. This method
is well established and is compatible with the experimentally employed
invariant mass analysis [2,39,57].

3. Results

Fig. 1 shows the directed flow as function of rapidity, for a variety
of stable hadrons and resonances, in 10-40% most central Au+ Au col-
lisions at /sy v = 3 GeV.

The proton (black solid lines) and hyperon (blue solid lines) flow is
compared to experimental data from the STAR collaboration (black and
blue star symbols) [48,58]. The model describes these data very well,
indicating that the bulk evolution and bulk flow is well described by
UrQMD.

The mesons are shown in the lower panels of Fig. 1 as orange and
gray solid lines (positively and negatively charged pions) and as green
and magenta solid lines (K~ and K*), whereas the STAR data [48] is
shown as colored symbols. Both pions and (anti-)Kaons are also reason-
ably well described, although the pion flow in the model is slightly too
large and Kaon flow slightly too small. The Kaon, unlike the ¢, cannot
be absorbed through scattering with a nucleon due to the conservation
of strangeness and only changes its momentum. This means, for the
directed flow of Kaons, subtleties in the angular distribution of Kaon-
nucleon scattering may also play a role or may be related to the fact,
that UrQMD-v4.0 does not include explicit meson potential interactions
which can become relevant for the Kaons. This means that more ef-
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fort has to be put into understanding the Kaon scattering (also in the
medium) which is however not the topic of the present paper.

The red lines in all four panels show the resulting flow of recon-
structable resonances, the ¢ (top left), p° (bottom left), A** (top right)
as well as the K* (bottom right). As one can clearly see, all resonances,
except the ¢-meson, deviate significantly from the stable hadron flow
and show a reduction of emission in the direction of the spectators. This
is due to the complex dynamics of decay and regeneration that these res-
onances undergo due to their short lifetime and often large cross section
of the resonance and its daughter particles with the nucleons.

The ¢-meson on the other hand, is either totally absorbed or not,
making it a much cleaner probe. It either leaves the system completely
undisturbed once it has been produced on the nucleon resonance or is
absorbed by an elastic rescattering with a nucleon.

3.1. ¢ Absorption

To quantify what would happen if the ¢ had indeed a significantly
larger absorption cross section (as was suggested e.g. in [43]), we com-
pare three different scenarios:

1. Scenario 1 (Default): This is the default scenario for the ¢ absorp-
tion where the ¢ + N & N* cross section is constraint from detailed
balance and the inverse production cross section in elementary p +p
reactions as described in [47]. The resulting total inelastic cross sec-
tion is shown as black line in Fig. 2. Even for very small relative
momenta the absorption cross section does not exceed 2 mb.

2. Scenario 2 (20 mb fixed): In this scenario we simply fix the ¢ + N <
N* cross section to a constant value of 20 mb, in line with conclu-
sions drawn from [43]. This is shown as red line in Fig. 2. This fixed
cross section violates detailed balance as the back reaction is not in-
creased accordingly. One may argue that this could be the proper
treatment to compare to the cross section extracted in [43] as the
total absorption would also include any additional production in the
medium.

3. Scenario 3: The ¢ production cross section has been increased by a
factor of 100 consistently with the absorption cross section to en-
sure detailed balance. This leads to a energy dependent cross section
which is also shown as blue line in Fig. 2.

The resulting directed flow for these three scenarios is shown as red
lines (solid and dashed) in the top left panel of Fig. 1. The increased
absorption has a significant impact on the observed directed flow of the
¢ and, similar to the other resonances, leads to a reduction of the flow
for the ¢ in the direction of the spectators. The strong deviation is also
observed to be independent of the actual production cross section.

When comparing to the (preliminary) data from the STAR experi-
ment [49], the calculation with a standard small absorption cross sec-
tion, not modified in the medium, best describes the data.

Despite the large statistical errors in the experimental data for large
rapidities, the deviations from the data with small errors can be seen
clearly. As one can also see, the increase of the directed flow towards
large rapidities, is not a result of limited statistics but rather a result of
the large absorption in the spectator. The effect is largest if a constant
absorption cross section of 20 mb is used.

4. Conclusion

We have shown that the directed flow of the ¢-meson, as measured
by the STAR collaboration in peripheral Au+ Au collisions at /sy =3
GeV, is a sensitive probe of the absorption cross section of the ¢-meson
in dense nuclear matter. In addition, this observable has the advantage
that it is insensitive to the total production probability, which makes
it more reliable than measurements of ¢ absorption in p+ A collisions.
The similar directed flow of the ¢ and the protons indicate that the ¢
inherits its flow from the baryon it was produced on, which supports the
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idea of ¢ production in a secondary scattering of heavy baryonic states
rather than early production, i.e. in a color string.

We propose to extend this study to the directed flow of the hidden
charm J /y, and therefore its absorption in nuclear matter, which allows
to validate the surprisingly large J /y absorption cross section extracted
in previous studies. The CBM@FAIR experiment is in a prime position
to provide these unique data, due to its high luminosity.
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