PHYSICAL REVIEW D 111, 112007 (2025)

Search for 1~ * charmoniumlike hybrid viae*e~ — yn)5, at center-of-mass
energies between 4.258 and 4.681 GeV
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Using e* e~ collision data corresponding to an integrated luminosity of 10.6 fb~! collected at center-of-
mass energies between 4.258 and 4.681 GeV with the BESIII detector at the BEPCII collider, we search for
the 17" charmoniumlike hybrid via ete™ — ynyn,. and eTe™ — yi'n, decays for the first time. No
significant signal is observed, and the upper limits on the Born cross sections for both processes are set at

the 90% confidence level.
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I. INTRODUCTION

Quantum chromodynamics (QCD) allows the existence
of exotic hadron states beyond the quark model, such as
glueballs, hybrids, multiquark states, and hadronic mole-
cules. The search for these QCD exotic states is crucial for
quantitatively testing the theory of strong interactions in
nonperturbative regions and for understanding confine-
ment. However, it is difficult to distinguish the exotic
hadron states from the conventional mesons. Hadrons with
exotic JP¢ quantum numbers, such as 0=, even®~, and
odd~*, cannot arise from ordinary ¢g states. Searching for
such hadrons offers one of the most direct and unambigu-
ous ways to establish the existence of exotic hadron states.

Lattice QCD predicts the existence of a series of light
hybrid multiplets (J¢ = 0=, 177, 17", and 2~%), with the
exotic 17" nonet being the lightest [1]. Similar to the case
of the hybrid multiplets composed of light quarks (n1g), cc
can also form analogous hybrid multiplets (ccg) [2,3]. In
the charmonium sector, four confirmed states, y(4230),
w(4360), y(4390), and y(4660), fall within the mass range
expected for 1= hybrid charmonia [4-7].

Three light isovector states, the 7z (1400), 1 (1600), and
71(2015) [8-11], have been experimentally identified
as exotic hadrons exhibiting the quantum numbers
JP€ =17+, Recently, BESIII collaboration performed a
partial wave analysis of the J/y — yni’ decay process, and
reported the first observation of a nonconventional state
17 (1855) with the exotic quantum numbers [¢JPC =
0"1=* [12,13]. However, no state with manifestly exotic
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JPC has been observed in the charmonium region.
Analogous to the 7,(1855) — i’ process, a possible 7.
state could decay into ("), final states. Additionally, some
theoretical predictions suggest that the 1= charmoniumlike
hybrid state might also decay to ")y, final states [14,15].

In this paper, we report a study of ete™ — yy()y, to
search for the 1= charmoniumlike hybrid state based
on data samples collected with the BESIII detector at
center-of-mass (c.m.) energies between 4.258 and
4.681 GeV, listed in Table I. The integrated luminosities
of these data samples are determined by analyzing large-
angle Bhabha scattering events with an uncertainty of
1.0%, and the c.m. energies are measured using the di-
muon process [16,17].

II. BESIII DETECTOR AND MONTE
CARLO SIMULATION

The BESII detector [18] records symmetric e'e™
collisions provided by the BEPCII storage ring [19] in
the c.m. energy range from 1.84 to 4.95 GeV, with a peak
luminosity of 1.1 x 10*3 cm™2s~! achieved at /s =
3.773 GeV. BESIII has collected large data samples in
this energy region [20,21]. The cylindrical core of the
BESIII detector covers 93% of the full solid angle and
consists of a helium-based multilayer drift chamber
(MDC), a time-of-flight system (TOF), and a CsI(TIl)
electromagnetic calorimeter (EMC), which are all enclosed
in a superconducting solenoidal magnet providing a 1.0 T
magnetic field. The solenoid is supported by an octagonal
flux-return yoke with resistive plate counter muon identi-
fication modules interleaved with steel. The charged-
particle momentum resolution at 1 GeV/c is 0.5%, and
the dE/dx resolution is 6% for electrons from Bhabha
scattering. The EMC measures photon energies with a
resolution of 2.5% (5%) at 1 GeV in the barrel (end cap)
region. The time resolution of the plastic scintillator TOF in
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TABLEL Datasets and results of the upper limits on Born cross sections of e*e~ — y;)y.: the integrated luminosities £, the upper

limits of observed signal yields N%‘}f, the ISR correction (1 4 9), the vacuum polarization correction factor

T
[1-T1>

the sum of the

products of the branching fraction and efficiency > B;e;, the upper limits of Born cross sections o5{™(pb), and the statistical
significance S.

Vs (GeV) L(pb™")

et

e =y,

et

e~ = yn'n,

146

NeE oi(Bie) (%)

opi" (pb) S(o)

1+6

NeE Yo i(Bie) (%)

ot (pb) S(o)

[1-Ti? [1-Tif?
4.258 8284 086 1.05 76.8 0.38 27.3 0.1 085 1.05 658 0.17 51.2 2.8
4.267 531.1  0.86 1.05 623 0.37 353 0.1 085 1.05 45.6 0.17 56.4 1.5
4.278 17577  0.86 1.05 282 0.36 49.1 22 085 1.05 283 0.16 110.1 1.9
4.288 5024 0.86 1.05 30.6 0.37 18.5 06 086 1.05 334 0.17 44.5 25
4.308 451 085 1.05 362 0.37 240.8 25 084 1.05 12.6 0.18 178.9 1.7
4.312 5012 0.85 1.05 485 0.36 29.6 1.9 0.87 1.05 437 0.17 56.5 2.8
4.337 505.0 0.85 1.05 613 0.37 26.8 09 087 1.05 442 0.17 55.2 2.8
4.358 5439 085 1.05 3838 0.38 21.1 06 084 1.05 650 0.18 75.5 24
4.377 52277 0.84 1.05 484 0.37 28.2 1.5 086 1.05 402 0.18 48.5 1.0
4.387 55.6 084 1.05 137 0.38 73.6 25 084 1.05 146 0.18 165.2 1.3
4.396 507.8 0.84 1.05 35.1 0.37 21.1 25 086 1.05 34.1 0.18 42.7 0.6
4416 10439 083 1.05 452 0.37 13.2 0.1 084 1.05 709 0.18 41.9 23
4.436 569.9 0.83 1.05 913 0.38 493 1.1 085 105 324 0.18 353 1.1
4.467 111.1 0.82 1.05 275 0.38 77.1 0.8 082 1.05 137 0.18 79.3 0.9
4.527 112.1  0.81 1.05 60.0 0.38 389 20 081 1.05 162 0.19 90.0 1.0
4.574 489 079 1.05 241 0.38 179.7 1.5 079 1.05 12.6 0.20 158.7 0.4
4.600 5869 0.78 1.05 60.6 0.38 32.7 24 078 1.05 174 0.20 18.4 0.9
4.611 103.65 0.77 1.05 24.0 0.38 78.5 0.7 077 1.05 129 0.20 78.3 0.1
4.628 52153 077 1.05 77.6 0.38 48.8 1.3 077 105 274 0.20 33.7 1.2
4.641 551.65 0.76 1.05 28.7 0.38 17.3 22 076 1.05 25.1 0.20 28.8 0.2
4.661 52943 0.75 1.05 559 0.38 354 12 075 1.05 29.0 0.20 344 1.5
4.681 1667.39 0.75 1.05 71.8 0.38 14.5 14 078 1.05 46.1 0.20 16.5 0.4

the barrel region is 68 ps, while that in the end cap region is
110 ps. In 2015, the end cap TOF system was upgraded
with multigap resistive plate chamber technology, improv-
ing the time resolution to 60 ps, which benefits approx-
imately 68% of the data used in this analysis [22-24].

Monte Carlo (MC) simulated data samples produced
with a GEANT4-based software package [25], which
includes the geometric description of the BESIII detector
and the detector response, are used to determine detection
efficiencies and to estimate backgrounds. The simulation
models the beam energy spread and initial state radiation
(ISR) in the eTe™ annihilations with the generator KKMC
[26,27]. In this analysis, 100,000 MC events are generated
for each decay mode of 7, at each c.m. energy with KKMC
and EVTGEN [28,29]. The inclusive MC samples include the
production of open-charm processes, the ISR production of
vector charmonium(like) states, and the continuum proc-
esses incorporated in KKMC. All particle decays are
modeled with EVTGEN using branching fractions taken
from the Particle Data Group (PDG) [30], when available,
or otherwise estimated with LUNDCHARM [31]. Final-state
radiation from charged final-state particles is incorporated
using the PHOTOS package [32].

ITII. EVENT SELECTION AND STUDY
OF BACKGROUND

To select candidate events for e*e™ — yn()y,, the '
is reconstructed through the final states of nz* 7™, the 7,
is reconstructed through 16 hadronic final states: pp,
2(ztx7), 2(K*K™), K'K n"z~, pprtzn~, 3(ztzn"),
K"K 2(ztzn™), KtK=70, ppr°, K(S)ij:ﬂ':F,
KOK*nFata®, ntan, K'K™n, 2(zta )y, nta 22,
and 2(z*727)x°2% in which K9 is reconstructed from its
atn~ decay, #° and 5 from their yy final state.

Charged tracks detected in the MDC must be within a
polar angle (@) range of | cos 8| < 0.93, where 0 is defined
with respect to the z-axis, the symmetry axis of the MDC.
For charged tracks not originating from Kg decays, the
distance of closest approach to the interaction point (IP)
must be less than 10 cm along the z-axis, |V_|, and less than
1 cm in the transverse plane, |V,,|. By combining the
energy deposit dE/dx and the TOF information, the y25, (i)
(where i = K, x, or p) is calculated for each charged track
under different hadron hypotheses. Both PID and kinematic
fit information are used to determine the particle type of
each charged track.
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Photon candidates are identified using isolated showers
in the EMC. The deposited energy of each shower must
exceed 25 MeV in the barrel region (| cos 8| < 0.80) and
50 MeV in the end cap region (0.86 < |cos | < 0.92). To
exclude showers that originate from charged tracks, the
angle between the EMC shower position and the closest
charged track at the EMC must exceed 10 degrees, as
measured from the IP. To suppress electronic noise and
unrelated showers, the difference between the EMC time
and the event start time must be within the range [0,700] ns.

Each Kg candidate is reconstructed from two oppositely
charged tracks satisfying |V,| < 20 cm. The two charged
tracks are assigned as #tz~ without imposing additional
PID criteria. They are constrained to originate from a
common vertex and are required to have an invariant mass
within [M - — mgo| < 20 MeV/c?, where mgo is the K9
nominal mass [30]. The decay length of the K (S) candidate is
required to be greater than twice the vertex resolution away
from the IP. The #z°(y) candidates are selected with the
invariant mass of yy pair satisfying [M,, —mup,| <
15 MeV/c?, where m,, is the nominal mass of z°(y)
[30]. To improve the energy resolution, a one-constraint

(1C) kinematic fit is performed with a constraint on the
7%(n) mass.

After the above selections, four-constraint (4C) kin-
ematic fits are performed for each event, imposing overall
energy-momentum conservation with the 3y(z"z7) +
hadrons hypothesis, where hadrons represents the corre-
sponding final states of the 7, decay modes. The chi-square

values of the 4C kinematic fit XiC(?vy ‘hadrons) AN

)(icwfﬂ_ thadrons) AT€ required to be less than 20 and
30, respectively, to suppress background events with
different final states. For each 7, decay mode, if there
are multiple combinations satisfying the above criteria,

only the one with the minimum total chi-square
Xin =X 421C(3y(n+n-)+hadrons) + 2> T e Xienex 18 retained,
where y2,;, is the sum of the y3, (i) for each charged track
in the event, y2. is from the 1C kinematic fit for the z°(n)
mass, and 2.y is the ¥ of the K% secondary vertex fit. If
there is no z°/n(K%) in an event, the corresponding

23c(Ferex) 18 set to zero.
For the e™e™ — yny,. process, 4C kinematic fits are per-

formed by constraining energy-momentum conservation
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The distributions of (a) M, versus Mydrons> (b) Mpadrons> and (¢) M, at /s = 4.681 GeV. For (b) and (c), the dots with error
bars are data, and the red histograms represent the signal MC.
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under the hypotheses eTe™ — 2y + hadrons and ete™ —
4y + hadrons, to suppress the backgrounds from processes
with two or four photons in the final state. The

)(‘%C(Sy +hadrons) is required to be less than all possible

2 2 :
)(4C(2y+hadrons) and )(4C(4y+hadrons)‘ In case of multiple 7,

candidates in an event, the one with the invariant mass
closest to the 7. nominal mass is selected to reconstruct the
n. meson. Finally, the remaining n candidate is chosen to
reconstruct the # meson from the e*e™ collision.

For the e™e™ — yi'n, process, the 7, and 7' candidates
are formed from hadrons and #z "z~ combinations, respec-

(Mhudmns_mtlc )2 (M ot~ "My )2
+— . Here, m
o2 6,2%, > e

tively, with the least

e
and m,, are the nominal masses of 7. and #, respectively
[30], Myagrons 18 the invariant mass of the 16 different
decay modes of 7, mentioned above, M, .+ ,- is the invariant
mass of nztz~, and Om, and o, , are the visible widths,

determined by fitting the individual distributions with a
Gaussian function and a Breit-Wigner function, respectively.

e 1
L
>
[0}
S oosk
+l;. 3
£
=
0.9f~"
2
Mhadrons(GeV/C )
(a)
& | e Sy — Data
8 c
> 100~ ys5=4.681GeV — Signal MC
3 L
~ L
o L
Q
S L
~ 507
f2) L
c
S L
>
T L

09 095 1

M, .-(GeV/c?)
(c)

FIG. 2. The distributions of (a) M, ,-

versus Mhadrons’ (b) Mhadrons’ (C) M}]It+ﬂ_

After applying the reconstructed selection criteria to all
data samples, the two-dimensional distributions of M,
versus My,drons and M+ - versus My, grons in data and MC
simulation at /s = 4.681 GeV are shown in Figs. 1(a) and
2(a), where M, .+, is the invariant mass of the recon-
structed ") from eTe~ collision. No significant e*e™ —
yn")y, signals are observed in the projections of M yy(nat o)
versus Mi,grons- The distributions of Myadrons and My, 7+ 2-)
at /s = 4.681 GeV are shown in Figs. 1(b), 1(c), 2(b), and
2(c). Additionally, the distribution of M,, used for the
reconstruction of the #’ is shown in Fig. 2(d).

Since the luminosity of data samples at /s =
4.681 GeV is the largest, we use the inclusive MC sample
at this energy point, with the luminosity 40 times larger
than the data to study the background components. After
applying the mentioned selection criteria to the inclusive
MC sample, no significant peaking backgrounds containing
both 5, and (") simultaneously are observed. However, for
the ete™ — ynn. process, there are some background
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the dots with error bars are data, and the red histograms represent the signal MC.
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(d)

Fits to the invariant mass distributions of (a, ¢) My,drons» (b) M,,, and (d) M+ .- at /s = 4.681 GeV. The black dots with error

bars are data, the red solid lines are the MC signals, the green solid lines are the flat background, and the orange solid lines indicate the

background containing 7.

events containing # mesons. These backgrounds are con-
sidered in the two-dimensional fit, as shown in Sec. IV.

IV. SIGNAL YIELD EXTRACTION

The signal yield of the ete™ — yp)y, process is
determined through an unbinned maximum likelihood
fit to the two-dimensional distribution of M, )
versus Mp.arons- Lhe fit ranges are set as follows:
[0.458,0.638] GeV/c? (for M,,), [0.868,1.048] GeV/c?
(for M, ,+,-), and [2.684,3.284] GeV /c? (for Mygrons)- The
signal is described by a combination of 16 weighted shapes
obtained from the signal MC, where the weight is %
Here, B; denotes the branching fraction of the 7. decay to
the ith decay mode, and ¢; represents the detection
efficiency obtained from MC samples.

For the ete™ — ynn,. process, the backgrounds are
modeled using two distinct components, each described
by a two-dimensional probability density function (PDF).
The first component, corresponding to backgrounds

containing only #, is parametrized using the MC shape
of n in the M, distribution, obtained from the MC sample,
combined with a second-order Chebyshev polynomial in
the M} ,qrons distribution. The second component, represent-
ing the remaining backgrounds, is described by a two-
dimensional second-order Chebyshev polynomial. For the
eTe™ — yn'n, process, since there is no background con-
taining #’, the background is described solely by a two-
dimensional second-order Chebyshev polynomial. The
two-dimensional fit results of 7, and 7(y’), projected onto
the distributions of Myaqons and M, (i, at /s =
4.681 GeV, are shown in Fig. 3. The signal yield of
ete = ynn, at /s = 4.681 GeV is —9.9 & 40.0(5.2 +
11.2) with a statistical significance of 1.46(0.40). The
significance is calculated from the change in the negative
log-likelihood function InL with and without assuming the
presence of signal, while considering the change in degrees
of freedom in the fits. The significance at other energy
points is listed in Table I.
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V. UPPER LIMIT ON BORN CROSS SECTIONS

The Born cross sections of eTe~ — yn"), are calculated
by

obs
Born __ N

TL(1+0) 1. B

[1-TI?

(1)

o

Here, N° is the signal yield, £ is the integrated luminosity
of the data sample taken at each c.m. energy, and ﬁ is

the vacuum polarization factor [33]. For eTe™ — ynn,,
B-e=DB(n—yy)d. B, while for efe” — ynn,,
B-e= B - nata™)B(n — yy) 3, Bie;, where B(n —
yy) and B(y' — na'z~) are the branching fractions of  —
yy and i = nr'x~ taken from the PDG [30]. Then, 1 + &
is the radiative (ISR) correction factor, which is defined as

[ o935 (s(1 = x))F(x, 5)dx '

(1 + 5) = adress(s)

(2)

Here, F(x, s) is the radiator function, which is known from
a QCD calculation with an accuracy of 0.1% [34], s is the
square of the c.m. energy, and x = 2E g /+/s, where E,isr
is the energy of the ISR photon. The 6% (s) is the dressed
cross section.

Since no significant ete~ — yy)y,. signal is observed,
we set the upper limit at the 90% confidence level (C.L.) on
o(ete” = yp)n,.), incorporating the systematic uncer-
tainty and using the Bayesian method [35]. The likelihood
that produces the most conservative upper limit is selected
after considering the additive systematic terms. To incor-
porate the multiplicative terms into the Born cross section
limit, the probability of the signal yield P(N) determined
using a maximum likelihood fit is convolved with a PDF of
the sensitivity. The details of systematic uncertainties can
be found in Sec. VI. The upper limits of the signal yields
(NP) at the 90% C.L. are determined by

obs

0.9 /  P(N)dN = / " p(N)aN. 3)
0 0

Using Eq. (1), we set the upper limits on the Born cross
sections for ete™ — y)y. at 90% C.L. The results are
summarized in Table I.

VI. SYSTEMATIC UNCERTAINTY

The sources of systematic uncertainties are categorized
into two types: additive and multiplicative terms. The
additive uncertainties arise from the fit range, signal shape,
background shape, and the difference between the MC
sample and data. A conservative approach is adopted by
considering all possible variations and selecting the one
that yields the largest upper limit, as follows:

(1) The systematic uncertainty arising from the fit range
is determined by varying the fit ranges of M, .+ )
and Mi,g,0ns by £5 MeV/c? and £10 MeV/c?.

(ii)) The nominal mass and width of #, are
2984.1 MeV/c? and 30.5 MeV, respectively [30].
The uncertainty associated with the 7. shape is
estimated by changing its mass and width param-
eters within their uncertainties.

(iii) The uncertainty due to the background shape is
estimated by replacing the function from the second-
order Chebyshev polynomial with both the first-
order and the third-order Chebyshev polynomials.

(iv) The uncertainty due to the difference of mass
resolution between data and MC simulation is
estimated by convolving a Gaussian function to 7.
signal shape, where the mean value is varied by
+1 MeV/c?, and the standard derivation is varied
by 1, 2, and 3 MeV/c?. For the ete™ — yin,
process, the n signal shape is convolved with a
Gaussian function parametrized by free parameters.

The multiplicative systematic uncertainty is considered

by convolving a Gaussian function to the likelihood
distribution. These uncertainties include the following
sources:

(i) The integrated luminosity is determined using
Bhabha scattering events, with a relative uncertainty
of 1.0% uniformly assigned to all the measured
energy points [16,17].

(i) The systematic uncertainty of the ISR correc-
tion factor 1+ 6 is estimated by comparing the
difference between factors obtained by the flat
line shape and (4660), with mass set to
4641 MeV/c?+5, 10 MeV/c?, and width to
73 MeV £5, 10 MeV/c>.

(iii) The parts of the Born cross sections’ uncertainties
associated with the branching fraction are calculated

16 2

by Y&El ZI?]((:’:ZL?) , where 6B; is the total branching

=1\
fraction uncertainty after error propagation. The
uncertainties of the branching fractions of 7, —
hadrons are obtained from the BESIII measurement
result [36], and the others are from the PDG [30].

(iv) The uncertainty from tracking or PID for charged
tracks is determined to be 1.0% per track using the
control samples J/y — ata~ 7%, J/w — ppata,
and J/y - KSK*zF + c.c. [37].

(v) The systematic uncertainty due to the photon de-
tection is assigned as 1.0% per photon by analyzing
the control samples J/y — p°z° and ete” —
yr [38].

(vi) The systematic uncertainty due to the K(S)
reconstruction is studied using control samples
J/y — K*K¥ and J/y - ¢KIK*7F, and esti-
mated to be 1.0% [39].
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TABLE II. Relative systematic uncertainties (%) on 6™ (ete™ — yy)y,) at \/s = 4.681 GeV.
Source P (ete” > ym.) P (et e = pin,)
Luminosity 1.0 1.0
ISR correction 3.3 0.9
S, Bie; B, _x, 18.1 18.1
Tracking 33 5.1
Photon selection 3.0 3.1
PID 33 5.1
KY reconstruction 0.1 0.1
7% reconstruction 0.4 0.4
7 reconstruction 0.3 0.3
Kinematic fit 1.1 1.0
Contamination 1.2 0.6
Total 19.3 19.9
(vii) Using a high-purity control sample of J/yr — 7°pp No. 11635010, No. 11935015, No. 11935016,
or J/w — npp, the systematic uncertainty from the ~ No. 11935018, No. 12025502, No. 12035009,
0 or n reconstruction is determined to be 1.0% [40]. No. 12035013, No. 12061131003, No. 12192260,
(viii) The systematic uncertainty associated with the No. 12192261, No. 12192262, No. 12192263,
kinematic fit is assigned as the difference between No. 12192264, No. 12192265, No. 12221005,
the detection efficiencies before and after the helix No. 12225509, No. 12235017, and No. 12361141819;

parameter corrections [41] in the signal MC simu-
lation.

The contamination among the 16 decay modes of 7,
is calculated by using the signal MC simulation.
Table II summarizes the multiplicative systematic uncer-
tainties. All sources are treated as uncorrelated, and the
total systematic uncertainty is obtained by adding them in
quadrature.

(ix)

VII. SUMMARY

Based on ete™ annihilation data corresponding to an
integrated luminosity of 10.6 fb~! collected with the
BESIII detector at the BEPCII collider for c.m. energies
in the range /s = 4.258-4.681 GeV, we searched for the
1=* charmoniumlike hybrid via e e~ — y()y, for the first
time. No significant signal was observed, and the upper
limits at the 90% C.L. on the Born cross sections for
ete” = yny. and eTe” — yn'n, were determined. Some
theoretical calculations also predict that 7., can decay to the
open-charm final states, such as D, D, D*D and D*D* [15].
With future datasets of higher statistics, searches for the 7,
in these final states can be further explored.
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APPENDIX

Figures 4-8 display the distributions of M, versus My,dronss Mhadrons> and M, for each data sample. Figures 9—12 display
the distributions of M, .+ .- versus Mpagrons> Mhadrons» Myz+ > and M, for each data sample. Figures 1316 are the fit results
to the invariant mass distributions for each data sample.
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