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Stabilizer-accelerated quantum many-body ground-state estimation
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We investigate how the stabilizer formalism, in particular highly entangled stabilizer states, can be used to
describe the emergence of many-body shape collectivity from individual constituents in a symmetry-preserving
and classically efficient way. The method that we adopt is based on determining an optimal separation of the
Hamiltonian into a stabilizer component and a residual part inducing nonstabilizerness. The corresponding
stabilizer ground state is efficiently prepared using techniques of graph states and stabilizer tableaux. We
demonstrate this technique in context of the Lipkin-Meshkov-Glick model, a fully connected spin system
presenting a second-order phase transition from spherical to deformed state. The resulting stabilizer ground state
is found to capture to a large extent both bipartite and collective multipartite entanglement features of the exact
solution in the region of large deformation. We also explore several methods for injecting nonstabilizerness
into the system, including adaptive derivative-assembled pseudo-Trotter variational quantum eigensolver and
imaginary-time evolution (ITE) techniques. Stabilizer ground states are found to accelerate ITE convergence
due to a larger overlap with the exact ground state. While further investigations are required, the present work
suggests that collective features may be associated with high but simple large-scale entanglement which can be
captured by stabilizer states, while the interplay with single-particle motion may be responsible for inducing
nonstabilizerness. This study motivates applications of the proposed approach to more realistic quantum many-
body systems, whose stabilizer ground states can be used in combinations with powerful classical many-body

techniques and/or quantum methods.
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I. INTRODUCTION

Collective behaviors appear in numerous areas of quantum
many-body physics [1-3]. They include, for example, su-
perconductivity and superfluidity encountered in condensed-
matter and nuclear physics, various forms of quantum
magnetism in spins systems and solid-state physics, or super-
radiant phenomena in quantum optics. Collective vibrational
phonons occur in various materials and large nuclei. Finite
mesoscopic systems such as atomic nuclei and metallic clus-
ters can also exhibit spontaneous intrinsic shape deformation
[4] and dynamical rotations.

Describing how these collective phenomena emerge from
the interaction between fundamental constituents is a great
challenge, in particular because they typically involve a large
degree of entanglement and complexity distributed over many
degrees of freedom. The deformation in atomic nuclei, for
example, is known to involve a large number of protons and
neutrons behaving in a coherent manner [3,5,6]. This was
corroborated by a recent study that found clear correlations
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between multi-proton-neutron entanglement, in the form of
n-tangles, and the onset of shape collectivity in nuclei [7]. De-
spite impressive progress, these collective features are known
to be notoriously difficult to capture within classical ab initio
methods based on single-particle degrees of freedom, such
as configuration-interaction methods [8—10], as they require
large model spaces and untractable numbers of many-body
configurations.

With advances in the area of quantum computation, it has
become clear that quantum computers, coupled with power-
ful classical devices, provide the most promising ecosystems
for developing accurate and precise descriptions of quantum
many-body structure and dynamics. As quantum devices can
embody the quantum complexity of the system of interest in
a natural and efficient manner, they constitute ideal tools for
describing and studying the emergence of collectivity.

In practice, however, finding strategies to prepare ground
states of largely collective systems on digital quantum com-
puters is not an obvious task.! While techniques such as
the adaptive derivative-assembled pseudo-Trotter ansatz vari-
ational quantum eigensolver (ADAPT-VQE) [12] involving
individual few-particle excitation operators have been suc-
cessful in describing quantum chemistry systems, which
typically display small degrees of collectivity, they have been

't has been shown that finding the ground state of a general k-local
(k-qubit) Hamiltonian with k > 2 is QMA-complete [11].
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found to require numerous iterations to build coherence in
collective systems, and, in such cases, are often difficult to
converge to a desired accuracy [13,14].

Traditionally, one well-known strategy to describe collec-
tive effects in computationally more tractable ways is to break
explicit symmetries, which have to be subsequently restored.
Such techniques have been extensively employed in classical
calculations, where, for example, particle-number or spherical
symmetries are broken to describe superconducting or super-
fluid pairing and deformation effects [15,16]. More recently
these techniques have been explored in the context of quantum
computing in, e.g., Refs. [17-20]. In Ref. [21] we developed
a Hamiltonian-learning variational quantum eigensolver (HL-
VQE) algorithm where a symmetry-breaking transformation
of the Hamiltonian was used to reduce entanglement and
computational complexity of the system. In general, the draw-
back of such a strategy is that the symmetry restorations, in
particular those related to deformation, are numerically highly
costly for large realistic systems.

At the same time, new directions in the development
of many-body methods based on quantum complexity have
been developing. This is enabled by progress in the field of
quantum information and the development of measures and
techniques for characterizing and quantifying various aspects
of complexity in quantum systems.

Entanglement is a long-known aspect of quantum com-
plexity, which characterizes how intricately intertwined the
subcomponents of a system are within the Hilbert space. Sys-
tems with no or low entanglement are close to classical, and
thus many-body methods utilizing low-entanglement for ef-
ficient classical computations have been advanced,? the most
successful example of which is tensor networks [26]. Such
methods, originally designed for low-dimension many-body
systems, however, become prohibitively expensive in systems
with strong and/or collective entanglement.

On the other hand, it has been realized since the early 2000s
that entanglement alone does not provide a complete charac-
terization of quantum complexity, as some quantum states,
known as stabilizer states, can exhibit maximal large-scale
entanglement, while being simple in nature and efficiently
preparable on a classical computer [27,28]. What cannot be
captured classically is the interplay of entanglement with
nonstabilizerness (also commonly known as “magic” [29]). In
order to fully specify the quantum complexity of a state, and
assess the need for quantum computers, both characterizations
of entanglement and nonstabilizerness are therefore required.

The recent development of magic measures, in particu-
lar those based on Rényi entropies [30], have allowed for
investigations of nonstabilizerness and connections to phys-
ical phenomena in various quantum many-body systems.
Understanding how quantum complexity evolves during the

’Note that various traditional many-body methods have been
recently reinterpreted from an entanglement point of view. For ex-
ample, the Hartree-Fock (HF) or mean-field technique consists in
unitarily transforming the single-particle basis to find an approximate
energy-minimizing solution which is unentangled in this new basis.
More generally, connections between basis changes and entangle-
ment minimization have been made, see, e.g., Refs. [22-25].

transition from single-particle to collective regimes is partic-
ularly important for addressing the question of collectivity
emergence. In this context, the nonstabilizerness of a variety
of spin models [31-40] and gauge theories [35,41,42] have
been studied in relation with phase transitions and thermaliza-
tion. In nuclear physics, the nonstabilizerness in ground states
of atomic nuclei was investigated in Ref. [7] in connection
with entanglement and collectivity, while the magic power
of nuclear and hypernuclear forces was studied in Ref. [43].
Recently, nonstabilizerness was shown to be connected with
molecular bonding in Refs. [44,45]. Magic evolution during
many-body three-flavor neutrino propagation was studied in
Ref. [46]. In high-energy particle physics, Ref. [47] studied
the nonstabilizerness in the production of top quarks at the
Large Hadron Collider (LHC). Nonstabilizerness was also
investigated within quantum gravity [48,49] and in quantum
electrodynamics (QED) particle scattering [50].

Further, the stabilizer formalism, initially introduced in the
context of quantum error correction [27,28], is conceivably
helpful in the development of quantum many-body simula-
tions. In the context of collective systems, in particular, the
large-scale entanglement exhibited by stabilizer states may
provide a way to capture collective features of the system in
a computationally tractable way and thus potentially provide
optimal starting points to classical and/or quantum computa-
tions.

The idea of leveraging the stabilizer formalism for
describing quantum many-body systems is so far rather un-
derexplored, although rapidly developing. Methods utilizing
entanglement-magic separation to augment classical tensor
network computations include the stabilizer tensor networks
[51-54], as well as Clifford-augmented matrix product states
[55-60] which were applied to spin systems and Hubbard
model. Techniques in which stabilizer states are used as
initial states further refined by subsequent quantum circuits
have been developed in the context of one-dimensional local
systems in Ref. [61]. In quantum chemistry, quantum algo-
rithms involving entanglement-magic separation have been
developed via injections of nonstabilizerness on top of sta-
bilizer states, see, e.g., Refs. [44,62,63], or via Clifford
transformations of the Hamiltonian, see, e.g., Refs. [64—66].
Noncontextual VQE based on projections onto stabilizer sub-
paces has also been developed and applied to a range of small
molecules [67,68]. The systems investigated in the afore-
mentioned studies, however, are expected to display local
entanglement features and/or a small degree of collectivity.
For example, quantum chemistry systems typically exhibit
rather pure wave functions, in comparison to the large col-
lectivity observed in nuclei which brings into play a much
larger number of configurations, notably due to the interplay
between the two fermion species (protons and neutrons).

The goal of the present work is to start investigating
whether the stabilizer formalism provides a way to describe
the emergence of collectivity in an efficient manner. In par-
ticular we explore how stabilizer states can capture collective
deformation effects, while preserving the symmetries of the
system explicitly and thus avoiding the need for projection
techniques.

For demonstration we employ the Lipkin-Meshkov-Glick
(LMG) model, a fully connected spin system which displays
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a phase transition analogous to the transition to deformed
nuclei, and thus constitutes an ideal test case for this study.
This model is also employed in condensed-matter physics to
describe two-mode Bose-Einstein condensates [69-71], for
the production of spin-squeezed states relevant to quantum
metrology and sensing [72,73], and is also relevant to trapped-
ion quantum computing due to its all-to-all connectivity.

The method that we adopt, which we describe in Sec. II,
consists in determining an optimal stabilizer Hamiltonian by
identifying energy-minimizing groups of mutually commut-
ing operators. The corresponding stabilizer ground state is
then classically efficiently prepared using techniques of graph
states and stabilizer tableaux. In Sec. III, we apply this method
explicitly to the LMG model and explore to what extent the
stabilizer ground state can capture properties of the exact
solution across the phase transition, including bipartite and
collective multipartite entanglement. In Sec. IV, we explore a
few techniques to inject magic on top of the stabilizer ground
state, including ADAPT-VQE, and imaginary-time evolution.
Finally, Sec. V provides a summary and perspectives to this
work.

II. METHOD

The strategy adopted in the present work consists in search-
ing for an optimal division of the Hamiltonian into a stabilizer
part Hy,yp, plus a part W inducing nonstabilizerness, so that the
ground state of H,p, which can be efficiently prepared classi-
cally, will ideally provide a close approximation to the exact
ground state. To be treated exactly, the nonstabilizer term
W will, in principle, require amounts of classical resources
which scale exponentially with system size or required preci-
sion. Such term can be treated subsequently (in part), either
using refined classical algorithms, or, ultimately, on the quan-
tum device using an adequate quantum or classical-quantum
algorithm of choice. Such strategy based on Hamiltonian
division has been employed in different contexts in, e.g.,
Refs. [61,63,66—68].

Let us consider a general many-body Hamiltonian, mapped
onto N-qubit strings of Pauli operators P:

A=Y ab, (1)

PeGy(H)

where Gy(H) C Gy is the set of Pauli strings that map H,
which is a subset of the generalized Pauli group Gy,

Gy ={poV®c?. 0™}, )

where o) € {1, X;, Y;, Z;} is a Pauli operator acting on qubit
jand ¢ € {£1, +i}.
We wish to separate the Hamiltonian into

ﬁzzapﬁ+ Z apP, (3)

PeS PeGy(H)¢S
_A,—/ —
Hgan W

where S forms a stabilizer group with 2V commuting ele-
ments.’

The ground state |W;) of Hyg.p, is stabilized by the 2V op-
erators in S and thus is, by definition, a stabilizer state which
can be exactly specified by the N generators of that group.
This latter property makes it efficient to prepare |¥;) with
a classical computer using the stabilizer tableau formalism
[27,28,74].

The decomposition in Eq. (3) is not unique, as there are
several commuting groups in Gy (H ) that one can pick to form
S. Ideally, as mentioned above, we want the ground state of
Hy.p to optimally approximate the exact ground state of the
full Hamiltonian. Here we select an energy criterion to achieve
this task, i.e., we choose S so that |W,) be the stabilizer state
minimizing the energy of the full Hamiltonian (W |H|Ww,).*

It is useful to note that, due to the specific properties
of stabilizer states, the stabilizer ground-state energy can be
determined from the stabilizer group S, without knowledge
of the state itself. Indeed, it is known that, for a stabilizer state
|W,), the expectation value of a Pauli string (¥,|P|¥,) can
only take values &1 (if P stabilizes or “antistabilizes |¥,)”)
or 0 [75]:

+1 ifP|Y,) =+ |W,),
0 otherwise.

(| P|W,) = { 4

Thus, the energy of a stabilizer state is simply given by

E(W) = (W |H|W) = > ap (W|P|W).  (5)
e’
PeGy(H) 0,+1

Since |W,) is uniquely defined by its stabilizer group S, this
equivalently defines the energy of the stabilizer group S [61]:

E(S) = Ypegym ar E(P.S),

+1 if+PesS,

where E(P,S) = {0 otherwise.

In summary, the stabilizer Hamiltonian and corresponding
stabilizer ground-state energy can be found by partitioning
the operators in Gy (H ) into commuting subsets Qy C Gy (H)
(excluding —I to ensure S is a stabilizer group), and evaluat-
ing the stabilizer energy of each subset, allowing for all sign
possibilities. The set Q;(“i“ with the lowest energy is chosen to
form the stabilizer Hamiltonian Hp, in Eq. (3). The complete
stabilizer group S can be obtained by extracting from kai“
the maximal number of elements that are linearly independent.
These elements, which we denote g1, ..., g, constitute m < N
generators of S. They can be further completed with commut-
ing operators g,+1, .., gv to generate the complete stabilizer
group S = (g1, ..., gv), and fully specify the corresponding
stabilizer ground state |\W,).

3Possibly with some of the coefficients ap equal to zero to form a
complete group with 2V elements.

4Of course, it may be that such energy criterion does not give the
best approximation to the wave function, or best starting point to
include W, and one may want to explore other criteria. These are,
however, typically more difficult to implement without knowledge
of the final answer and we do not attempt it here.
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In order to prepare the stabilizer ground state, one can build
on the knowledge of graph states, and make use of the fact
that any (entangled) stabilizer state |W) is Clifford-locally
equivalent to a graph state [76,77]. In general, an N-qubit
graph state |G) is associated with a simple graph G = (V, E),
where V denotes the sets of vertices (N qubits) and E denotes
the set of edges between these vertices. The graph state |G)
can be prepared as

(ﬂz(rkz)H@N, 6)

eck

and is stabilized by operators of the form [78]

g =x[]%- (7)

jen;

In Eq. (6) Cz, denotes a controlled-Z gate acting between the
two qubits connected by edge e and |+) = (|0) + |1))/ﬁ,
while in Eq. (7) n; denotes the set of vertices (qubits) con-
nected to vertex i by an edge. A stabilizer state |\W,) can be
implemented by acting on a graph state |G) with local Clifford
unitaries, i.e.,

N
o=[]cl16) =
i=1

where the C; are single-qubit Clifford operators [76,77].

In a general case, one can, for example, treat the
single-qubit Clifford operations C; as (discrete) variational pa-
rameters and optimize according to an energy minimization.
Such optimization procedures, involving discrete parameters,
can, however, be difficult to converge. In this work, we will
instead employ an efficient procedure for determining the C;’s
based on the stabilizer tableau formalism [79]. In the case of
the LMG model employed below, we will see that one can also
use intuition to conjecture a preparation for |W;). In any case,
once an expression of the stabilizer state in terms of Clifford
operators acting on |0)®" has been found, this state can be
efficiently prepared with a classical computer.

Finally as a last step, one can treat the term W =
> peGyngs apP in Eq. (3) via a method of choice, that is,
to be chosen based on the physical properties of the system.

]_[c [ [cze1+)®" (8)

ecE

III. STABILIZER GROUND STATES
IN THE LIPKIN-MESHKOV-GLICK MODEL

The LMG model [80] originally described a system of N
identical fermions distributed on two N-fold degenerate shells
separated by an energy gap . Alternatively, this system can
be mapped onto a system of N spins in an external field along
the z direction and interacting in the xy plane with all-to-all
connectivity. The Hamiltonian can then be written as [81]

H =&l —Vi(J7 + 1 J}). 9)
where the collective spin operators are given by
|
EZ , oC=X,%71 (10)

where o denotes a Pauli operator acting on spin i. The
Hamiltonian in Eq. (9) preserves a number of symmetries. In

particular, since the interaction flips spins by pairs, it preserves
the parity of the number of spins pointing up (in the direction
of the external field). This symmetry is associated with oper-
ator

A=”M~Hz, (1)

where N, = J. 4+ N /2 counts the number of spins up.

In the following, we will work with the dimensionless
%}arrll)l‘}toman H = H /¢ and rescaled interaction strength 7, =

{Ve will focus on the case v, > 0, which corresponds to
a ferromagnetic coupling [82]. In the mean-field limit, the
system undergoes a second-order phase transition at v, = 1
between a normal phase (v, < 1, single-particle regime) and
a phase where parity symmetry is broken (v, > 1, collective
regime). This phase transition is analogous to the transition
from a spherical to a deformed nucleus.

In the case x € [—1,0), in particular for x = —1 most
studied in nuclear physics, the interacting ground-state wave
function typically expands over several collective Dicke (an-
gular momentum) states |/ = N/2,J;). In the limit of large
N, in the largely deformed phase, the energy of the system
is known to be well described by a deformed Hartree-Fock
state [coherent SU(2) state]. The case x = 0 leading to spin
squeezed states is most relevant for quantum sensing and
metrology (see, e.g., Refs. [72,73]). In the isotropic case
x =1, the exact ground state reduces to a single Dicke state
with J, value determined by the interaction strength. In the
following, we will focus on the parameter region x € [—1, 0)
which is most relevant to simulations of realistic many-body
systems.

A. Stabilizer Hamiltonian

The procedure to find the stabilizer Hamiltonian, is de-
scribed in details in Appendix A, starting from N = 2 and
increasing system size. Below we summarize the results.

The first step consists in mapping the Hamiltonian in
Eq. (9) to qubits. Using a direct spin-to-qubit mapping, we
obtain

~ 1
HZEZZ" 2(N

where we now use the usual notations X;, Y;, Z; to denote the
Pauli operators acting on qubit i.

For arbitrary N > 2, we can extract several subsets Q?N )
of mutually commuting operators from the Hamiltonian in
Eq. (12). Each of these Ql( can be augmented by commuting
operators (excluding —1) in order to form a stabilizer group
S with dimension 2V . In particular, limiting ourselves to sub-
sets that satisfy permutation symmetry, we find three relevant
subsets, which are listed below.

(D Q(]N) ={-Z,,—2,,...,—Zy}, corresponding to
Hyap = %Zl Z; with stabilizer energy E;;(N)= —N/2.
The N operators in QEN) generate the stabilizer group
SfN ) — (=Z1, —2,, ..., —Zy) which stabilizes the non inter-
acting ground state | W, )™ = || ... |) = [11...1) = [1)®V,

Z(XX +x YY), (12)
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2) 0 = (X X5, X1 X3, ... Xo X300, Xn—1Xi ),
sponding to Hgyp = _ﬁ Z,-<inXj, with

_ Ny

1~ Among the N(N — 1)/2 operators
in QEN), only N —1 of them are linearly independent. A
stabilizer group S;N ) can then be formed by complementing
these chosen N — 1 independent operators with a Nth
commuting operator, such as (—1) Z,Z,...Zy, which satisfies
the desired permutation and parity symmetries. We choose
SéN) = <X1XN’ X2XN, ceey XN_lXN, (—I)N 21Z2...ZN>. For N
even (respectively, odd), the state stabilized by this group
is an entangled state |W,,)"') corresponding to an equal
superposition of all computational-basis states with even
(respectively, odd) number of spins down (1’s). For example,
for N = 3,

corre-
stabilizer

energy Eyo(N) =

W 5)® = 2(1111) + [100) + [010) + |001)), (13)
while for N = 4,

1
W)W = —
[Ws,2) W5

+ 10101) + [1111) 4 [1010) +]1001)). (14)

(10000) + [0011) + [0110) + |1100)

3) OV = (N2, VY3, ..., aYs.o, Y1 Ya),
sponding to Hgyp = —% ij YY;, with
E 3(N) = -5~
above, one can form a stabilizer group 83(N ) =
Yy, Yo Yy, ..., Yy 1Yy, (=1)N Z,Z,... Zy). The correspond-
ing stabilizer states |\I/X,3)(N ) have a similar form as |\Ils,2)(N ),
with different relative signs between the components.
Depending on the value of x and N one can change the
signs in front of the Y;Y; terms to bring the stabilizer energy
E; 3(N) down, however, in general, this choice of subset will
yield a larger energy than QEN) (except in the case x = +1
for which they are degenerate).

In summary, for a system with N > 2 spins, if —1% >
—%, ie., Uy < 2, then the lowest-energy stabilizer state is
W, )™ = |1)®N with stabilizer energy E,;(N)= —N/2,
while if v, > 2, then the lowest-energy stabilizer state is an
entangled state |W, )™ with energy E, ,(N) = — 2.

We note that there are other commuting subsets
of operators that we did not consider here, such as,
e.g., {(XiXp, VY2, —Z3, —Z4... — Zy}. Such grouping would
break permutation invariance, which is not desired, and the
corresponding stabilizer energy would be —# - %
which is always greater than E; | (N) and/or E; (N ) above.

The case N = 2 is special and presents a transition from
unentangled to entangled stabilizer state occurring at v, = 1
(see Appendix A).

corre-
stabilizer

energy Similarly to case (2)

B. Stabilizer ground-state preparation

The procedure described above provides a decomposi-
tion of the Hamiltonian into a stabilizer part Hy,, plus a
magic perturbation W, as well as the corresponding stabilizer
ground-state energy. While the preparation of the unentangled
stabilizer state |W, ;)™ = |1)®" is trivial, preparing the en-
tangled stabilizer state |\IJX,2)(N ) is less obvious.

As described in Appendix A, in the case of the LMG
model, one can infer from intuition a way of preparing
|\I’_Y,2)(N ) efficiently classically, using Clifford operators CX,
H, and X acting on the unentangled state |0)®" as

[li;¢x;i10) ® |4+)®N=D " foreven N,
|Wy2) M =
[lio;cx;i 1) ® [+)®N=D " for odd N.
(15)

It is easy to see that Eq. (15) applied to N =3 and N =4
indeed prepares the states in Eqs. (13) and (14), respectively.
More rigorously, it is known that any stabilizer state can be
related to a graph state via local Clifford operations [76,77].
Moreover, the corresponding Clifford unitary can be calcu-
lated efficiently, and a procedure is described in Ref. [79].
This procedure makes use of the stabilizer tableau formalism
and provides a systematic way to express the stabilizer ground
state in terms of a graph state. Applying this method to the
present LMG model (see details in Appendix A), we find that

|, )™ = (X V™2 By |G) (16)

where |G) is the graph state given by
N-1
1G) = [ [ czin 10)®", (17)
i=1

which is associated with the graph with edges between qubit
N and all qubits i < N, as shown in Fig. 1(a).

IG) is the state  stabilized by SO =
(X1Zn, XoZy, ..., XN_1ZN, Z1Z,...Xy) which is obtained

by conjugating (X\ Xy, XoXy, ..., Xn—1XN, Z1Z,...Zy) with
Hy. The gate X is applied for odd values of N to provide the
negative sign of the last generator (—)¥Z,Z,...Zy, and obtain
the correct parity (odd numbers of spins down).

The procedure described in Ref. [79], which can be applied
to any Hamiltonian, provides a systematic recipe for preparing
the stabilizer ground state from a graph state, avoiding discrete
optimization procedures which are often more challenging
than continuous ones. Application to more general Hamilto-
nians will be explored in future works.

C. Results

As an example, we show in Fig. 2 results obtained for a
system of N = 8 spins with parameter value y = —1. Sys-
tems with sizes from N =2 up to N = 30 are provided in
Appendix B. In particular, for each of the two stabilizer states
|\IJX,,-)(N ) (i = 1, 2), we analyze the relative energy difference
& = |(E;; — Eex)/Ecx| between stabilizer ground-state energy
and exact energy, and the fidelity |(Pe|W;,;)| between the
stabilizer states |\, ;) and the exact wave function |®¢). We
also show in the same figure the magic and entanglement
features of the exact and stabilizer wave functions.

The magic is quantified via stabilizer Rényi entropy (SRE)
defined according to Ref. [30] as

1
Mo(|9) = —logyd + ——log, | Y 83|, (18)

—a -
Peg,
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(a)
2
(6]

FIG. 1. (a) graph G associated with the state in Eq. (17) for N =
8. (b) complementary graph G¢ (see more details in Appendix A).

where d =2V, Gy C Gy is the group of Pauli strings with
phases +1 and Ep = (W|P|W)?/d. Specifically, we choose
the stabilizer 2-Rényi entropy M,(|¥)) which is known to
be related to the distance between |W) and the closest stabi-
lizer state [83], and has been shown to satisfy the required
properties of good measures, including monoticity [34,84].

Entanglement is quantified via (1-spin) von Neumann en-
tropy defined as

SV = —Tr(p{Vlog, pi™), (19)

where ,o%N ) is the one-spin reduced density matrix that takes
the expression [81]

w _ (1= (Ny)/N 0

where N, = N/2 + J. counts the number of spins up. To
quantify multipartite collective entanglement we choose the
n-tangles [85,86]. For a permutation invariant system, they are
simply given by

T, = (WY E" W), (21)

We note from Fig. 2 that the entangled stabilizer state
|W, ,)™ is maximally entangled, in both the bipartite and
N-partite sense, for the whole range of interaction strength. By
definition, both stabilizer states display constant zero magic.

In the regime below the phase transition v, < 1, the system
is dominated by single-particle dynamics and is in the spheri-

T T T T

Exact e
Noninteracting Stabilizer
Entangled Stabilizer

N=8, x=-1 |

Entropy S e
Vs N-tangle Ty — —

o
no

o
®
T g

© o
>

FIG. 2. From bottom to top panel: relative energy difference
¢, fidelity, entanglement, and stabilizer 2-Rényi entropy M, in a
system with N = 8 spins, as a function of the interaction strength
v,. The exact solution is shown with black curves, the unentan-
gled (noninteracting) stabilizer state | W, ;)™ = |1)®" is shown with
green curves and the entangled stabilizer state | ¥, ,)™ is shown with
purple curves. In the entanglement panel, the von Neumann entropy
is displayed with plain lines while the N-tangle Ty is shown with
dashed lines. The black dashed vertical line denotes the critical point
between normal (spherical) and parity-broken (deformed) phases,
while the red dotted vertical line denotes the transition from unen-
tangled to entangled stabilizer ground state.

cal (normal) phase. In this region, the exact state exhibits low
entanglement and magic and is best described by the nonin-
teracting (unentangled) stabilizer state |W, )™ = [1)®V,

In the regime well above the phase transition v, > 1, the
system is in the deformed phase (the mean-field solution
spontaneously breaks the parity symmetry) with a maximal
deformation reached for v, > N. In this region the exact so-
lution tends to exhibit maximal entanglement (von Neumann
entropy and 8-tangle) and low magic and thus can be captured
to a large extent by the entangled stabilizer state | ¥, ,)™).

We observe that, independently of the size N of the
system, the exact ground state displays (close) to maximal
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N-tangle ty, while the n-tangles 7, with n < N are several
orders of magnitude smaller and negligible in comparison.
The system thus mostly exhibits genuine collective N-partite
entanglement. Interestingly, while the entangled stabilizer
state I\DSYZ)(N ) displays constant maximal ty, we find that
7, = 0 for n < N. This confirms that such stabilizer state is
able to capture, to a large extent, both bipartite and multipar-
tite entanglement properties of the exact solution in the region
U, > 1.

It is the region in between, around v, ~ 2, where both
single-particle and collective effects come into play, that is,
most difficult to describe with a single stabilizer state. As
v, =~ 2 is the point where the stabilizer ground-state transi-
tions from an unentangled to an entangled one, this is also
the region where the exact ground state is furthest described
by either stabilizer state, and for that reason, the magic is
maximal around this point.

We note that this transition point at v, >~ 2 is based on
the energy criterion chosen to select the stabilizer ground
state (Sec. II above) and coincides with the fidelity crossing
point for the present chosen example (N = 8 and x = —1).
Depending on the parameter values, however, the fidelity
crossing point can occur at slightly lower values of v, (see
Figs. 3 and 5 and Appendix A).

Figure 3 shows fidelity and relative energy difference for
the stabilizer ground state, which corresponds to |, )™ for
b, < 2and |, )™ for v, > 2, according to the energy min-
imization criterion of Sec. II, for system sizes from N = 4 to
N = 10. The entanglement entropy S iN) and SRE M, (|W¥)) of
the exact solution are also provided. It is clear that the magic
is extensive in the region around the stabilizer ground-state
transition point v, >~ 2. This was also noted in Ref. [37] for
the case x = 0. This is accordance with the behavior of the
fidelity of the stabilizer ground state shown in the middle
panel, which decreases in this region for large N. On the other
hand, the relative energy difference behaves similarly to the
entanglement entropy, i.e., it tends to improve and converges
as N increases.

IV. BEYOND STABILIZER GROUND STATE WITH MAGIC
INJECTION

A. Discussion and preliminaries

Once the stabilizer ground state has been obtained, there
are several ways that one can adopt to incorporate nonstabi-
lizerness into the system.

For example, one can in principle apply a unitary operator
U(0) = e~0, where 0 is a continuous angle that can be de-
termined variationally. There is a range of one- and two-spin
Hermitian operators O that one can consider to generate such
unitary. For example, one can use terms of the Hamiltonian
itself, as done in Hamiltonian variational ansatz (see, e.g., Ref.
[87]), and/or commutators of Hamiltonian terms, to explore
a larger part of the Hilbert space [88], as well as individual
fermionic or qubit excitation operators [12,89].

In the present case of the LMG model, employing O = J;
on top of the unentangled state |W,,) = [1)®N, corresponds

1.0 — -
Q. '
gO.S- ;
5506
904}

~N N=
I Exact N

' <— Stabilizer ground state
0.0= . . :
4.0 T T . .

Exact ground state

Stabilizer ground state

id
O O O «
\l

0.5 —— ' ' -
0.4 : : : :

Stabilizer ground state -

w 0.2

0 2 4 6 8 10

FIG. 3. From bottom to top panel: Relative energy difference
between exact and stabilizer ground-state energy, fidelity of the
stabilizer ground state, stabilizer 2-Rényi entropy M, of the exact
ground-state, and entanglement entropy of both exact and stabilizer
ground states. The results are shown for various system sizes and
have been obtained with x = —1. The stabilizer ground state is taken
to be |, | )™ for v, < 2 and |¥, )™ for 7, > 2.

to generating the deformed (unresticted) HF solution.’ As
mentioned previously, the downside of this procedure is that
it breaks parity symmetry, which then has to be restored a
posteriori. While such restoration is straightforward in the
case of the LMG model, in realistic fermionic systems, such
as atomic nuclei, this procedure is numerically highly costly.
In fact, the only Hermitian excitation operators which
would preserve both the reality and symmetries (parity and
permutation) of the wave function are 0. = Joly 0y ) =
% Zi j(Xl-Yj £ Y:X;). The individual terms in 0., however, do
not commute, and thus implementing this operator on a quan-
tum computer typically requires Trotterization for large values

SIn fact, the deformed HF solution can also be interpreted
as the stabilizer ground state of the transformed Hamiltonian
H ©) =U"(©)AU (0). We have indeed checked that the transformed
Hamiltonian does not admit an entangled stabilizer ground state.
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FIG. 4. Relative energy difference &, fidelity, von Neumann en-
tanglement entropy S gN), N-tangle ty, and SRE M, in a system with
N = 8 spins and x = —1. The exact solution appears in black. The
unentangled and entangled stabilizer states, |, )™ and |¥,,)®,
are shown in green and purple curves, respectively. The state ob-
tained via Eq. (22) is shown with red curves. For comparison, the
deformed HF without and with projection are shown with cyan and
blue curves, respectively.

of N, which results in approaches similar to as Trotterized
UCC [90] or ADAPT-VQE [12] ansatz. In Appendix D we
have implemented ADAPT-VQE using the stabilizer ground
state as initial state. In the regime of large deformation or
collectivity, we find that such strategy does not appear to
be optimal, as the individual excitations somewhat destroy
the previously build coherence of the entangled stabilizer
state before rebuilding it layer by layer. As illustrated in
Appendix D, this induces long plateaux in the convergence
procedure, which appear to be characteristic of collective
initial states, due to equally small energy gradients of the in-
dividual operators for a large number of iterations. Only after
many layers, once the collectivity has been rebuilt, these gra-
dients increase again and convergence resumes. Such plateaux

N=8, X=-0.11

>‘0.0 . .

= 0.8} : _ Exact =]
w 0.6 : - Noninteracting Stab.

S l . Entangled Stabilizer —
2047 : . Magic State Eq. (22) =

Deformed H )
Projected Def. HF =—

0.08} i

0.06 !
“0.04} 1
0.02} ,
0.00

FIG. 5. Same as Fig. 4 for x = —0.1.

caused by gradients troughs [91] have been noticed in the case
of symmetry-breaking reference states, for example in, e.g.,
Refs. [92,93] or in Ref. [13] when using a LMG deformed HF
solution as initial state in ADAPT-VQE. In the present work,
we also observe such feature although the initial stabilizer
state is symmetry preserving.

In the following we explore a different strategy to preserve
the collectivity of the system together with the symmetries
along the variational process, making use of imaginary-time
evolution techniques. Specifically, we apply both a “varia-
tional” and standard imaginary time evolution, as described
below.

B. Variational quantum imaginary time propagation

The first approach is based on the observation that the en-
tangled stabilizer state | ¥, ,)¥) contains all the configurations
that contribute to the exact ground state (and only those) with
equal amplitude probabilities. In order to arrive at the exact
solution, the task is therefore to adjust the amplitudes related
to these configurations. This can be done, to a large extent, by
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application of the nonunitary operation

|(6)) = e |w, )™,
N
=[]e " 1w)™, (22)
i=1

where the angle 6 can be variationally optimized.

We show in Figs. 4 and 5 the results obtained for a
system of N = 8 spins using parameter values x = —1 and
x = —0.1, respectively. In practice, the optimal value of 6
has been determined by performing an initial scan of the
energies obtained for a grid of 6 values. The retained value
was then further refined using optimizers available in Scipy
[94]. Specifically, we used both COBYLA and gradient-based
L-BFGS-B optimizers which provided results in agreement
with each other.

The magic state obtained via Eq. (22) is shown with a red
curve and recovers the exact solution to a large extent, even in
the region around and below the phase transition at v, = 1. We
observe that the results are more accurate for smaller absolute
values of yx, since the Y'Y term in the Hamiltonian has smaller
weight, and thus, applying operator exp(—6., ) to the stabilizer
state | W, »)™) captures the exact solution almost fully. In all
cases, the largest deviations to the exact result appear around
v, = 2, where the magic presents a maximum.

For information, we also provide the deformed Hartree-
Fock solution without and with projected onto good parity,
with cyan and blue, respectively. As mentioned above, the
deformed HF solution is obtained via global single-spin trans-
formation of the noninteracting ground state [1)®V around
the y axis. As it is a simple mean-field state, the deformed
HF solution features the same computational complexity as
a stabilizer state and can be prepared efficiently classically.
This state has vanishing magic and entanglement in the ro-
tated spin basis; however, SRE and entanglement entropy
become nonzero if calculated in the original (nonrotated)
basis. This is what is shown in Figs. 4 and 5. We note,
however, that the HF state is not able to capture the n-
tangles, which are independent of the qubit (spin) basis [81]
and thus remain equal to zero before projection.® Addition-
ally, although the deformed HF state describes the energy
of the system to a better extent than the stabilizer ground
state, the fidelity of the wave function is not well reproduced
in the region of large deformation (large v,) and requires
projection.

While the projection largely improves the results above the
phase transition, the resulting solution displays a discontinu-
ous behavior at the phase transition v, = 1. This is not the case
with the strategy of Eq. (22) which displays a smooth behavior
throughout the full range of v, values and provides results that
are overall at least as good as the projected HF solution and of
better quality around the phase transition. As we have verified,
the remaining discrepancies around ¥, = 2 can in principle

®This is because the basis transformation is a qubit rotation around
the y axis and thus commutes with the Y Pauli operators in the n-
tangles. The expectation value in Eq. (21) therefore remains invariant
under such transformation.

be systematically improved using higher-order operators, for
example, via | D (01, 62)) = exp(—62J2) exp(—01J,) [ W) ™).

In a quantum circuit, the nonunitary operator in Eq. (22)
can be implemented, for example, using existing techniques
developed for quantum imaginary time evolution (QITE) such
as the quantum imaginary time propagation (QITP) algorithm
developed in Ref. [95]. These techniques are inspired by
classical imaginary-time evolution (ITE) methods, which, in
their original form, are used to find the ground state of a
physical system by evolving an initial state (with nonzero
overlap with the ground state) in imaginary time so that,
after a long time, the system converges to its exact ground
state. By making use of an ancillary system, QITP allows the
implementation of the nonunitary ITE operator on a quantum
circuit by acting with a carefully chosen unitary on the full ex-
tended system (see details in Ref. [95] which are summarized
in Appendix C). This method can be adapted to implement
Eq. (22), which represents some kind of ITE with only part
of the Hamiltonian (J; operator) and where the angle 6 plays
the role of imaginary time. Contrarily to ITE, there is an
optimal value 6 = 8 to be found, which provides a minimal
energy. Such optimal value can be determined via standard
optimization procedures as above. A comparison between the
exact evolution of Eq. (22) (shown in Figs. 4 and 5) and the
evolution implemented via variational QITP is provided in
Appendix C.

C. Full quantum imaginary time propagation

While the magic-injection procedure described above al-
lows for recovering the exact solution to a large extent in
the case of the LMG model, it is not clear whether it can
be successfully applied to a more realistic system.” In the
case of a general Hamiltonian, implementations of QITE and
QITP with the full Hamiltonian may be employed to inject
magic. In general, the advantage of this procedure is that it
does not require a particular ansatz for the evolved quantum
state, avoids the need for an optimization procedure, and, in
principle, guarantees convergence to the exact ground state.
On the other hand, the drawback is that the size of the qaun-
tum circuit may increase rapidly. In this context, since the
convergence towards the ground state, and thus the size of the
quantum circuit, is governed by the overlap of the initial state
with the exact ground state, it is highly desirable to have an
initial state that captures features of the exact ground state to
a large extent. This motivates exploring the use of stabilizer
states as starting points for QITE and QITP. Thus, in order to
gain insight for future studies of more general Hamiltonians,
we investigate below the use of stabilizer states as initial
states for QITP with the full LMG Hamiltonian. Details of
the procedure are reminded in Appendix C.

We show in Fig. 6 the fidelity |(®x|n(7))| between the
exact ground state and the state |7(t)) evolved with the QITP
operator [see Eq. (C6) in Appendix C] as a function of the

"Typically, we expect that this procedure would only be useful if
the degree of collectivity of the system is large (many components
with similar weights), and the corresponding stabilizer ground state
contains most relevant components to the exact ground state.
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FIG. 6. Fidelity |(®cx|n(7))| of the state n(r) evolved via QITP
operator [defined in Eq. (C6)] for two initial states |7(0)) = |¥, ;)
(green curve) and |7(0)) = |W,,)™ (red curve) as a function of .
The results are shown for a system of N = 8 spins and x = —1 for
different values of the interaction strength v,.

imaginary time t. We compare the cases when the initial state
is chosen to be the noninteracting (unentangled) state |W; ; )(N )
and the entangled stabilizer state |\Ils,2)(N ). We choose differ-
ent values of the interaction strength near and away from the
phase transition and the point of stabilizer ground-state tran-
sition, specifically, v, = 1.1, 2.1, 5.0, 10.0.As expected, in
the region v, < 2 the unentangled state provides a better
initial state due to higher fidelity with the exact solution,
while the entangled one becomes optimal for v, > 2 as v,
grows. The convergence towards the exact solution also ap-
pears to be more rapid away from the phase transition for
large values of v,. Overall, the results indicate that using sta-
bilizer ground states for subsequent quantum or classical ITE
methods may be optimal, in particular in systems exhibiting
a large degree of collectivity, due to the large-scale entangle-
ment captured by the stabilizer ground state. As mentioned
above, this is particularly important in the quantum case as
the success of QITE and QITP algorithms directly depends on

the overlap of the initial state with the exact ground state, and
often requires amplitude amplification [96,97], leading to an
additional increase of the size of the quantum circuit. The use
of an entangled stabilizer state thus may alleviate this need in
the case of collective systems and is to be investigated in more
details in the future.

Note that, in contrast with the variational QITP described
in Sec. IV B, full QITP will in practice require Trotterization.
Studying the effect of Trotterization together with stabilizer
ground states is left for a future study.

V. SUMMARY AND CONCLUSIONS

In this work we have made use of the stabilizer formalism
in order to approximate the ground state of a quantum many-
body system with collective behavior. Specifically we have
chosen the LMG model which can be described by a system
of N interacting spins with all-to-all connectivity and displays
a second-order phase transition to a symmetry-broken state,
corresponding to a collective regime where all spins are cor-
related in a coherent manner and analogously to the transition
between spherical and deformed phases in atomic nuclei.

The procedure for finding the stabilizer ground state
adopted in this work is based on a decomposition of the
Hamiltonian into mutually commuting operators forming a
stabilizer part and a residual part inducing nonstabilizerness
(magic). The optimal stabilizer Hamiltonian is determined
via an energy minimization criterion, and the corresponding
stabilizer ground state is efficiently prepared in terms of a
graph state, using an existing technique based on stabilizer
tableaux. We found that the resulting stabilizer ground state
coincides with the noninteracting (unentangled) ground state
in the normal phase while it becomes maximally entangled
in the region of large deformation (collectivity), in both the
bipartite and N-partite sense, which captures to a large extent
the entanglement features of the exact solution. The transition
point between unentangled and entangled stabilizer ground
states coincides with the maximum of magic, as it is the region
that is most difficult to capture with a single stabilizer state.

This study now motivates the use of the techniques pro-
posed in this work to describe more complex and realistic
systems. Ultimately stabilizer states could potentially provide
a path towards efficient simulations of systems with high
degrees of collectivity from an ab initio single-particle picture,
without resorting to traditional explicit symmetry-breaking
and restoration techniques.

To compare these different approaches from the per-
spective of quantum complexity relative to a particular
quantum resource theory, the stabilizer-plus-magic formal-
ism of the present paper relates to the resource theory
based on Clifford-plus-T-gates, while the more traditional
many-body techniques based on (symmetry-broken) mean-
field-plus-fluctuations relate to the resource theory where
fermionic Gaussian unitaries (“matchgates”) are the free re-
sources and non-Gaussianity is the costly one; see, e.g.,
Ref. [98]. Although this requires further investigations, this
work seems to indicate that shape collectivity could be effi-
ciently reached within the former resource theory, while the
latter one would lead to longer paths in the Hilbert space,
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ultimately reached via projection, and thus necessitates more
resources.

While the method described in this work provides a sys-
tematic way of determining stabilizer ground states in various
many-body systems, the best path for injecting magic on top
of such stabilizer ground state, while preserving collectivity
and symmetries is not as clear and will require specific inves-
tigations depending on the nature of the system of interest and
the computing device (classical, quantum, or hybrid). Specif-
ically, if the residual magic interaction W is “small,” then one
can incorporate it via perturbation theory or fluctuations on
top of the stabilizer ground state; see Ref. [66]. If it is nonper-
turbative, then one can apply powerful classical methods, such
as, for instance, coupled cluster, on top of the stabilizer state
or, at scale, quantum algorithms implemented on quantum
computers. For example, in the present study of the LMG
model, we found that ADAPT-VQE with few-body excitation
operators does not appear to be adequate when applied on
collective stabilizer ground state as it tends to destroy the
coherence of the state, ultimately requiring a similar number
of iterations to converge than with a trivial unentangled state.
On the other hand, the use of stabilizer ground state promises
to substantially accelerate classical or quantum imaginary-
time evolution methods, due to larger overlaps with the exact
ground states.

In systems such as atomic nuclei, which often present a
strong interplay between collective and single-particle degrees
of freedom, we found in a previous study that (the onset
of) shape collectivity is also associated with large magic [7].
This is consistent with the present work which suggests that
collectivity is associated with large-scale entanglement while
the interplay with the single-particle regime produces magic.
The magic injection is therefore expected to be crucial in these
systems. In this context, it will be interesting to investigate
whether stabilizer states may be more efficient in spreading
magic than typically used unentangled reference states, and
the use of #-doped quantum circuits [99,100], alternating be-
tween Clifford and magic gates, may be useful. This will
be studied in a subsequent work. In the future, we also plan
to investigate the combination of symmetry-preserving basis
transformations (or Hamiltonian transformations) to decrease
the computational complexity, together with the present sta-
bilizer ground-state method via extensions of our previously
developed HL-VQE algorithm.
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APPENDIX A: STABILIZER HAMILTONIAN, STABILIZER
GROUND STATES, AND RELATION TO GRAPH STATES

In this section we provide details on the procedure to find
the stabilizer Hamiltonian and prepare the corresponding sta-
bilizer ground state of the LMG model. As a reminder, the full
Hamiltonian of this system is as follows:

N8 Ux 2 2
H=1J - (N_l)(J +xJ5),

- _Z 2(N

As in the main text, we use the convention

|¢>:|0>=((‘,) and |¢>=|1>=<?>, (A2)

so that the noninteracting ground state of the LMG model
(obtained for v, = 0) is the state || ... ) = |111..1).

We will first consider the case x = —1, and generalize to
x € [—1,0) in a second stage.

Z(XX +xYY).  (Al)

1. Two-spin system (N=2)

The LMG Hamiltonian for the two-spin system with y =
—1lis

~ 1 v
g — E(Z' + 7)) — 3"(X1X2 - Y1), (A3)

so that the set of Pauli string in H® is
In =1{Z1. 2, Xi X2, 1 1o}, (A4)
from which we extract two sets of commuting operators:
O1=1{Z1, 2} and O =

Each of these sets already contains N = 2 generators, gen-
erating stabilizer groups with 2V = 4 elements. We need to
examine all sign possibilities, i.e., consider

{(X1Xo, Y11} (AS)

01 =1{Z1, Z}, (A6)

01 = (-2, 2}, (A7)

0\ =1{Zi, -2}, (A8)

0l = (-2, -2}, (A9)

as well as

05 = {XiXe, "1}, (A10)

05 = (X1 X2, Y1V}, (A11)

05 = (X1 Xy, —Y1 Y5}, (A12)

05 = {—X1Xp, —Yi Y5} (A13)
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Each of these Q¥ generates a stabilizer group SF = (Q%) each
of which corresponds to a unique stabilizer state.

The corresponding stabilizer energy for each of the QX
groups are

E(@)=3+5=1 (Al4)
E(Q)=-1+1=0, (A15)
E(@) =1-1=0, (A16)
E(Qf)=-1-1=-1 (A17)

It is easy to guess that the corresponding stabilizer states
are |00), |10), |01), |11), respectively, which are obviously
nonentangled. Among these, |11) is the one with the lowest
energy, corresponding to the noninteracting ground state. We
also have the following stabilizer energies for the Q% groups:

v
E(Q5) =50 -1 =0, (A18)
E(Q)) = —g(—1 - =1, (A19)
v
E(Q5) =50+ 1D =-1, (A20)
E(0%) = —g(—l +1)=0. (A21)

Similarly, it is clear that the stabilizer states corresponding
to the S¥ = (Q%) stabilizer groups are Bell states which are
known to be simultaneous eigenvectors of XX and YY (and
ZZ). Among them, the stabilizer state with the lowest energy
is the symmetric spin-aligned Bell state (]00) + [11))/v/2
with energy —v, (since v, > 0). Note that the stabilizer state
stabilized by S?, with energy +7, is the antisymmetric Bell
state (|00) — |11))/+/2. The others are the spin antialigned
states (|01) = [10))/+/2.

In summary, in the case of a two-spin system: For v, < 1,
the stabilizer ground state is the noninteracting state |\, ;) =
[11) with energy E;; = —1, while for v > 1 the stabilizer
ground state is the entangled Bell state |W;,) = (]00) +
111))//2 with energy E; » = —Ty.

The unentangled state |W; ;) is trivially prepared from |00)
with X gates, while the Bell state |\, ») can be prepared with
a single Hadamard and controlled-X (CX) gate:

1
V2
= CXy1H2 [0) ® [0),

W)@ = —(|00) + [11)) = CX2; [0) @ |+)

(A22)

where CX; is controlled by qubit j and has qubit i as target.

2. Three-spin system (N =3)
The Hamiltonian for N = 3 is
Fo L
HY = E(Zl + 72, + 7Z3)

v
- Z(X1X2 + X1 X3 + X0 X5 — 11, — 1Y — 1hYs).
(A23)

Similarly as above we can consider the subsets of operators
consisting only of Z gates:

Ok = (£2,, £2,, +73), (A24)

where the superscript k denotes the possible sign combina-
tions. These subsets generate stabilizer groups S{‘ = (Q’f),
each with eight elements. We can also extract groups with XX
and YY operators. Contrarily to the N = 2 case, there are now
different ways of grouping these operators into commuting
subsets. For example, one can consider:

Of = (X1 X, £X,1 X3, £XX3}, (A25)
04 = (£V\Vs, £11V3, £15 13}, (A26)
or, alternatively,
O = (£X1X,, £V Vs, £73}, (A27)
Of = [£X1 X3, £V V3, £25), (A28)
0f = {(£X,X;3, £1hY3, £74}. (A29)

(1) Among the Q’{ operators the minimum stabilizer
energy is obtained for {—Z;, —Z,, —Z3} which again corre-
sponds to the state |111), with energy —3/2.

(2) Among the Q% operators the minimum stabilizer en-
ergy is given by —1/2 —v/4(1+1) = —1/2 —v/2, and is
the same for Qf, Q’g. Note that picking one of these groups
would lead to a stabilizer state breaking permutation symme-
try.

(3) Among the Q’g operators the minimum stabilizer
energy is equal to (—v/4)(1+ 1+ 1)= —3v,/4, which
corresponds to {+X;X», +X X3, +X,X3}. Of these three op-
erators, two are linearly independent, for example, +X;X3
and +X,X3. Thus one needs to complete this set with a third
operator to generate a complete stabilizer group and specify
the corresponding stabilizer state uniquely. We require that
the stabilizer state satisfies both permutation and parity sym-
metry. In particular, it should have an odd number of spins
down, since, according to the form of the Hamiltonian, the
noninteracting ground state [111) can only couple to states
with odd number of spins down. An operator which satisfies
these conditions is —Z;Z,Z;3. It is easy to see that the state

W, ,)® = %(|111) 4+ [100) + [010) + |001)), (A30)

which is a superposition of the three-qubit W state and [111),
is stabilized by § = (+X,X3, +X2X3, —Z,Z,73) and satisfies
the required symmetries.

(4) For Q%, the minimum stabilizer energy is equal to
—1,/4, which corresponds to, for example, {+Y,Y>, —Y Y3,
—Y,2¥3} and, e.g., S = (-V\Y3, —Y»V3, —Z,7,Z3}.% The cor-
responding stabilizer ground state is similar to |W,,)® with
different relative signs.

In summary, for a system with N = 3 spins: If —3v,/4 >
—3/2, ie., vy <2, then the stabilizer ground state is the
unentangled stabilizer state |W,;)® =|111) with energy

8Note that it is not possible to have a group generating —Y;Y;, with
minus signs forall i < j for N > 3.
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E; | = —3/2, while for v, > 2 the stabilizer ground state is
the entangled state |W,,)®® with energy E,, = —37,/4 <
—3/2. The permutation-symmetry-breaking choice never
leads to a stabilizer ground state.

It is straightforward to see that the entangled state |, ,)®
can be prepared with a series of controlled-X (CX), H and X
gates:

|W)® = 1(]100) + [111) 4 |010) + [001)),
= CX21CX31CX32 [1) ® [+) ® |+) ,

= CX21CX31CX3X1HoH3 [0) ® 10) ® [0) . (A31)

3. Arbitrary N > 2

The procedure for extracting subsets of mutually commut-
ing operators in the N = 3 case can be generalized to arbitrary
values of N.

The stabilizer group SfN ) generated by {—Z;, -7, ...

— Zy} operators has stabilizer energy E;; = —N/2 and
always coincides with the noninteracting ground state
W, )™ = |1>®N

As for =3, the interacting part of the

Hamiltonian can either be

sets Ql(;v) {XiX;, VY, {Zi}ii j}icj or into
(X1 X, X, X5, ...,X2X3, oo Xy—1 Xy} and (N>

", Y, .. LY, ..., Yv_1Yy}. The set Q o ylelds a
stabilizer energy equal to — - NNZD — _No - while

partitioned into  sub-
(N ) _

Tan-D X T2 T T4

Q(N ) will always yield a larger energy9 A set of the former
(N 2) _

type Q( ) yields energy — -7 N T
larger when v > 2. Addltlonally, as mentioned above, those
sets lead to parity-symmetry breaking which is not desired

In summary, for arbitrary value N > 2, if —% > —7, ie.,
¥, < 2, then the stabilizer ground state is |W, )™ = |1)®V
with stabilizer energy E; | = —N/2, while if v, > 2, then the
stabilizer ground state |\IJS,2)(N ) is entangled with E; » = — Mo
For N even (respectively, odd), we can predict that this en-
tangled state is an equal superposition of all states with even
(respectively, odd) number of spin down (1’s).

Rigorously, to fully specify [W,)"), one needs a
complete stabilizer group. To do this, N — 1 1nde1€en—
dent generators can be extracted from the group Q2

{X1X>, X1 X3, .. X0 X5, ..., Xy—1 Xy}, for example:
g1 =Xi Xy,
82 = XoXw,
gn-1 = Xn—1Xw, (A32)
which can be completed by
v=(=D"22,..2y, (A33)

9W1th the optimal combination of signs we find stabilizer energy

4(N for even N and — —‘ for odd N.

(which satisfies permutation invariance) to form the N gener-
ators of the complete stabilizer group SEN ) = (g1, 82, .., gv of
W) ™).

The preparation of this state can be inferred from general-
izing expressions (A22) and (A31) as

[T;cX;i 10) @ |+) ®N=D " for even N,
W)™ =

[Ti-; X 1) @ [+)®¥~1 for odd N.

For example, for N = 4, this gives
1
W, 5)@ = ——(]0000) + |0011) + |0110) + 1100
[Ws2) Wi | )+ | )+ | )+ )

+ 10101) + [1111) + [1010) + [1001)). (A34)

The states |W,)?), are, as expected, equal superposition of
configurations with even (respectively, odd) spins down (1’s)
for N even (respectively, odd). They are also superpositions
of the angular momentum eigenstates (Dicke state) |J, M) =
IN; =J + M). For example, |¥,,)® is a superposition of
INy =0,2) = |J =1,M = —1,+1), |¥,,)® is a superpo-
sition of [Ny =0,2) =|J =3/2,M = -3/2,+1/2) (M =
—1/2 or +3/2 would break parity symmetry), and | W, »)® is
a superposition of [Ny =0,2,4) =|J =2,M = -2,0, +2).

The case x € (—1,0) can be treated in exactly the same
way as x = —1.

Only in the case x = +1 would the states stabilized

by 8( ) = <X1XN’ XzXN, veey XN_IXN, (—1)N21Z2ZN> and
SN = (V\Yy, oYy, oo, Yy_1 Yy, (=1)VZ1Z,...Zy) be degen-
erate

4. Preparation of stabilizer ground states from graph states

In this section we will omit superfluous super- and sub-
scripts and refer to the N-spin entangled stabilizer ground
state | W, ,)™ and corresponding stabilizer group S, simply
as |Wy) and S, respectively.

In the case of the present LMG model, one has enough
intuition to infer a way of preparing the entangled stabilizer
ground state |W;), as written in Eq. (A34) above. In the case
of a more general Hamiltonian, however, the stabilizer-state
preparation requires a more systematic procedure. For exam-
ple, it is known that any stabilizer state can be obtained via
local Clifford operations acting on a graph state.

As detailed in, e.g., Ref. [78], an N-qubit graph state |G)
is associated with a (simple unweighted) graph G = (V, E),
where V' denotes the sets of vertices (N qubits) and E denotes
the set of edges between these vertices. The graph state |G)
can be prepared as

3 (H cze) ). (A35)
eck
and is stabilized by operators of the form'°
=X ® VA (A36)
Jjen;
0This can be checked easily using X; |+); = |+); and C€Z;;X; =

Xl'ZiCZ,'j.
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where n; denotes the set of qubits (vertices) connected to i by
an edge.

In order to find the Clifford operations U¢ that transforms
a graph state |G) into the stabilizer state |W;) as:

W) = Uc |G), (A37)

one can, for example, parametrize Uc with a set of discrete
angles (to ensure the Clifford-ness) and optimize the angles
via energy minimization. Optimization procedures, in partic-
ular discrete ones, can, however, often be difficult to achieve
in a robust way.

On the other hand, there exist an efficient procedure de-
tailed in Ref. [79] to find the local Clifford operations that
transform from a stabilizer state to a graph state, without
resorting to an optimization. This procedure utilizes the stabi-
lizer tableau formalism, i.e., the fact that a stabilizer state |\W,)
can be represented by a binary tableau or generator matrix,

T, =(X|2), (A38)

where each line of Ty corresponds to a generator g; of the
stabilizer group S = (g1, g2, - - ., gv) of |\¥y), and the matrix
elements X;; =1 if g acts with X on qubit j, and simi-
larly Z;; = 1 if g; acts with Z on qubit j. For example, the
binary tableau representing X,Y,Z; for a three-qubit state is
(110]011). Note that the sign of each generator is ignored.

The generator matrix associated with a graph state |G) has
the following particular structure:

T = (1]D), (A39)

where I" is the adjacency matrix of the graph G = (V, E), i.e.,

1
F,‘j = {0

Since we are dealing with simple (unweighted) graphs which
have no loops, I';; = 0.

Reference [79] describes the (efficient) procedure for trans-
forming the generator matrix of a stabilizer state into one a
graph state:

if (i, j) € E,
otherwise.

T,=X|Z)—> Tg=AII). (A40)
This directly provides the desired transformation Ug in
Eq. (A37).

In the present

study of the LMG model, the

generator matrix representing the stabilizer group
S = (X1 Xn, XoXn, ..., X1 Xy, (=1)NZ,Z,...Zy) associated
with the entangled stabilizer state |W,) is then given by
T
1 0 0O 1/]0 O O 0 o0
0 1 0 0O 1{0 0 O 0 o0
1 0 1 0 1{0 0 O 0 0
0 0 O 1 1 0 0
0 0 O 0O 01 1 1 1 1
(A41)

The procedure in Ref. [79] then simply amounts to apply-
ing a Hadamard gate on the last qubit. The effect of Hadamard

conjugation on the binary tableau is to exchange the last
columns of the matrices X and Z, yielding

T
1 0 O 0O 0({0 O O 0 1
0 1 0O 0({0 O O 0 1
10 0 1 0O 00 O O 0 1
o 0 o0 .. 1 0 0 1
o o0 o0 .. 0 1|1 1 1 1 0
= (1), (A42)

which describes a graph state with stabilizer group Sg =
{X]ZN, XzZN, N XNIZNv Zl...ZN_lXN} which is indeed the
conjugate of S with Hy for even values of N. In the case
when N is odd, one needs to apply an extra X gate to one of
the qubits. This has the effect of conjugating each generator
with X and thus provides the necessary minus sign for the last
generator —Z17,...Zy [see Eq. (A33)].

In summary, if we denote by gEG) the generators in Sg and
g the generators in S, then we have

g =Uc g U, (A43)
or, equivalently,
G) = Uc [¥,)™, (A44)
where, for example,
Ue = (X)N™42 gy (A45)

The generator matrix in Eq. (A42) corresponds to an open
graph with edges between vertex (qubit) N and all vertices
i < N.This is shown in Fig. 1(a) for the case N = 8. Note that
graph G is the complementary graph to the all-to-all connected
graph G¢, as shown in Fig. 1(b). The adjacency matrix of G
and G¢ are related by [79]: I = T + 1, where

- 1 ifi#j,

ifi =j.

In summary, an alternative way of preparing the entangled
stabilizer ground state of the LMG model is given by acting
with a single Hadamard gate (and X if N is odd) on the open
graph state as

N

W) =05 1G). (A46)
N-1
= X)"™ 2 Hy [ ] cziw 1 +)®Y.
i=1
Unlike Eq. (A34), the preparation given in Eq. (A47) has been
obtained from following the procedure in Ref. [79] which
provides a systematic and rigorous “recipe,” generalizable to
the case of an arbitrary Hamiltonian.

(A47)

APPENDIX B: RESULTS FOR STABILIZER GROUND
STATES AND BEYOND

In this Appendix we provide additional results obtained for
systems ranging from N = 2 to 30 spins. We focus on the
case x = —1, as the results do not significantly change for
x € [—1,0).
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FIG. 7. Relative energy difference between the exact ground-state energy and several approximations, for systems with N =
2, 3, 4, 10, 20, 30 and x = —1. The unentangled and entangled stabilizer states, |\IJS,1)(N ) and |\I/S,2)(N ) are shown in green and purple
curves, respectively. The state obtained via Eq. (B1) is shown with red curves. For comparison, the deformed HF without and with projection

are shown with cyan and blue curves, respectively.

Figures 7 and 8 show the relative energy difference to
the exact ground state & = |[(Eypp — Eex)/Eex| and fidelity
[(®Pex |Wapp) |, respectively, for quantum states |W,p,,) obtained
at different levels of approximation. In particular, results
obtained for the noninteracting ground state (unentangled sta-
bilizer state) |\Ils,1)(N ) = [1)®" are shown with a light green
curve, while those obtained for the entangled stabilizer state
|W, 2)™ are shown in purple. The magic state obtained via

[(©) ™ = ™ |, )N, (B1)
as discussed in Sec. IV B, is shown with a red curve. Finally,
for comparison, the deformed HF without and with projection
onto a good parity are shown with a cyan and blue curve,
respectively.

The exact solution and entangled stabilizer |\IJS,2)(N ) for
systems with N = 2, 3 contain only two Dicke states and thus
differ by only one relative amplitude, which can be adjusted
with a single angle. Thus Eq. (B1) recovers the exact ground-
state energy and wave function for these systems. This is true

even in the region below the stabilizer ground-state transition
point (v, < 1 for N = 2 and v, < 2 for N = 3).

Larger values of N, the magic states prepared via Eq. (B1),
show small deviations with the exact solution. The relative
energy tends to improve and converge towards ~0 for large
N > 4 values, while the discrepancy of the wave functions
increases around the stabilizer-ground-state transition point
around v, ~ 2, where the magic of the exact state is maxi-
mum. We have observed the same trends, to a greater extent,
for the stabilizer ground states themselves in Fig. 3 of the main
text.

We note that such discrepancies can be systematically im-
proved with higher-order operators, starting with the tensor
operator JZZ, which brings both entanglement and magic. In
that case, the variational state takes the form

[W(B), 6,)) = e P e 1w ) (B2)

As noted in Sec. III, we see that the fidelity crossing point
decreases as N increases. In fact, in the large-N limit, we
find that this crossing point converges towards v, = 1, which
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FIG. 8. Same as Fig. 7 for the fidelity of approximate states to the exact ground state.

coincides with the phase transition, and that the value of the
fidelity goes to zero at this point. Since the interaction strength
is proportional to v, /(N — 1), the region where the stabilizer
state becomes close to the ground state also becomes shifted
towards larger values of ¥,. For fixed value of v,/(N — 1) 2
1, the fidelity of the stabilizer ground state is roughly constant
with N and ~0.98-0.99.

APPENDIX C: QITP AND VARIATIONAL VARIANT

The QITP developed in Ref. [95] is an algorithm im-
plementing ITE using quantum circuits. Such technique is
inspired by classical ITE methods, which, in their original
form, are used to find the ground state of a physical system
by evolving an initial state |) = |7(0)) (with nonzero overlap
with the ground state) in imaginary time t = i,

e TR ) = 3 e BRI (@, ) | @)

n

(ChH

where |®,) denote eigenstates of H, in particular |®g) =
| @) is the exact ground state, and Ey is an upper bound close
the exact ground-state energy. After a long time t, the excited
states components are suppressed and the system reaches its
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! .
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L o4t W Magic State Eq. (B1) ==
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V)(
ground state,
lim e~ ) = (g[n) | D) (C2)

T—>00

Since the operator in Eq. (C1) is not unitary, it cannot
be straightforwardly implemented on a quantum computer.
The QITP algorithm circumvents this issue by embedding the
system of interest into a larger one by adding an ancilla qubit
(initialized to state |0)). One then acts on the full enlarged sys-
tem with a unitary operator U chosen such that the action of U
yields Eq. (C1) on the system of interest, after measurement
of the ancilla qubit. QITP is described in detail in Ref. [95],
and we simply remind the main steps below. Precisely,

. 0(t) A(r)
Ur)=| . A ; (C3)
! (A(r) —Q(r))
where
A(r) = (1 + e 2 E0)=172, (C4)
O(1) = A(x)e =BT — (1 4 2H-Eory=12 - (C5)

Measuring the ancilla qubit after acting with U on the full
system |0) ® |n), and keeping only the samples that have
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FIG. 9. Comparison of the relative energy difference and fidelity
obtained with implementing Eq. (22) exactly (black curve) and using
the variational QITP operator of Eq. (C8) (teal curve) for a system
with N = 8 spins, and parameter values x = —1 (left) and x = —0.1
(right).

collapsed to state |0), the state of the system of interest col-
lapses to [95]

Q) In)
Q@) Im) I

(Poln)

In(o)) = 7

[ Do) ,
(C6)

with O(7) |n) —

which is the desired ground state. The success of the QITP
procedure depends on the squared overlap of the initial state
with the exact ground state |(®g|n)|>. Choosing the unentan-
gled and entangled stabilizer states, |\I's,1)(N ) and |\IIS,2)(N ) as
initial states, the QITP procedure yields the results shown in
Fig. 6 of the main text. Note that in a real quantum circuit
one typically has to resort to Trotterization of the evolution
operator. Implementing and investigating the impact of such
Trotterization is outside the scope of the present study.

Further, the QITP procedure described above can also be
utilized and adapted in order to implement Eq. (22) on a
quantum circuit. Precisely the operator exp(—J.0) can be im-
plemented via Egs. (C3)—(C6) by making the substitutions

H—J. and v — 6, (C7)

so that the system is evolved with the J, operator instead of
the full Hamiltonian, and the angle 6 plays the role of the
imaginary time t. The state of the system after measurement
of the ancilla qubit is then given by

|2(6)) = 0(6) W, )™ (C8)

The difference with full QITP is that the angle 6 does not
go to infinity. Instead there is an optimal value for & which
provides a minimal energy and thus can be determined via
an optimization procedure. As mentioned in the main text, in
practice, the optimal value of 6 has been obtained by man-
ually scanning the energies obtained for a range of discrete
values of 6, followed by a further refinement using a Scipy
optimizer [94]. In particular, we have tested both Cobyla and
L-BFGS-B which have provided the same results. Figure 9
shows a comparison of the results obtained with implementing
Eq. (22) exactly and using the QITP algorithm as in Eq. (C8),
for the two parameter values x = —1 and x = —0.1. Except
for small discrepancies occur around v, = 2 (the most magic

region), the QITP algorithm reproduces the exact evolution to
a large extent.

APPENDIX D: ADAPT-VQE ON A STABILIZER GROUND
STATE

ADAPT-VQE has been originally proposed in Ref. [12].
This classical-quantum algorithm is based on a wave fucntion
ansatz of the form

L
1. ... 00) = [ [ "™ 1), (D1)
=1

where |¢) is a chosen reference state, and the 7;’s are Hermi-
tian excitation operators, chosen from a predefined pool. At
each layer /, an excitation operator is selected based on its
energy gradient

oE
001 19,=0

where |®;_;) = | Db, ..., ;—1)). At each layer, the values of
the angles 6; are optimized via a VQE algorithm [102].

In this section we explore the use of ADAPT-VQE when
the reference state |¢) is taken to be the stabilizer ground
state. We restrict ourselves to the region v, > 2, for which
the stabilizer ground state is entangled, specifically, |¢) =
|W;.2), given in Egs. (15) and (16). We limit the operator pool
to operators preserving the relevant symmetries (parity and
permutation symmetries), and the real character of the wave
function. These are

= —i(®1|[T;, H|®;-1), (D2)

f; = XY, £ ¥iX;. (D3)

We note, however, that allowing for a larger pool, including
operators such as %(XX £+ YY) or symmetry-breaking ones
such as XZ, YZ, does not change the results as the associ-
ated gradients are always found to be smaller than those of
operators in Eq. (D3) and thus are never selected during the
procedure.!!

As mentioned in the main text, we find that such imple-
mentation of ADAPT-VQE, on top of a collectively entangled
stabilizer state, is not adequate, as the layers somewhat de-
stroy the collectivity of the state. This is illustrated in Fig. 10,
which shows, as an example, results obtained for a system
with N = 8 spins, x = —1 in the region of large deformation
at v, = 5.The results obtained with |¢) = |W,,) are shown
with red curves. For comparison we also show with black
curves the results obtained with |¢p) = |¥ ) = [1)®8, Al-
though |W¥;,) is closer to the exact solution, the gradients
of the various operators are found to be of similar and very
small magnitude for a large number of layers, leading to the
observed plateau in both the total energy and wave function.
It is only after ~35 layers, where both solutions meet, that the
gradients increase and convergence towards the exact ground
state begins. Typically we find that convergence then takes

Since the energy gradient is given by the expectation value
of the commutator of the Hamiltonian and the excitation operator
[Eq. (D2)], ADAPT-VQE can never bring towards a symmetry-
broken solution if starting from a symmetry-preserving one.
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FIG. 10. ADAPT-VQE convergence for a system with N = 8 spins, x = —1, and 9, = 5. The left and right panel show the fidelity and
relative energy error of the ADAPT-VQE wave function, receptively. The black curve shows the results obtained with the unentangled reference

state |¢) = |\, 1), while the red curve shows the results for [¢p) = |, ).

place at a similar rate as with the unentangled reference state
(slightly slower or faster, depending on the parameter values).

In any case, it seen that the number of layers of order 100
required to reach 0.1% accuracy in the energy is too large
to be implemented on real quantum devices. Thus, applying
APADT-VQE with one- and two-spin excitation operators
appears to be inadequate for the case of collective systems
with all-to-all connectivity. If possible, one would ideally use

collective excitation operators [88]. In general, this is,
however, not straightforward to implement due to the noncom-
mutativity of the individual terms in such operators.

Whether such slow convergence is specific to deforma-
tion remains to be seen. We note that Ref. [103] applied
ADAPT-VQE with various operator pools to the like-particle
and neutron-proton pairing problem in reasonable numbers of
iterations (except in some degenerate cases).
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