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Stabilizer-accelerated quantum many-body ground-state estimation
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We investigate how the stabilizer formalism, in particular highly entangled stabilizer states, can be used to

describe the emergence of many-body shape collectivity from individual constituents in a symmetry-preserving

and classically efficient way. The method that we adopt is based on determining an optimal separation of the

Hamiltonian into a stabilizer component and a residual part inducing nonstabilizerness. The corresponding

stabilizer ground state is efficiently prepared using techniques of graph states and stabilizer tableaux. We

demonstrate this technique in context of the Lipkin-Meshkov-Glick model, a fully connected spin system

presenting a second-order phase transition from spherical to deformed state. The resulting stabilizer ground state

is found to capture to a large extent both bipartite and collective multipartite entanglement features of the exact

solution in the region of large deformation. We also explore several methods for injecting nonstabilizerness

into the system, including adaptive derivative-assembled pseudo-Trotter variational quantum eigensolver and

imaginary-time evolution (ITE) techniques. Stabilizer ground states are found to accelerate ITE convergence

due to a larger overlap with the exact ground state. While further investigations are required, the present work

suggests that collective features may be associated with high but simple large-scale entanglement which can be

captured by stabilizer states, while the interplay with single-particle motion may be responsible for inducing

nonstabilizerness. This study motivates applications of the proposed approach to more realistic quantum many-

body systems, whose stabilizer ground states can be used in combinations with powerful classical many-body

techniques and/or quantum methods.
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I. INTRODUCTION

Collective behaviors appear in numerous areas of quantum

many-body physics [1–3]. They include, for example, su-

perconductivity and superfluidity encountered in condensed-

matter and nuclear physics, various forms of quantum

magnetism in spins systems and solid-state physics, or super-

radiant phenomena in quantum optics. Collective vibrational

phonons occur in various materials and large nuclei. Finite

mesoscopic systems such as atomic nuclei and metallic clus-

ters can also exhibit spontaneous intrinsic shape deformation

[4] and dynamical rotations.

Describing how these collective phenomena emerge from

the interaction between fundamental constituents is a great

challenge, in particular because they typically involve a large

degree of entanglement and complexity distributed over many

degrees of freedom. The deformation in atomic nuclei, for

example, is known to involve a large number of protons and

neutrons behaving in a coherent manner [3,5,6]. This was

corroborated by a recent study that found clear correlations
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between multi-proton-neutron entanglement, in the form of

n-tangles, and the onset of shape collectivity in nuclei [7]. De-

spite impressive progress, these collective features are known

to be notoriously difficult to capture within classical ab initio

methods based on single-particle degrees of freedom, such

as configuration-interaction methods [8–10], as they require

large model spaces and untractable numbers of many-body

configurations.

With advances in the area of quantum computation, it has

become clear that quantum computers, coupled with power-

ful classical devices, provide the most promising ecosystems

for developing accurate and precise descriptions of quantum

many-body structure and dynamics. As quantum devices can

embody the quantum complexity of the system of interest in

a natural and efficient manner, they constitute ideal tools for

describing and studying the emergence of collectivity.

In practice, however, finding strategies to prepare ground

states of largely collective systems on digital quantum com-

puters is not an obvious task.1 While techniques such as

the adaptive derivative-assembled pseudo-Trotter ansatz vari-

ational quantum eigensolver (ADAPT-VQE) [12] involving

individual few-particle excitation operators have been suc-

cessful in describing quantum chemistry systems, which

typically display small degrees of collectivity, they have been

1It has been shown that finding the ground state of a general k-local

(k-qubit) Hamiltonian with k � 2 is QMA-complete [11].
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found to require numerous iterations to build coherence in

collective systems, and, in such cases, are often difficult to

converge to a desired accuracy [13,14].

Traditionally, one well-known strategy to describe collec-

tive effects in computationally more tractable ways is to break

explicit symmetries, which have to be subsequently restored.

Such techniques have been extensively employed in classical

calculations, where, for example, particle-number or spherical

symmetries are broken to describe superconducting or super-

fluid pairing and deformation effects [15,16]. More recently

these techniques have been explored in the context of quantum

computing in, e.g., Refs. [17–20]. In Ref. [21] we developed

a Hamiltonian-learning variational quantum eigensolver (HL-

VQE) algorithm where a symmetry-breaking transformation

of the Hamiltonian was used to reduce entanglement and

computational complexity of the system. In general, the draw-

back of such a strategy is that the symmetry restorations, in

particular those related to deformation, are numerically highly

costly for large realistic systems.

At the same time, new directions in the development

of many-body methods based on quantum complexity have

been developing. This is enabled by progress in the field of

quantum information and the development of measures and

techniques for characterizing and quantifying various aspects

of complexity in quantum systems.

Entanglement is a long-known aspect of quantum com-

plexity, which characterizes how intricately intertwined the

subcomponents of a system are within the Hilbert space. Sys-

tems with no or low entanglement are close to classical, and

thus many-body methods utilizing low-entanglement for ef-

ficient classical computations have been advanced,2 the most

successful example of which is tensor networks [26]. Such

methods, originally designed for low-dimension many-body

systems, however, become prohibitively expensive in systems

with strong and/or collective entanglement.

On the other hand, it has been realized since the early 2000s

that entanglement alone does not provide a complete charac-

terization of quantum complexity, as some quantum states,

known as stabilizer states, can exhibit maximal large-scale

entanglement, while being simple in nature and efficiently

preparable on a classical computer [27,28]. What cannot be

captured classically is the interplay of entanglement with

nonstabilizerness (also commonly known as “magic” [29]). In

order to fully specify the quantum complexity of a state, and

assess the need for quantum computers, both characterizations

of entanglement and nonstabilizerness are therefore required.

The recent development of magic measures, in particu-

lar those based on Rényi entropies [30], have allowed for

investigations of nonstabilizerness and connections to phys-

ical phenomena in various quantum many-body systems.

Understanding how quantum complexity evolves during the

2Note that various traditional many-body methods have been

recently reinterpreted from an entanglement point of view. For ex-

ample, the Hartree-Fock (HF) or mean-field technique consists in

unitarily transforming the single-particle basis to find an approximate

energy-minimizing solution which is unentangled in this new basis.

More generally, connections between basis changes and entangle-

ment minimization have been made, see, e.g., Refs. [22–25].

transition from single-particle to collective regimes is partic-

ularly important for addressing the question of collectivity

emergence. In this context, the nonstabilizerness of a variety

of spin models [31–40] and gauge theories [35,41,42] have

been studied in relation with phase transitions and thermaliza-

tion. In nuclear physics, the nonstabilizerness in ground states

of atomic nuclei was investigated in Ref. [7] in connection

with entanglement and collectivity, while the magic power

of nuclear and hypernuclear forces was studied in Ref. [43].

Recently, nonstabilizerness was shown to be connected with

molecular bonding in Refs. [44,45]. Magic evolution during

many-body three-flavor neutrino propagation was studied in

Ref. [46]. In high-energy particle physics, Ref. [47] studied

the nonstabilizerness in the production of top quarks at the

Large Hadron Collider (LHC). Nonstabilizerness was also

investigated within quantum gravity [48,49] and in quantum

electrodynamics (QED) particle scattering [50].

Further, the stabilizer formalism, initially introduced in the

context of quantum error correction [27,28], is conceivably

helpful in the development of quantum many-body simula-

tions. In the context of collective systems, in particular, the

large-scale entanglement exhibited by stabilizer states may

provide a way to capture collective features of the system in

a computationally tractable way and thus potentially provide

optimal starting points to classical and/or quantum computa-

tions.

The idea of leveraging the stabilizer formalism for

describing quantum many-body systems is so far rather un-

derexplored, although rapidly developing. Methods utilizing

entanglement-magic separation to augment classical tensor

network computations include the stabilizer tensor networks

[51–54], as well as Clifford-augmented matrix product states

[55–60] which were applied to spin systems and Hubbard

model. Techniques in which stabilizer states are used as

initial states further refined by subsequent quantum circuits

have been developed in the context of one-dimensional local

systems in Ref. [61]. In quantum chemistry, quantum algo-

rithms involving entanglement-magic separation have been

developed via injections of nonstabilizerness on top of sta-

bilizer states, see, e.g., Refs. [44,62,63], or via Clifford

transformations of the Hamiltonian, see, e.g., Refs. [64–66].

Noncontextual VQE based on projections onto stabilizer sub-

paces has also been developed and applied to a range of small

molecules [67,68]. The systems investigated in the afore-

mentioned studies, however, are expected to display local

entanglement features and/or a small degree of collectivity.

For example, quantum chemistry systems typically exhibit

rather pure wave functions, in comparison to the large col-

lectivity observed in nuclei which brings into play a much

larger number of configurations, notably due to the interplay

between the two fermion species (protons and neutrons).

The goal of the present work is to start investigating

whether the stabilizer formalism provides a way to describe

the emergence of collectivity in an efficient manner. In par-

ticular we explore how stabilizer states can capture collective

deformation effects, while preserving the symmetries of the

system explicitly and thus avoiding the need for projection

techniques.

For demonstration we employ the Lipkin-Meshkov-Glick

(LMG) model, a fully connected spin system which displays
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a phase transition analogous to the transition to deformed

nuclei, and thus constitutes an ideal test case for this study.

This model is also employed in condensed-matter physics to

describe two-mode Bose-Einstein condensates [69–71], for

the production of spin-squeezed states relevant to quantum

metrology and sensing [72,73], and is also relevant to trapped-

ion quantum computing due to its all-to-all connectivity.

The method that we adopt, which we describe in Sec. II,

consists in determining an optimal stabilizer Hamiltonian by

identifying energy-minimizing groups of mutually commut-

ing operators. The corresponding stabilizer ground state is

then classically efficiently prepared using techniques of graph

states and stabilizer tableaux. In Sec. III, we apply this method

explicitly to the LMG model and explore to what extent the

stabilizer ground state can capture properties of the exact

solution across the phase transition, including bipartite and

collective multipartite entanglement. In Sec. IV, we explore a

few techniques to inject magic on top of the stabilizer ground

state, including ADAPT-VQE, and imaginary-time evolution.

Finally, Sec. V provides a summary and perspectives to this

work.

II. METHOD

The strategy adopted in the present work consists in search-

ing for an optimal division of the Hamiltonian into a stabilizer

part Hstab plus a part W inducing nonstabilizerness, so that the

ground state of Hstab, which can be efficiently prepared classi-

cally, will ideally provide a close approximation to the exact

ground state. To be treated exactly, the nonstabilizer term

W will, in principle, require amounts of classical resources

which scale exponentially with system size or required preci-

sion. Such term can be treated subsequently (in part), either

using refined classical algorithms, or, ultimately, on the quan-

tum device using an adequate quantum or classical-quantum

algorithm of choice. Such strategy based on Hamiltonian

division has been employed in different contexts in, e.g.,

Refs. [61,63,66–68].

Let us consider a general many-body Hamiltonian, mapped

onto N-qubit strings of Pauli operators P̂:

Ĥ =
∑

P∈GN (H )

aPP̂, (1)

where GN (H ) ⊂ GN is the set of Pauli strings that map Ĥ ,

which is a subset of the generalized Pauli group GN ,

GN = {ϕ σ (1) ⊗ σ (2)... ⊗ σ (N )}, (2)

where σ ( j) ∈ {1, X j,Yj, Z j} is a Pauli operator acting on qubit

j and ϕ ∈ {±1,±i}.
We wish to separate the Hamiltonian into

Ĥ =
∑

P∈S

aPP̂

︸ ︷︷ ︸
Ĥstab

+
∑

P∈GN (H )/∈S

aPP̂

︸ ︷︷ ︸
Ŵ

, (3)

where S forms a stabilizer group with 2N commuting ele-

ments.3

The ground state |�s〉 of Ĥstab is stabilized by the 2N op-

erators in S and thus is, by definition, a stabilizer state which

can be exactly specified by the N generators of that group.

This latter property makes it efficient to prepare |�s〉 with

a classical computer using the stabilizer tableau formalism

[27,28,74].

The decomposition in Eq. (3) is not unique, as there are

several commuting groups in GN (H ) that one can pick to form

S . Ideally, as mentioned above, we want the ground state of

Ĥstab to optimally approximate the exact ground state of the

full Hamiltonian. Here we select an energy criterion to achieve

this task, i.e., we choose S so that |�s〉 be the stabilizer state

minimizing the energy of the full Hamiltonian 〈�s|Ĥ |�s〉.4
It is useful to note that, due to the specific properties

of stabilizer states, the stabilizer ground-state energy can be

determined from the stabilizer group S , without knowledge

of the state itself. Indeed, it is known that, for a stabilizer state

|�s〉, the expectation value of a Pauli string 〈�s|P̂|�s〉 can

only take values ±1 (if P̂ stabilizes or “antistabilizes |�s〉”)

or 0 [75]:

〈�s|P̂|�s〉 =
{
±1 if P̂ |�s〉 = ± |�s〉 ,

0 otherwise.
(4)

Thus, the energy of a stabilizer state is simply given by

E (�s) = 〈�s|Ĥ |�s〉 =
∑

P∈GN (H )

aP 〈�s|P̂|�s〉︸ ︷︷ ︸
0,±1

. (5)

Since |�s〉 is uniquely defined by its stabilizer group S , this

equivalently defines the energy of the stabilizer group S [61]:

E (S ) =
∑

P∈GN (H ) aP E (P̂,S ),

where E (P̂,S ) =
{
±1 if ± P̂ ∈ S,

0 otherwise.

In summary, the stabilizer Hamiltonian and corresponding

stabilizer ground-state energy can be found by partitioning

the operators in GN (H ) into commuting subsets Qk ⊂ GN (H )

(excluding −I to ensure S is a stabilizer group), and evaluat-

ing the stabilizer energy of each subset, allowing for all sign

possibilities. The set Qmin
k with the lowest energy is chosen to

form the stabilizer Hamiltonian Ĥstab in Eq. (3). The complete

stabilizer group S can be obtained by extracting from Qmin
k

the maximal number of elements that are linearly independent.

These elements, which we denote g1, ..., gm, constitute m � N

generators of S . They can be further completed with commut-

ing operators gm+1, .., gN to generate the complete stabilizer

group S = 〈g1, ..., gN 〉, and fully specify the corresponding

stabilizer ground state |�s〉.

3Possibly with some of the coefficients aP equal to zero to form a

complete group with 2N elements.
4Of course, it may be that such energy criterion does not give the

best approximation to the wave function, or best starting point to

include W , and one may want to explore other criteria. These are,

however, typically more difficult to implement without knowledge

of the final answer and we do not attempt it here.
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In order to prepare the stabilizer ground state, one can build

on the knowledge of graph states, and make use of the fact

that any (entangled) stabilizer state |�s〉 is Clifford-locally

equivalent to a graph state [76,77]. In general, an N-qubit

graph state |G〉 is associated with a simple graph G = (V, E ),

where V denotes the sets of vertices (N qubits) and E denotes

the set of edges between these vertices. The graph state |G〉
can be prepared as

|G〉 =

(
∏

e∈E

CZe

)
|+〉⊗N , (6)

and is stabilized by operators of the form [78]

gG
i = Xi

∏

j∈ni

Z j . (7)

In Eq. (6) CZe denotes a controlled-Z gate acting between the

two qubits connected by edge e and |+〉 = (|0〉 + |1〉)/
√

2,

while in Eq. (7) ni denotes the set of vertices (qubits) con-

nected to vertex i by an edge. A stabilizer state |�s〉 can be

implemented by acting on a graph state |G〉 with local Clifford

unitaries, i.e.,

|�s〉 =
N∏

i=1

Ci |G〉 =
N∏

i=1

Ci

∏

e∈E

CZe |+〉⊗N , (8)

where the Ci are single-qubit Clifford operators [76,77].

In a general case, one can, for example, treat the

single-qubit Clifford operations Ci as (discrete) variational pa-

rameters and optimize according to an energy minimization.

Such optimization procedures, involving discrete parameters,

can, however, be difficult to converge. In this work, we will

instead employ an efficient procedure for determining the Ci’s

based on the stabilizer tableau formalism [79]. In the case of

the LMG model employed below, we will see that one can also

use intuition to conjecture a preparation for |�s〉. In any case,

once an expression of the stabilizer state in terms of Clifford

operators acting on |0〉⊗N has been found, this state can be

efficiently prepared with a classical computer.

Finally as a last step, one can treat the term Ŵ =∑
P∈GN (H )/∈S aPP̂ in Eq. (3) via a method of choice, that is,

to be chosen based on the physical properties of the system.

III. STABILIZER GROUND STATES

IN THE LIPKIN-MESHKOV-GLICK MODEL

The LMG model [80] originally described a system of N

identical fermions distributed on two N-fold degenerate shells

separated by an energy gap ε. Alternatively, this system can

be mapped onto a system of N spins in an external field along

the z direction and interacting in the xy plane with all-to-all

connectivity. The Hamiltonian can then be written as [81]

Ĥ = εĴz − Vx

(
Ĵ2

x + χ Ĵ2
y

)
, (9)

where the collective spin operators are given by

Ĵα =
1

2

N∑

i=1

σ̂ (i)
α , α = x, y, z, (10)

where σ (i)
α denotes a Pauli operator acting on spin i. The

Hamiltonian in Eq. (9) preserves a number of symmetries. In

particular, since the interaction flips spins by pairs, it preserves

the parity of the number of spins pointing up (in the direction

of the external field). This symmetry is associated with oper-

ator

�̂ = eiπN̂+ ∼
∏

i

Zi, (11)

where N̂+ = Ĵz + N̂/2 counts the number of spins up.

In the following, we will work with the dimensionless

Hamiltonian H̃ = Ĥ/ε and rescaled interaction strength v̄x =
(N−1)Vx

ε
.

We will focus on the case v̄x > 0, which corresponds to

a ferromagnetic coupling [82]. In the mean-field limit, the

system undergoes a second-order phase transition at v̄x = 1

between a normal phase (v̄x < 1, single-particle regime) and

a phase where parity symmetry is broken (v̄x > 1, collective

regime). This phase transition is analogous to the transition

from a spherical to a deformed nucleus.

In the case χ ∈ [−1, 0), in particular for χ = −1 most

studied in nuclear physics, the interacting ground-state wave

function typically expands over several collective Dicke (an-

gular momentum) states |J = N/2, Jz〉. In the limit of large

N , in the largely deformed phase, the energy of the system

is known to be well described by a deformed Hartree-Fock

state [coherent SU(2) state]. The case χ = 0 leading to spin

squeezed states is most relevant for quantum sensing and

metrology (see, e.g., Refs. [72,73]). In the isotropic case

χ = 1, the exact ground state reduces to a single Dicke state

with Jz value determined by the interaction strength. In the

following, we will focus on the parameter region χ ∈ [−1, 0)

which is most relevant to simulations of realistic many-body

systems.

A. Stabilizer Hamiltonian

The procedure to find the stabilizer Hamiltonian, is de-

scribed in details in Appendix A, starting from N = 2 and

increasing system size. Below we summarize the results.

The first step consists in mapping the Hamiltonian in

Eq. (9) to qubits. Using a direct spin-to-qubit mapping, we

obtain

H̃ =
1

2

∑

i

Zi −
v̄x

2(N − 1)

∑

i< j

(XiX j + χ YiYj ), (12)

where we now use the usual notations Xi, Yi, Zi to denote the

Pauli operators acting on qubit i.

For arbitrary N > 2, we can extract several subsets Q
(N )
i

of mutually commuting operators from the Hamiltonian in

Eq. (12). Each of these Q
(N )
i can be augmented by commuting

operators (excluding −1) in order to form a stabilizer group

S with dimension 2N . In particular, limiting ourselves to sub-

sets that satisfy permutation symmetry, we find three relevant

subsets, which are listed below.

(1) Q
(N )
1 = {−Z1,−Z2, ...,−ZN }, corresponding to

Hstab = 1
2

∑
i Zi with stabilizer energy Es,1(N ) = −N/2.

The N operators in Q
(N )
1 generate the stabilizer group

S
(N )
1 = 〈−Z1,−Z2, ...,−ZN 〉 which stabilizes the non inter-

acting ground state |�s,1〉(N ) = |↓↓ ... ↓〉 ≡ |11...1〉 ≡ |1〉⊗N .
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(2) Q
(N )
2 = {X1X2, X1X3, ..., X2X3..., XN−1XN }, corre-

sponding to Hstab = − v̄x

2(N−1)

∑
i< j XiX j , with stabilizer

energy Es,2(N ) = −N v̄x

4
. Among the N (N − 1)/2 operators

in Q
(N )
2 , only N − 1 of them are linearly independent. A

stabilizer group S
(N )
2 can then be formed by complementing

these chosen N − 1 independent operators with a N th

commuting operator, such as (−1)N Z1Z2...ZN , which satisfies

the desired permutation and parity symmetries. We choose

S
(N )
2 = 〈X1XN , X2XN , ..., XN−1XN , (−1)N Z1Z2...ZN 〉. For N

even (respectively, odd), the state stabilized by this group

is an entangled state |�s,2〉(N ) corresponding to an equal

superposition of all computational-basis states with even

(respectively, odd) number of spins down (1’s). For example,

for N = 3,

|�s,2〉(3) = 1
2
(|111〉 + |100〉 + |010〉 + |001〉), (13)

while for N = 4,

|�s,2〉(4) =
1

2
√

2
(|0000〉 + |0011〉 + |0110〉 + |1100〉

+ |0101〉 + |1111〉 + |1010〉 + |1001〉). (14)

(3) Q
(N )
3 = {Y1Y2,Y1Y3, ...,Y2Y3...,YN−1YN }, corre-

sponding to Hstab = − v̄xχ

2(N−1)

∑
i< j YiYj , with stabilizer

energy Es,3(N ) = −N v̄xχ

4
. Similarly to case (2)

above, one can form a stabilizer group S
(N )
3 =

〈Y1YN ,Y2YN , ...,YN−1YN , (−1)N Z1Z2...ZN 〉. The correspond-

ing stabilizer states |�s,3〉(N ) have a similar form as |�s,2〉(N ),

with different relative signs between the components.

Depending on the value of χ and N one can change the

signs in front of the YiYj terms to bring the stabilizer energy

Es,3(N ) down, however, in general, this choice of subset will

yield a larger energy than Q
(N )
2 (except in the case χ = +1

for which they are degenerate).

In summary, for a system with N > 2 spins, if −N v̄x

4
>

−N
2

, i.e., v̄x < 2, then the lowest-energy stabilizer state is

|�s,1〉(N ) = |1〉⊗N with stabilizer energy Es,1(N ) = −N/2,

while if v̄x > 2, then the lowest-energy stabilizer state is an

entangled state |�s,2〉(N ) with energy Es,2(N ) = −N v̄

4
.

We note that there are other commuting subsets

of operators that we did not consider here, such as,

e.g., {X1X2,−Y1Y2,−Z3,−Z4... − ZN }. Such grouping would

break permutation invariance, which is not desired, and the

corresponding stabilizer energy would be − (N−2)

2
− v̄x (1−χ )

2(N−1)

which is always greater than Es,1(N ) and/or Es,2(N ) above.

The case N = 2 is special and presents a transition from

unentangled to entangled stabilizer state occurring at v̄x = 1

(see Appendix A).

B. Stabilizer ground-state preparation

The procedure described above provides a decomposi-

tion of the Hamiltonian into a stabilizer part Hstab plus a

magic perturbation W , as well as the corresponding stabilizer

ground-state energy. While the preparation of the unentangled

stabilizer state |�s,1〉(N ) = |1〉⊗N is trivial, preparing the en-

tangled stabilizer state |�s,2〉(N ) is less obvious.

As described in Appendix A, in the case of the LMG

model, one can infer from intuition a way of preparing

|�s,2〉(N ) efficiently classically, using Clifford operators CX,

H, and X acting on the unentangled state |0〉⊗N as

|�s,2〉(N ) =





∏
i< j CX ji |0〉 ⊗ |+〉⊗(N−1) for even N,

∏
i< j CX ji |1〉 ⊗ |+〉⊗(N−1) for odd N.

(15)

It is easy to see that Eq. (15) applied to N = 3 and N = 4

indeed prepares the states in Eqs. (13) and (14), respectively.

More rigorously, it is known that any stabilizer state can be

related to a graph state via local Clifford operations [76,77].

Moreover, the corresponding Clifford unitary can be calcu-

lated efficiently, and a procedure is described in Ref. [79].

This procedure makes use of the stabilizer tableau formalism

and provides a systematic way to express the stabilizer ground

state in terms of a graph state. Applying this method to the

present LMG model (see details in Appendix A), we find that

|�s,2〉(N ) = (X1)N mod 2 HN |G〉 , (16)

where |G〉 is the graph state given by

|G〉 =
N−1∏

i=1

CZi,N |+〉⊗N , (17)

which is associated with the graph with edges between qubit

N and all qubits i < N , as shown in Fig. 1(a).

|G〉 is the state stabilized by S
(N )
G =

〈X1ZN , X2ZN , ..., XN−1ZN , Z1Z2...XN 〉 which is obtained

by conjugating 〈X1XN , X2XN , ..., XN−1XN , Z1Z2...ZN 〉 with

HN . The gate X1 is applied for odd values of N to provide the

negative sign of the last generator (−)N Z1Z2...ZN , and obtain

the correct parity (odd numbers of spins down).

The procedure described in Ref. [79], which can be applied

to any Hamiltonian, provides a systematic recipe for preparing

the stabilizer ground state from a graph state, avoiding discrete

optimization procedures which are often more challenging

than continuous ones. Application to more general Hamilto-

nians will be explored in future works.

C. Results

As an example, we show in Fig. 2 results obtained for a

system of N = 8 spins with parameter value χ = −1. Sys-

tems with sizes from N = 2 up to N = 30 are provided in

Appendix B. In particular, for each of the two stabilizer states

|�s,i〉(N ) (i = 1, 2), we analyze the relative energy difference

ε = |(Es,i − Eex)/Eex| between stabilizer ground-state energy

and exact energy, and the fidelity |〈
ex|�s,i〉| between the

stabilizer states |�s,i〉 and the exact wave function |
ex〉. We

also show in the same figure the magic and entanglement

features of the exact and stabilizer wave functions.

The magic is quantified via stabilizer Rényi entropy (SRE)

defined according to Ref. [30] as

Mα (|�〉) = −log2 d +
1

1 − α
log2


∑

P∈G̃n

�α
P


, (18)
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FIG. 1. (a) graph G associated with the state in Eq. (17) for N =
8. (b) complementary graph Gc (see more details in Appendix A).

where d = 2N , G̃N ⊂ GN is the group of Pauli strings with

phases +1 and �P = 〈�|P̂|�〉2/d . Specifically, we choose

the stabilizer 2-Rényi entropy M2(|�〉) which is known to

be related to the distance between |�〉 and the closest stabi-

lizer state [83], and has been shown to satisfy the required

properties of good measures, including monoticity [34,84].

Entanglement is quantified via (1-spin) von Neumann en-

tropy defined as

S
(N )
1 = −Tr

(
ρ

(N )
1 log2 ρ

(N )
1

)
, (19)

where ρ
(N )
1 is the one-spin reduced density matrix that takes

the expression [81]

ρ
(N )
1 =

(
1 − 〈N̂+〉/N 0

0 〈N̂+〉/N

)
, (20)

where N̂+ = N/2 + Ĵz counts the number of spins up. To

quantify multipartite collective entanglement we choose the

n-tangles [85,86]. For a permutation invariant system, they are

simply given by

τn = |〈�|Y ⊗n|�∗〉|2. (21)

We note from Fig. 2 that the entangled stabilizer state

|�s,2〉(N ) is maximally entangled, in both the bipartite and

N-partite sense, for the whole range of interaction strength. By

definition, both stabilizer states display constant zero magic.

In the regime below the phase transition v̄x < 1, the system

is dominated by single-particle dynamics and is in the spheri-

FIG. 2. From bottom to top panel: relative energy difference

ε, fidelity, entanglement, and stabilizer 2-Rényi entropy M2, in a

system with N = 8 spins, as a function of the interaction strength

v̄x . The exact solution is shown with black curves, the unentan-

gled (noninteracting) stabilizer state |�s,1〉(N ) = |1〉⊗N is shown with

green curves and the entangled stabilizer state |�s,2〉(N ) is shown with

purple curves. In the entanglement panel, the von Neumann entropy

is displayed with plain lines while the N-tangle τN is shown with

dashed lines. The black dashed vertical line denotes the critical point

between normal (spherical) and parity-broken (deformed) phases,

while the red dotted vertical line denotes the transition from unen-

tangled to entangled stabilizer ground state.

cal (normal) phase. In this region, the exact state exhibits low

entanglement and magic and is best described by the nonin-

teracting (unentangled) stabilizer state |�s,1〉(N ) = |1〉⊗N .

In the regime well above the phase transition v̄x ≫ 1, the

system is in the deformed phase (the mean-field solution

spontaneously breaks the parity symmetry) with a maximal

deformation reached for v̄x ≫ N . In this region the exact so-

lution tends to exhibit maximal entanglement (von Neumann

entropy and 8-tangle) and low magic and thus can be captured

to a large extent by the entangled stabilizer state |�s,2〉(N ).

We observe that, independently of the size N of the

system, the exact ground state displays (close) to maximal
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N-tangle τN , while the n-tangles τn with n < N are several

orders of magnitude smaller and negligible in comparison.

The system thus mostly exhibits genuine collective N-partite

entanglement. Interestingly, while the entangled stabilizer

state |�s,2〉(N ) displays constant maximal τN , we find that

τn = 0 for n < N . This confirms that such stabilizer state is

able to capture, to a large extent, both bipartite and multipar-

tite entanglement properties of the exact solution in the region

v̄x ≫ 1.

It is the region in between, around v̄x ≃ 2, where both

single-particle and collective effects come into play, that is,

most difficult to describe with a single stabilizer state. As

v̄x ≃ 2 is the point where the stabilizer ground-state transi-

tions from an unentangled to an entangled one, this is also

the region where the exact ground state is furthest described

by either stabilizer state, and for that reason, the magic is

maximal around this point.

We note that this transition point at v̄x ≃ 2 is based on

the energy criterion chosen to select the stabilizer ground

state (Sec. II above) and coincides with the fidelity crossing

point for the present chosen example (N = 8 and χ = −1).

Depending on the parameter values, however, the fidelity

crossing point can occur at slightly lower values of v̄x (see

Figs. 3 and 5 and Appendix A).

Figure 3 shows fidelity and relative energy difference for

the stabilizer ground state, which corresponds to |�s,1〉(N ) for

v̄x < 2 and |�s,2〉(N ) for v̄x > 2, according to the energy min-

imization criterion of Sec. II, for system sizes from N = 4 to

N = 10. The entanglement entropy S
(N )
1 and SRE M2(|�〉) of

the exact solution are also provided. It is clear that the magic

is extensive in the region around the stabilizer ground-state

transition point v̄x ≃ 2. This was also noted in Ref. [37] for

the case χ = 0. This is accordance with the behavior of the

fidelity of the stabilizer ground state shown in the middle

panel, which decreases in this region for large N . On the other

hand, the relative energy difference behaves similarly to the

entanglement entropy, i.e., it tends to improve and converges

as N increases.

IV. BEYOND STABILIZER GROUND STATE WITH MAGIC

INJECTION

A. Discussion and preliminaries

Once the stabilizer ground state has been obtained, there

are several ways that one can adopt to incorporate nonstabi-

lizerness into the system.

For example, one can in principle apply a unitary operator

Û (θ ) = e−iθÔ, where θ is a continuous angle that can be de-

termined variationally. There is a range of one- and two-spin

Hermitian operators Ô that one can consider to generate such

unitary. For example, one can use terms of the Hamiltonian

itself, as done in Hamiltonian variational ansatz (see, e.g., Ref.

[87]), and/or commutators of Hamiltonian terms, to explore

a larger part of the Hilbert space [88], as well as individual

fermionic or qubit excitation operators [12,89].

In the present case of the LMG model, employing Ô = Ĵy

on top of the unentangled state |�s1
〉 = |1〉⊗N , corresponds

FIG. 3. From bottom to top panel: Relative energy difference

between exact and stabilizer ground-state energy, fidelity of the

stabilizer ground state, stabilizer 2-Rényi entropy M2 of the exact

ground-state, and entanglement entropy of both exact and stabilizer

ground states. The results are shown for various system sizes and

have been obtained with χ = −1. The stabilizer ground state is taken

to be |�s,1〉(N ) for v̄x < 2 and |�s,2〉(N ) for v̄x > 2.

to generating the deformed (unresticted) HF solution.5 As

mentioned previously, the downside of this procedure is that

it breaks parity symmetry, which then has to be restored a

posteriori. While such restoration is straightforward in the

case of the LMG model, in realistic fermionic systems, such

as atomic nuclei, this procedure is numerically highly costly.

In fact, the only Hermitian excitation operators which

would preserve both the reality and symmetries (parity and

permutation) of the wave function are Ô± = JxJy ± JyJx =
1
2

∑
i j (XiYj ± YiX j ). The individual terms in Ô±, however, do

not commute, and thus implementing this operator on a quan-

tum computer typically requires Trotterization for large values

5In fact, the deformed HF solution can also be interpreted

as the stabilizer ground state of the transformed Hamiltonian

H̃ (θ ) = Û †(θ )ĤÛ (θ ). We have indeed checked that the transformed

Hamiltonian does not admit an entangled stabilizer ground state.
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FIG. 4. Relative energy difference ε, fidelity, von Neumann en-

tanglement entropy S
(N )
1 , N-tangle τN , and SRE M2 in a system with

N = 8 spins and χ = −1. The exact solution appears in black. The

unentangled and entangled stabilizer states, |�s,1〉(N ) and |�s,2〉(N ),

are shown in green and purple curves, respectively. The state ob-

tained via Eq. (22) is shown with red curves. For comparison, the

deformed HF without and with projection are shown with cyan and

blue curves, respectively.

of N , which results in approaches similar to as Trotterized

UCC [90] or ADAPT-VQE [12] ansatz. In Appendix D we

have implemented ADAPT-VQE using the stabilizer ground

state as initial state. In the regime of large deformation or

collectivity, we find that such strategy does not appear to

be optimal, as the individual excitations somewhat destroy

the previously build coherence of the entangled stabilizer

state before rebuilding it layer by layer. As illustrated in

Appendix D, this induces long plateaux in the convergence

procedure, which appear to be characteristic of collective

initial states, due to equally small energy gradients of the in-

dividual operators for a large number of iterations. Only after

many layers, once the collectivity has been rebuilt, these gra-

dients increase again and convergence resumes. Such plateaux

FIG. 5. Same as Fig. 4 for χ = −0.1.

caused by gradients troughs [91] have been noticed in the case

of symmetry-breaking reference states, for example in, e.g.,

Refs. [92,93] or in Ref. [13] when using a LMG deformed HF

solution as initial state in ADAPT-VQE. In the present work,

we also observe such feature although the initial stabilizer

state is symmetry preserving.

In the following we explore a different strategy to preserve

the collectivity of the system together with the symmetries

along the variational process, making use of imaginary-time

evolution techniques. Specifically, we apply both a “varia-

tional” and standard imaginary time evolution, as described

below.

B. Variational quantum imaginary time propagation

The first approach is based on the observation that the en-

tangled stabilizer state |�s,2〉(N ) contains all the configurations

that contribute to the exact ground state (and only those) with

equal amplitude probabilities. In order to arrive at the exact

solution, the task is therefore to adjust the amplitudes related

to these configurations. This can be done, to a large extent, by

052408-8



STABILIZER-ACCELERATED QUANTUM MANY-BODY … PHYSICAL REVIEW A 112, 052408 (2025)

application of the nonunitary operation

|
(θ )〉 = e−θ Ĵz |�s,2〉(N ) ,

=
N∏

i=1

e−θZi |�s,2〉(N ) , (22)

where the angle θ can be variationally optimized.

We show in Figs. 4 and 5 the results obtained for a

system of N = 8 spins using parameter values χ = −1 and

χ = −0.1, respectively. In practice, the optimal value of θ

has been determined by performing an initial scan of the

energies obtained for a grid of θ values. The retained value

was then further refined using optimizers available in Scipy

[94]. Specifically, we used both COBYLA and gradient-based

L-BFGS-B optimizers which provided results in agreement

with each other.

The magic state obtained via Eq. (22) is shown with a red

curve and recovers the exact solution to a large extent, even in

the region around and below the phase transition at v̄x = 1. We

observe that the results are more accurate for smaller absolute

values of χ , since the YY term in the Hamiltonian has smaller

weight, and thus, applying operator exp(−θ Ĵz ) to the stabilizer

state |�s,2〉(N ) captures the exact solution almost fully. In all

cases, the largest deviations to the exact result appear around

v̄x = 2, where the magic presents a maximum.

For information, we also provide the deformed Hartree-

Fock solution without and with projected onto good parity,

with cyan and blue, respectively. As mentioned above, the

deformed HF solution is obtained via global single-spin trans-

formation of the noninteracting ground state |1〉⊗N around

the y axis. As it is a simple mean-field state, the deformed

HF solution features the same computational complexity as

a stabilizer state and can be prepared efficiently classically.

This state has vanishing magic and entanglement in the ro-

tated spin basis; however, SRE and entanglement entropy

become nonzero if calculated in the original (nonrotated)

basis. This is what is shown in Figs. 4 and 5. We note,

however, that the HF state is not able to capture the n-

tangles, which are independent of the qubit (spin) basis [81]

and thus remain equal to zero before projection.6 Addition-

ally, although the deformed HF state describes the energy

of the system to a better extent than the stabilizer ground

state, the fidelity of the wave function is not well reproduced

in the region of large deformation (large v̄x) and requires

projection.

While the projection largely improves the results above the

phase transition, the resulting solution displays a discontinu-

ous behavior at the phase transition v̄x = 1. This is not the case

with the strategy of Eq. (22) which displays a smooth behavior

throughout the full range of v̄x values and provides results that

are overall at least as good as the projected HF solution and of

better quality around the phase transition. As we have verified,

the remaining discrepancies around v̄x = 2 can in principle

6This is because the basis transformation is a qubit rotation around

the y axis and thus commutes with the Y Pauli operators in the n-

tangles. The expectation value in Eq. (21) therefore remains invariant

under such transformation.

be systematically improved using higher-order operators, for

example, via |
(θ1, θ2)〉 = exp(−θ2Ĵ2
z ) exp(−θ1Ĵz ) |�s,2〉(N ).

In a quantum circuit, the nonunitary operator in Eq. (22)

can be implemented, for example, using existing techniques

developed for quantum imaginary time evolution (QITE) such

as the quantum imaginary time propagation (QITP) algorithm

developed in Ref. [95]. These techniques are inspired by

classical imaginary-time evolution (ITE) methods, which, in

their original form, are used to find the ground state of a

physical system by evolving an initial state (with nonzero

overlap with the ground state) in imaginary time so that,

after a long time, the system converges to its exact ground

state. By making use of an ancillary system, QITP allows the

implementation of the nonunitary ITE operator on a quantum

circuit by acting with a carefully chosen unitary on the full ex-

tended system (see details in Ref. [95] which are summarized

in Appendix C). This method can be adapted to implement

Eq. (22), which represents some kind of ITE with only part

of the Hamiltonian (Ĵz operator) and where the angle θ plays

the role of imaginary time. Contrarily to ITE, there is an

optimal value θ = θopt to be found, which provides a minimal

energy. Such optimal value can be determined via standard

optimization procedures as above. A comparison between the

exact evolution of Eq. (22) (shown in Figs. 4 and 5) and the

evolution implemented via variational QITP is provided in

Appendix C.

C. Full quantum imaginary time propagation

While the magic-injection procedure described above al-

lows for recovering the exact solution to a large extent in

the case of the LMG model, it is not clear whether it can

be successfully applied to a more realistic system.7 In the

case of a general Hamiltonian, implementations of QITE and

QITP with the full Hamiltonian may be employed to inject

magic. In general, the advantage of this procedure is that it

does not require a particular ansatz for the evolved quantum

state, avoids the need for an optimization procedure, and, in

principle, guarantees convergence to the exact ground state.

On the other hand, the drawback is that the size of the qaun-

tum circuit may increase rapidly. In this context, since the

convergence towards the ground state, and thus the size of the

quantum circuit, is governed by the overlap of the initial state

with the exact ground state, it is highly desirable to have an

initial state that captures features of the exact ground state to

a large extent. This motivates exploring the use of stabilizer

states as starting points for QITE and QITP. Thus, in order to

gain insight for future studies of more general Hamiltonians,

we investigate below the use of stabilizer states as initial

states for QITP with the full LMG Hamiltonian. Details of

the procedure are reminded in Appendix C.

We show in Fig. 6 the fidelity |〈
ex|η(τ )〉| between the

exact ground state and the state |η(τ )〉 evolved with the QITP

operator [see Eq. (C6) in Appendix C] as a function of the

7Typically, we expect that this procedure would only be useful if

the degree of collectivity of the system is large (many components

with similar weights), and the corresponding stabilizer ground state

contains most relevant components to the exact ground state.
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FIG. 6. Fidelity |〈
ex|η(τ )〉| of the state η(τ ) evolved via QITP

operator [defined in Eq. (C6)] for two initial states |η(0)〉 = |�s,1〉(N )

(green curve) and |η(0)〉 = |�s,2〉(N ) (red curve) as a function of τ .

The results are shown for a system of N = 8 spins and χ = −1 for

different values of the interaction strength v̄x .

imaginary time τ . We compare the cases when the initial state

is chosen to be the noninteracting (unentangled) state |�s,1〉(N )

and the entangled stabilizer state |�s,2〉(N ). We choose differ-

ent values of the interaction strength near and away from the

phase transition and the point of stabilizer ground-state tran-

sition, specifically, v̄x = 1.1, 2.1, 5.0, 10.0.As expected, in

the region v̄x < 2 the unentangled state provides a better

initial state due to higher fidelity with the exact solution,

while the entangled one becomes optimal for v̄x > 2 as v̄x

grows. The convergence towards the exact solution also ap-

pears to be more rapid away from the phase transition for

large values of v̄x. Overall, the results indicate that using sta-

bilizer ground states for subsequent quantum or classical ITE

methods may be optimal, in particular in systems exhibiting

a large degree of collectivity, due to the large-scale entangle-

ment captured by the stabilizer ground state. As mentioned

above, this is particularly important in the quantum case as

the success of QITE and QITP algorithms directly depends on

the overlap of the initial state with the exact ground state, and

often requires amplitude amplification [96,97], leading to an

additional increase of the size of the quantum circuit. The use

of an entangled stabilizer state thus may alleviate this need in

the case of collective systems and is to be investigated in more

details in the future.

Note that, in contrast with the variational QITP described

in Sec. IV B, full QITP will in practice require Trotterization.

Studying the effect of Trotterization together with stabilizer

ground states is left for a future study.

V. SUMMARY AND CONCLUSIONS

In this work we have made use of the stabilizer formalism

in order to approximate the ground state of a quantum many-

body system with collective behavior. Specifically we have

chosen the LMG model which can be described by a system

of N interacting spins with all-to-all connectivity and displays

a second-order phase transition to a symmetry-broken state,

corresponding to a collective regime where all spins are cor-

related in a coherent manner and analogously to the transition

between spherical and deformed phases in atomic nuclei.

The procedure for finding the stabilizer ground state

adopted in this work is based on a decomposition of the

Hamiltonian into mutually commuting operators forming a

stabilizer part and a residual part inducing nonstabilizerness

(magic). The optimal stabilizer Hamiltonian is determined

via an energy minimization criterion, and the corresponding

stabilizer ground state is efficiently prepared in terms of a

graph state, using an existing technique based on stabilizer

tableaux. We found that the resulting stabilizer ground state

coincides with the noninteracting (unentangled) ground state

in the normal phase while it becomes maximally entangled

in the region of large deformation (collectivity), in both the

bipartite and N-partite sense, which captures to a large extent

the entanglement features of the exact solution. The transition

point between unentangled and entangled stabilizer ground

states coincides with the maximum of magic, as it is the region

that is most difficult to capture with a single stabilizer state.

This study now motivates the use of the techniques pro-

posed in this work to describe more complex and realistic

systems. Ultimately stabilizer states could potentially provide

a path towards efficient simulations of systems with high

degrees of collectivity from an ab initio single-particle picture,

without resorting to traditional explicit symmetry-breaking

and restoration techniques.

To compare these different approaches from the per-

spective of quantum complexity relative to a particular

quantum resource theory, the stabilizer-plus-magic formal-

ism of the present paper relates to the resource theory

based on Clifford-plus-T-gates, while the more traditional

many-body techniques based on (symmetry-broken) mean-

field-plus-fluctuations relate to the resource theory where

fermionic Gaussian unitaries (“matchgates”) are the free re-

sources and non-Gaussianity is the costly one; see, e.g.,

Ref. [98]. Although this requires further investigations, this

work seems to indicate that shape collectivity could be effi-

ciently reached within the former resource theory, while the

latter one would lead to longer paths in the Hilbert space,
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ultimately reached via projection, and thus necessitates more

resources.

While the method described in this work provides a sys-

tematic way of determining stabilizer ground states in various

many-body systems, the best path for injecting magic on top

of such stabilizer ground state, while preserving collectivity

and symmetries is not as clear and will require specific inves-

tigations depending on the nature of the system of interest and

the computing device (classical, quantum, or hybrid). Specif-

ically, if the residual magic interaction W is “small,” then one

can incorporate it via perturbation theory or fluctuations on

top of the stabilizer ground state; see Ref. [66]. If it is nonper-

turbative, then one can apply powerful classical methods, such

as, for instance, coupled cluster, on top of the stabilizer state

or, at scale, quantum algorithms implemented on quantum

computers. For example, in the present study of the LMG

model, we found that ADAPT-VQE with few-body excitation

operators does not appear to be adequate when applied on

collective stabilizer ground state as it tends to destroy the

coherence of the state, ultimately requiring a similar number

of iterations to converge than with a trivial unentangled state.

On the other hand, the use of stabilizer ground state promises

to substantially accelerate classical or quantum imaginary-

time evolution methods, due to larger overlaps with the exact

ground states.

In systems such as atomic nuclei, which often present a

strong interplay between collective and single-particle degrees

of freedom, we found in a previous study that (the onset

of) shape collectivity is also associated with large magic [7].

This is consistent with the present work which suggests that

collectivity is associated with large-scale entanglement while

the interplay with the single-particle regime produces magic.

The magic injection is therefore expected to be crucial in these

systems. In this context, it will be interesting to investigate

whether stabilizer states may be more efficient in spreading

magic than typically used unentangled reference states, and

the use of t-doped quantum circuits [99,100], alternating be-

tween Clifford and magic gates, may be useful. This will

be studied in a subsequent work. In the future, we also plan

to investigate the combination of symmetry-preserving basis

transformations (or Hamiltonian transformations) to decrease

the computational complexity, together with the present sta-

bilizer ground-state method via extensions of our previously

developed HL-VQE algorithm.
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APPENDIX A: STABILIZER HAMILTONIAN, STABILIZER

GROUND STATES, AND RELATION TO GRAPH STATES

In this section we provide details on the procedure to find

the stabilizer Hamiltonian and prepare the corresponding sta-

bilizer ground state of the LMG model. As a reminder, the full

Hamiltonian of this system is as follows:

H̃ = Ĵz −
v̄x

(N − 1)

(
Ĵ2

x + χ Ĵ2
y

)
,

=
1

2

∑

i

Zi −
v̄x

2(N − 1)

∑

i< j

(XiX j + χYiYj ). (A1)

As in the main text, we use the convention

|↑〉 = |0〉 =
(

1

0

)
and |↓〉 = |1〉 =

(
0

1

)
, (A2)

so that the noninteracting ground state of the LMG model

(obtained for v̄x = 0) is the state |↓↓↓ ... ↓〉 = |111..1〉.
We will first consider the case χ = −1, and generalize to

χ ∈ [−1, 0) in a second stage.

1. Two-spin system (N=2)

The LMG Hamiltonian for the two-spin system with χ =
−1 is

H̃ (2) =
1

2
(Z1 + Z2) −

v̄x

2
(X1X2 − Y1Y2), (A3)

so that the set of Pauli string in H̃ (2) is

GH = {Z1, Z2, X1X2,Y1Y2}, (A4)

from which we extract two sets of commuting operators:

Q1 = {Z1, Z2} and Q2 = {X1X2,Y1Y2}. (A5)

Each of these sets already contains N = 2 generators, gen-

erating stabilizer groups with 2N = 4 elements. We need to

examine all sign possibilities, i.e., consider

Qa
1 = {Z1, Z2}, (A6)

Qb
1 = {−Z1, Z2}, (A7)

Qc
1 = {Z1,−Z2}, (A8)

Qd
1 = {−Z1,−Z2}, (A9)

as well as

Qa
2 = {X1X2,Y1Y2}, (A10)

Qb
2 = {−X1X2,Y1Y2}, (A11)

Qc
2 = {X1X2,−Y1Y2}, (A12)

Qd
2 = {−X1X2,−Y1Y2}. (A13)
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Each of these Qk
i generates a stabilizer group Sk

i = 〈Qk
i 〉 each

of which corresponds to a unique stabilizer state.

The corresponding stabilizer energy for each of the Qk
1

groups are

E
(
Qa

1

)
= 1

2
+ 1

2
= 1, (A14)

E
(
Qb

1

)
= − 1

2
+ 1

2
= 0, (A15)

E
(
Qc

1

)
= 1

2
− 1

2
= 0, (A16)

E
(
Qd

1

)
= − 1

2
− 1

2
= −1. (A17)

It is easy to guess that the corresponding stabilizer states

are |00〉, |10〉, |01〉, |11〉, respectively, which are obviously

nonentangled. Among these, |11〉 is the one with the lowest

energy, corresponding to the noninteracting ground state. We

also have the following stabilizer energies for the Qk
2 groups:

E
(
Qa

2

)
= −

v̄

2
(1 − 1) = 0, (A18)

E
(
Qb

2

)
= −

v̄

2
(−1 − 1) = v̄x, (A19)

E
(
Qc

2

)
= −

v̄

2
(1 + 1) = −v̄x, (A20)

E
(
Qd

2

)
= −

v̄

2
(−1 + 1) = 0. (A21)

Similarly, it is clear that the stabilizer states corresponding

to the Sk
2 = 〈Qk

2〉 stabilizer groups are Bell states which are

known to be simultaneous eigenvectors of XX and YY (and

ZZ). Among them, the stabilizer state with the lowest energy

is the symmetric spin-aligned Bell state (|00〉 + |11〉)/
√

2

with energy −v̄x (since v̄x � 0). Note that the stabilizer state

stabilized by Sb
2 , with energy +v̄x is the antisymmetric Bell

state (|00〉 − |11〉)/
√

2. The others are the spin antialigned

states (|01〉 ± |10〉)/
√

2.

In summary, in the case of a two-spin system: For v̄x < 1,

the stabilizer ground state is the noninteracting state |�s,1〉 ≡
|11〉 with energy Es,1 = −1, while for v̄ > 1 the stabilizer

ground state is the entangled Bell state |�s,2〉 = (|00〉 +
|11〉)/

√
2 with energy Es,2 = −v̄x.

The unentangled state |�s,1〉 is trivially prepared from |00〉
with X gates, while the Bell state |�s,2〉 can be prepared with

a single Hadamard and controlled-X (CX) gate:

|�s〉(2) =
1

√
2

(|00〉 + |11〉) = CX21 |0〉 ⊗ |+〉

= CX21H2 |0〉 ⊗ |0〉 , (A22)

where CX ji is controlled by qubit j and has qubit i as target.

2. Three-spin system (N =3)

The Hamiltonian for N = 3 is

H̃ (3) =
1

2
(Z1 + Z2 + Z3)

−
v̄

4
(X1X2 + X1X3 + X2X3 − Y1Y2 − Y1Y3 − Y2Y3).

(A23)

Similarly as above we can consider the subsets of operators

consisting only of Z gates:

Qk
1 = {±Z1,±Z2,±Z3}, (A24)

where the superscript k denotes the possible sign combina-

tions. These subsets generate stabilizer groups Sk
1 = 〈Qk

1〉,
each with eight elements. We can also extract groups with XX

and YY operators. Contrarily to the N = 2 case, there are now

different ways of grouping these operators into commuting

subsets. For example, one can consider:

Qk
2 = {±X1X2,±X1X3,±X2X3}, (A25)

Qk
3 = {±Y1Y2,±Y1Y3,±Y2Y3}, (A26)

or, alternatively,

Qk
4 = {±X1X2,±Y1Y2,±Z3}, (A27)

Qk
5 = {±X1X3,±Y1Y3,±Z2}, (A28)

Qk
6 = {±X2X3,±Y2Y3,±Z1}. (A29)

(1) Among the Qk
1 operators the minimum stabilizer

energy is obtained for {−Z1,−Z2,−Z3} which again corre-

sponds to the state |111〉, with energy −3/2.

(2) Among the Qk
4 operators the minimum stabilizer en-

ergy is given by −1/2 − v̄/4(1 + 1) = −1/2 − v̄/2, and is

the same for Qk
5, Qk

6. Note that picking one of these groups

would lead to a stabilizer state breaking permutation symme-

try.

(3) Among the Qk
2 operators the minimum stabilizer

energy is equal to (−v̄/4)(1 + 1 + 1) = −3v̄x/4, which

corresponds to {+X1X2,+X1X3,+X2X3}. Of these three op-

erators, two are linearly independent, for example, +X1X3

and +X2X3. Thus one needs to complete this set with a third

operator to generate a complete stabilizer group and specify

the corresponding stabilizer state uniquely. We require that

the stabilizer state satisfies both permutation and parity sym-

metry. In particular, it should have an odd number of spins

down, since, according to the form of the Hamiltonian, the

noninteracting ground state |111〉 can only couple to states

with odd number of spins down. An operator which satisfies

these conditions is −Z1Z2Z3. It is easy to see that the state

|�s,2〉(3) = 1
2
(|111〉 + |100〉 + |010〉 + |001〉), (A30)

which is a superposition of the three-qubit W state and |111〉,
is stabilized by S = 〈+X1X3,+X2X3,−Z1Z2Z3〉 and satisfies

the required symmetries.

(4) For Qk
3, the minimum stabilizer energy is equal to

−v̄x/4, which corresponds to, for example, {+Y1Y2,−Y1Y3,

−Y2Y3} and, e.g., S = 〈−Y1Y3,−Y2Y3,−Z1Z2Z3}.8 The cor-

responding stabilizer ground state is similar to |�s,2〉(3) with

different relative signs.

In summary, for a system with N = 3 spins: If −3v̄x/4 >

−3/2, i.e., v̄x < 2, then the stabilizer ground state is the

unentangled stabilizer state |�s,1〉(3) = |111〉 with energy

8Note that it is not possible to have a group generating −YiYj , with

minus signs for all i < j for N � 3.
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Es,1 = −3/2, while for v̄x > 2 the stabilizer ground state is

the entangled state |�s,2〉(3) with energy Es,2 = −3v̄x/4 <

−3/2. The permutation-symmetry-breaking choice never

leads to a stabilizer ground state.

It is straightforward to see that the entangled state |�s,2〉(3)

can be prepared with a series of controlled-X (CX), H and X

gates:

|�s〉(3) = 1
2
(|100〉 + |111〉 + |010〉 + |001〉),

= CX21CX31CX32 |1〉 ⊗ |+〉 ⊗ |+〉 ,

= CX21CX31CX32X1H2H3 |0〉 ⊗ |0〉 ⊗ |0〉 . (A31)

3. Arbitrary N > 2

The procedure for extracting subsets of mutually commut-

ing operators in the N = 3 case can be generalized to arbitrary

values of N .

The stabilizer group S
(N )
1 generated by {−Z1,−Z2, ...

− ZN } operators has stabilizer energy Es,1 = −N/2 and

always coincides with the noninteracting ground state

|�s,1〉(N ) = |1〉⊗N .

As for N = 3, the interacting part of the

Hamiltonian can either be partitioned into sub-

sets Q
(N )
i j = {XiX j,YiYj, {Zk}k �=i, j}i< j or into Q

(N )
2 =

{X1X2, X1X3, ..., X2X3, ..., XN−1XN } and Q
(N )
3 =

{Y1Y2,Y1Y3, ...,Y2Y3, ...,YN−1YN }. The set Q
(N )
2 yields a

stabilizer energy equal to − v̄x

2(N−1)
× N (N−1)

2
= −N v̄x

4
, while

Q
(N )
3 will always yield a larger energy.9 A set of the former

type Q
(N )
i j yields energy − (N−2)

2
− v̄x

(N−1)
, which is also always

larger when v̄x > 2. Additionally, as mentioned above, those

sets lead to parity-symmetry breaking which is not desired.

In summary, for arbitrary value N > 2, if −N v̄

4
> −N

2
, i.e.,

v̄x < 2, then the stabilizer ground state is |�s,1〉(N ) = |1〉⊗N

with stabilizer energy Es,1 = −N/2, while if v̄x > 2, then the

stabilizer ground state |�s,2〉(N ) is entangled with Es,2 = −N v̄

4
.

For N even (respectively, odd), we can predict that this en-

tangled state is an equal superposition of all states with even

(respectively, odd) number of spin down (1’s).

Rigorously, to fully specify |�s,2〉(N ), one needs a

complete stabilizer group. To do this, N − 1 indepen-

dent generators can be extracted from the group Q
(N )
2 =

{X1X2, X1X3, ...X2X3, ..., XN−1XN }, for example:

g1 = X1XN ,

g2 = X2XN ,

...

gN−1 = XN−1XN , (A32)

which can be completed by

gN = (−1)N Z1Z2...ZN , (A33)

9With the optimal combination of signs we find stabilizer energy

− N v̄x

4(N−1)
for even N and − v̄x

4
for odd N .

(which satisfies permutation invariance) to form the N gener-

ators of the complete stabilizer group S
(N )
2 = 〈g1, g2, .., gN of

|�s,2〉(N ).

The preparation of this state can be inferred from general-

izing expressions (A22) and (A31) as

|�s,2〉(N ) =





∏
i< j CX ji |0〉 ⊗ |+〉⊗(N−1) for even N,

∏
i< j CX ji |1〉 ⊗ |+〉⊗(N−1) for odd N.

For example, for N = 4, this gives

|�s,2〉(4) =
1

2
√

2
(|0000〉 + |0011〉 + |0110〉 + |1100〉

+ |0101〉 + |1111〉 + |1010〉 + |1001〉). (A34)

The states |�s〉(N ), are, as expected, equal superposition of

configurations with even (respectively, odd) spins down (1’s)

for N even (respectively, odd). They are also superpositions

of the angular momentum eigenstates (Dicke state) |J, M〉 ≡
|N+ = J + M〉. For example, |�s,2〉(2) is a superposition of

|N+ = 0, 2〉 = |J = 1, M = −1,+1〉, |�s,2〉(3) is a superpo-

sition of |N+ = 0, 2〉 = |J = 3/2, M = −3/2,+1/2〉 (M =
−1/2 or +3/2 would break parity symmetry), and |�s,2〉(4) is

a superposition of |N+ = 0, 2, 4〉 = |J = 2, M = −2, 0,+2〉.
The case χ ∈ (−1, 0) can be treated in exactly the same

way as χ = −1.

Only in the case χ = +1 would the states stabilized

by S
(N )
2 = 〈X1XN , X2XN , ..., XN−1XN , (−1)N Z1Z2...ZN 〉 and

S
(N )
3 = 〈Y1YN ,Y2YN , ...,YN−1YN , (−1)N Z1Z2...ZN 〉 be degen-

erate.

4. Preparation of stabilizer ground states from graph states

In this section we will omit superfluous super- and sub-

scripts and refer to the N-spin entangled stabilizer ground

state |�s,2〉(N ) and corresponding stabilizer group S
(N )
2 , simply

as |�s〉 and S , respectively.

In the case of the present LMG model, one has enough

intuition to infer a way of preparing the entangled stabilizer

ground state |�s〉, as written in Eq. (A34) above. In the case

of a more general Hamiltonian, however, the stabilizer-state

preparation requires a more systematic procedure. For exam-

ple, it is known that any stabilizer state can be obtained via

local Clifford operations acting on a graph state.

As detailed in, e.g., Ref. [78], an N-qubit graph state |G〉
is associated with a (simple unweighted) graph G = (V, E ),

where V denotes the sets of vertices (N qubits) and E denotes

the set of edges between these vertices. The graph state |G〉
can be prepared as

|G〉 =

(
∏

e∈E

CZe

)
|+〉⊗N , (A35)

and is stabilized by operators of the form10

gG
i = Xi

⊗

j∈ni

Z j, (A36)

10This can be checked easily using Xi |+〉i = |+〉i and CZi jXi =
XiZiCZi j .
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where ni denotes the set of qubits (vertices) connected to i by

an edge.

In order to find the Clifford operations UC that transforms

a graph state |G〉 into the stabilizer state |�s〉 as:

|�s〉 = UC |G〉 , (A37)

one can, for example, parametrize UC with a set of discrete

angles (to ensure the Clifford-ness) and optimize the angles

via energy minimization. Optimization procedures, in partic-

ular discrete ones, can, however, often be difficult to achieve

in a robust way.

On the other hand, there exist an efficient procedure de-

tailed in Ref. [79] to find the local Clifford operations that

transform from a stabilizer state to a graph state, without

resorting to an optimization. This procedure utilizes the stabi-

lizer tableau formalism, i.e., the fact that a stabilizer state |�s〉
can be represented by a binary tableau or generator matrix,

T s = (X |Z), (A38)

where each line of T s corresponds to a generator gi of the

stabilizer group S = 〈g1, g2, . . . , gN 〉 of |�s〉, and the matrix

elements X i j = 1 if gi acts with X on qubit j, and simi-

larly Zi j = 1 if gi acts with Z on qubit j. For example, the

binary tableau representing X1Y2Z3 for a three-qubit state is

(110|011). Note that the sign of each generator is ignored.

The generator matrix associated with a graph state |G〉 has

the following particular structure:

T G = (1|Ŵ), (A39)

where Ŵ is the adjacency matrix of the graph G = (V, E ), i.e.,

Ŵi j =
{

1 if (i, j) ∈ E ,

0 otherwise.

Since we are dealing with simple (unweighted) graphs which

have no loops, Ŵii = 0.

Reference [79] describes the (efficient) procedure for trans-

forming the generator matrix of a stabilizer state into one a

graph state:

T s = (X |Z) → T G = (1|Ŵ). (A40)

This directly provides the desired transformation UC in

Eq. (A37).

In the present study of the LMG model, the

generator matrix representing the stabilizer group

S = 〈X1XN , X2XN , ..., XN−1XN , (−1)N Z1Z2...ZN 〉 associated

with the entangled stabilizer state |�s〉 is then given by

T s

=




1 0 0 ... 0 1 0 0 0 ... 0 0

0 1 0 ... 0 1 0 0 0 ... 0 0

0 0 1 ... 0 1 0 0 0 ... 0 0

... ...

0 0 0 ... 1 1 0 0 0 ... 0 0

0 0 0 ... 0 0 1 1 1 ... 1 1




.

(A41)

The procedure in Ref. [79] then simply amounts to apply-

ing a Hadamard gate on the last qubit. The effect of Hadamard

conjugation on the binary tableau is to exchange the last

columns of the matrices X and Z, yielding

T G

=




1 0 0 ... 0 0 0 0 0 ... 0 1

0 1 0 ... 0 0 0 0 0 ... 0 1

0 0 1 ... 0 0 0 0 0 ... 0 1

... ...

0 0 0 ... 1 0 0 0 0 ... 0 1

0 0 0 ... 0 1 1 1 1 ... 1 0




= (1|Ŵ), (A42)

which describes a graph state with stabilizer group SG =
{X1ZN , X2ZN , ..., XN1

ZN , Z1...ZN−1XN } which is indeed the

conjugate of S with HN for even values of N . In the case

when N is odd, one needs to apply an extra X gate to one of

the qubits. This has the effect of conjugating each generator

with X and thus provides the necessary minus sign for the last

generator −Z1Z2...ZN [see Eq. (A33)].

In summary, if we denote by g
(G)
i the generators in SG and

gi the generators in S , then we have

g
(G)
i = UC gi U

†
C , (A43)

or, equivalently,

|G〉 = UC |�s〉(N ) , (A44)

where, for example,

UC = (X1)N mod 2 HN . (A45)

The generator matrix in Eq. (A42) corresponds to an open

graph with edges between vertex (qubit) N and all vertices

i < N . This is shown in Fig. 1(a) for the case N = 8. Note that

graph G is the complementary graph to the all-to-all connected

graph Gc, as shown in Fig. 1(b). The adjacency matrix of G

and Gc are related by [79]: Ŵ
c = Ŵ + 1̄, where

1̄i j =
{

1 if i �= j,

0 if i = j.

In summary, an alternative way of preparing the entangled

stabilizer ground state of the LMG model is given by acting

with a single Hadamard gate (and X if N is odd) on the open

graph state as

|�s〉 = Û −1
G |G〉 , (A46)

= (X1)N mod 2 HN

N−1∏

i=1

CZi,N |+〉⊗N . (A47)

Unlike Eq. (A34), the preparation given in Eq. (A47) has been

obtained from following the procedure in Ref. [79] which

provides a systematic and rigorous “recipe,” generalizable to

the case of an arbitrary Hamiltonian.

APPENDIX B: RESULTS FOR STABILIZER GROUND

STATES AND BEYOND

In this Appendix we provide additional results obtained for

systems ranging from N = 2 to 30 spins. We focus on the

case χ = −1, as the results do not significantly change for

χ ∈ [−1, 0).
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FIG. 7. Relative energy difference between the exact ground-state energy and several approximations, for systems with N =
2, 3, 4, 10, 20, 30 and χ = −1. The unentangled and entangled stabilizer states, |�s,1〉(N ) and |�s,2〉(N ), are shown in green and purple

curves, respectively. The state obtained via Eq. (B1) is shown with red curves. For comparison, the deformed HF without and with projection

are shown with cyan and blue curves, respectively.

Figures 7 and 8 show the relative energy difference to

the exact ground state ε = |(Eapp − Eex)/Eex| and fidelity

|〈
ex|�app〉|, respectively, for quantum states |�app〉 obtained

at different levels of approximation. In particular, results

obtained for the noninteracting ground state (unentangled sta-

bilizer state) |�s,1〉(N ) = |1〉⊗N are shown with a light green

curve, while those obtained for the entangled stabilizer state

|�s,2〉(N ) are shown in purple. The magic state obtained via

|
(θ )〉(N ) = e−iθ Ĵz |�s,2〉(N ) , (B1)

as discussed in Sec. IV B, is shown with a red curve. Finally,

for comparison, the deformed HF without and with projection

onto a good parity are shown with a cyan and blue curve,

respectively.

The exact solution and entangled stabilizer |�s,2〉(N ) for

systems with N = 2, 3 contain only two Dicke states and thus

differ by only one relative amplitude, which can be adjusted

with a single angle. Thus Eq. (B1) recovers the exact ground-

state energy and wave function for these systems. This is true

even in the region below the stabilizer ground-state transition

point (v̄x < 1 for N = 2 and v̄x < 2 for N = 3).

Larger values of N , the magic states prepared via Eq. (B1),

show small deviations with the exact solution. The relative

energy tends to improve and converge towards ≃0 for large

N > 4 values, while the discrepancy of the wave functions

increases around the stabilizer-ground-state transition point

around v̄x ≃ 2, where the magic of the exact state is maxi-

mum. We have observed the same trends, to a greater extent,

for the stabilizer ground states themselves in Fig. 3 of the main

text.

We note that such discrepancies can be systematically im-

proved with higher-order operators, starting with the tensor

operator J2
z , which brings both entanglement and magic. In

that case, the variational state takes the form

|�(θ1, θ2)〉 = e−iθ2J2
z e−iθ1Jz |�s,2〉 . (B2)

As noted in Sec. III, we see that the fidelity crossing point

decreases as N increases. In fact, in the large-N limit, we

find that this crossing point converges towards v̄x = 1, which
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FIG. 8. Same as Fig. 7 for the fidelity of approximate states to the exact ground state.

coincides with the phase transition, and that the value of the

fidelity goes to zero at this point. Since the interaction strength

is proportional to v̄x/(N − 1), the region where the stabilizer

state becomes close to the ground state also becomes shifted

towards larger values of v̄x. For fixed value of v̄x/(N − 1) �
1, the fidelity of the stabilizer ground state is roughly constant

with N and ≃0.98–0.99.

APPENDIX C: QITP AND VARIATIONAL VARIANT

The QITP developed in Ref. [95] is an algorithm im-

plementing ITE using quantum circuits. Such technique is

inspired by classical ITE methods, which, in their original

form, are used to find the ground state of a physical system

by evolving an initial state |η〉 ≡ |η(0)〉 (with nonzero overlap

with the ground state) in imaginary time τ = it ,

e−(Ĥ−Ē0 )τ |η〉 =
∑

n

e−(En−Ē0 )τ 〈
n|η〉 |
n〉 , (C1)

where |
n〉 denote eigenstates of Ĥ , in particular |
0〉 ≡
|
ex〉 is the exact ground state, and Ē0 is an upper bound close

the exact ground-state energy. After a long time τ , the excited

states components are suppressed and the system reaches its

ground state,

lim
τ→∞

e−(Ĥ−Ē0 )τ |η〉 = 〈
0|η〉 |
0〉 . (C2)

Since the operator in Eq. (C1) is not unitary, it cannot

be straightforwardly implemented on a quantum computer.

The QITP algorithm circumvents this issue by embedding the

system of interest into a larger one by adding an ancilla qubit

(initialized to state |0〉). One then acts on the full enlarged sys-

tem with a unitary operator Û chosen such that the action of Û

yields Eq. (C1) on the system of interest, after measurement

of the ancilla qubit. QITP is described in detail in Ref. [95],

and we simply remind the main steps below. Precisely,

Û (τ ) =

(
Q̂(τ ) Â(τ )

Â(τ ) −Q̂(τ )

)
, (C3)

where

Â(τ ) = (1+ e−2(Ĥ−Ē0 )τ )−1/2, (C4)

Q̂(τ ) = Â(τ ) e−(Ĥ−Ē0 )τ = (1+ e2(Ĥ−Ē0 )τ )−1/2. (C5)

Measuring the ancilla qubit after acting with Û on the full

system |0〉 ⊗ |η〉, and keeping only the samples that have
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FIG. 9. Comparison of the relative energy difference and fidelity

obtained with implementing Eq. (22) exactly (black curve) and using

the variational QITP operator of Eq. (C8) (teal curve) for a system

with N = 8 spins, and parameter values χ = −1 (left) and χ = −0.1

(right).

collapsed to state |0〉, the state of the system of interest col-

lapses to [95]

|η(τ )〉 =
Q̂(τ ) |η〉

||Q̂(τ ) |η〉 ||
, with Q̂(τ ) |η〉 −−−→

τ→∞

〈
0|η〉
√

2
|
0〉 ,

(C6)

which is the desired ground state. The success of the QITP

procedure depends on the squared overlap of the initial state

with the exact ground state |〈
0|η〉|2. Choosing the unentan-

gled and entangled stabilizer states, |�s,1〉(N ) and |�s,2〉(N ), as

initial states, the QITP procedure yields the results shown in

Fig. 6 of the main text. Note that in a real quantum circuit

one typically has to resort to Trotterization of the evolution

operator. Implementing and investigating the impact of such

Trotterization is outside the scope of the present study.

Further, the QITP procedure described above can also be

utilized and adapted in order to implement Eq. (22) on a

quantum circuit. Precisely the operator exp(−Ĵzθ ) can be im-

plemented via Eqs. (C3)–(C6) by making the substitutions

Ĥ → Ĵz and τ → θ, (C7)

so that the system is evolved with the Ĵz operator instead of

the full Hamiltonian, and the angle θ plays the role of the

imaginary time τ . The state of the system after measurement

of the ancilla qubit is then given by

|
(θ )〉 = Q̂(θ ) |�s,2〉(N ) . (C8)

The difference with full QITP is that the angle θ does not

go to infinity. Instead there is an optimal value for θ which

provides a minimal energy and thus can be determined via

an optimization procedure. As mentioned in the main text, in

practice, the optimal value of θ has been obtained by man-

ually scanning the energies obtained for a range of discrete

values of θ , followed by a further refinement using a Scipy

optimizer [94]. In particular, we have tested both Cobyla and

L-BFGS-B which have provided the same results. Figure 9

shows a comparison of the results obtained with implementing

Eq. (22) exactly and using the QITP algorithm as in Eq. (C8),

for the two parameter values χ = −1 and χ = −0.1. Except

for small discrepancies occur around v̄x = 2 (the most magic

region), the QITP algorithm reproduces the exact evolution to

a large extent.

APPENDIX D: ADAPT-VQE ON A STABILIZER GROUND

STATE

ADAPT-VQE has been originally proposed in Ref. [12].

This classical-quantum algorithm is based on a wave fucntion

ansatz of the form

|
(θ1, ..., θL )〉 =
L∏

l=1

eiθl T̂l |φ〉 , (D1)

where |φ〉 is a chosen reference state, and the T̂l ’s are Hermi-

tian excitation operators, chosen from a predefined pool. At

each layer l , an excitation operator is selected based on its

energy gradient

∂E

∂θl |θl =0

= −i〈
l−1|[T̂l , Ĥ ]|
l−1〉, (D2)

where |
l−1〉 ≡ |
(θ1, ..., θl−1)〉. At each layer, the values of

the angles θl are optimized via a VQE algorithm [102].

In this section we explore the use of ADAPT-VQE when

the reference state |φ〉 is taken to be the stabilizer ground

state. We restrict ourselves to the region v̄x > 2, for which

the stabilizer ground state is entangled, specifically, |φ〉 =
|�s,2〉, given in Eqs. (15) and (16). We limit the operator pool

to operators preserving the relevant symmetries (parity and

permutation symmetries), and the real character of the wave

function. These are

T̂ ±
i j = XiYj ± YiX j . (D3)

We note, however, that allowing for a larger pool, including

operators such as 1
2
(XX ± YY ) or symmetry-breaking ones

such as XZ , Y Z , does not change the results as the associ-

ated gradients are always found to be smaller than those of

operators in Eq. (D3) and thus are never selected during the

procedure.11

As mentioned in the main text, we find that such imple-

mentation of ADAPT-VQE, on top of a collectively entangled

stabilizer state, is not adequate, as the layers somewhat de-

stroy the collectivity of the state. This is illustrated in Fig. 10,

which shows, as an example, results obtained for a system

with N = 8 spins, χ = −1 in the region of large deformation

at v̄x = 5.The results obtained with |φ〉 = |�s,2〉 are shown

with red curves. For comparison we also show with black

curves the results obtained with |φ〉 = |�s,1〉 = |1〉⊗8. Al-

though |�s,2〉 is closer to the exact solution, the gradients

of the various operators are found to be of similar and very

small magnitude for a large number of layers, leading to the

observed plateau in both the total energy and wave function.

It is only after ≃35 layers, where both solutions meet, that the

gradients increase and convergence towards the exact ground

state begins. Typically we find that convergence then takes

11Since the energy gradient is given by the expectation value

of the commutator of the Hamiltonian and the excitation operator

[Eq. (D2)], ADAPT-VQE can never bring towards a symmetry-

broken solution if starting from a symmetry-preserving one.
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FIG. 10. ADAPT-VQE convergence for a system with N = 8 spins, χ = −1, and v̄x = 5. The left and right panel show the fidelity and

relative energy error of the ADAPT-VQE wave function, receptively. The black curve shows the results obtained with the unentangled reference

state |φ〉 = |�s,1〉, while the red curve shows the results for |φ〉 = |�s,2〉.

place at a similar rate as with the unentangled reference state

(slightly slower or faster, depending on the parameter values).

In any case, it seen that the number of layers of order 100

required to reach 0.1% accuracy in the energy is too large

to be implemented on real quantum devices. Thus, applying

APADT-VQE with one- and two-spin excitation operators

appears to be inadequate for the case of collective systems

with all-to-all connectivity. If possible, one would ideally use

collective excitation operators [88]. In general, this is,

however, not straightforward to implement due to the noncom-

mutativity of the individual terms in such operators.

Whether such slow convergence is specific to deforma-

tion remains to be seen. We note that Ref. [103] applied

ADAPT-VQE with various operator pools to the like-particle

and neutron-proton pairing problem in reasonable numbers of

iterations (except in some degenerate cases).
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