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 a b s t r a c t

The intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in 
ultraperipheral collisions. In particular, it allows for the investigations of excited, light-flavour vector mesons. 
The measurement of coherently photoproduced 𝜋+𝜋−𝜋+𝜋−  final states in ultraperipheral Pb–Pb collisions at 
√

𝑠NN = 5.02 TeV is presented for the first time. The cross section, d𝜎/d𝑦, times the branching ratio (𝜌 →
𝜋+𝜋+𝜋−𝜋−) is found to be 47.8 ± 2.3 (stat.) ± 7.7 (syst.) mb in the rapidity interval |𝑦| < 0.5. The invariant mass 
distribution is not well described with a single Breit-Wigner resonance without an interference term. Including in-
terference with a non-resonant contribution results in the mass and width values being too far from those reported 
in PDG, while the production of two interfering resonances, 𝜌(1450) and 𝜌(1700), also provides a good descrip-
tion of the data. The values of the masses (𝑚) and widths (Γ) of the resonances extracted from the fit assuming 
two interfering resonances are 𝑚1 = 1385 ± 14 (stat.) ± 3 (syst.) MeV/𝑐2, Γ1 = 431 ± 36 (stat.) ± 82 (syst.) MeV/𝑐2, 
𝑚2 = 1663 ± 13 (stat.) ± 22 (syst.) MeV/𝑐2 and Γ2 = 357 ± 31 (stat.) ± 49 (syst.) MeV/𝑐2, respectively. The measured 
cross sections times the branching ratios are compared to recent theoretical predictions.

1.  Introduction

Collisions involving ultrarelativistic heavy ions offer a rich area for 
research. The distance between the centers of two nuclei at the moment 
of their closest approach, called the impact parameter, is one of the 
most important characteristics of the interaction. When this distance 
exceeds the sum of the nuclear radii, ultraperipheral collisions (UPCs) 
can occur [1–3]. In this case, the charges of all 𝑍 protons in a nucleus 
act coherently and the photon fluxes from each nucleus are enhanced by 
a factor of 𝑍2 compared to proton beams. This enhancement, together 
with the high beam energies at the LHC, produces strong fluxes of high-
energy photons. At the same time, the requirement of coherent emission 
from nuclei limits the photon virtuality to 𝑄2 < (ℏ∕𝑅𝐴)2. Photons with 
higher virtuality are strongly suppressed by the nuclear electromagnetic 
form factor [4–7].

Photon-induced reactions at the LHC include purely electromagnetic 
photon-photon processes and photon-nucleus interactions. The latter in-
cludes exclusive processes where the photon fluctuates to a bound qq
system, typically a vector meson (VM), which then scatters elastically 
off the nucleus. The total cross section for this process can be factorized 
into the photon flux and the cross section of the corresponding interac-
tion.

Elastic scattering of the VM can proceed either off the entire target 
nucleus (coherently), where the nucleus usually remains intact, or off 
only one of the nucleons (incoherently), where the target nucleus typi-
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cally breaks up, emitting nucleons at very forward rapidities. For coher-
ent processes, the size of the lead ion restricts the transverse momentum 
(𝑝T) of the VM to about 100 MeV/𝑐, while it is below 1 GeV/𝑐 for incoher-
ent processes. VM photoproduction dominates the hadronic structure of 
the photon, and the main contribution to the total exclusive photopro-
duction cross section comes from the 𝛾 + p → 𝜌0 + p process. Scaling 
from a proton to a nuclear target is often implemented using a Glauber 
approach assuming the VM dominance model [8].

Coherent 𝜌0 photonuclear production was thoroughly investigated 
in Au–Au UPCs at RHIC [9,10] and in Pb–Pb [11], p–Pb [12] and Xe–Xe 
UPCs  [13] at LHC. The cross section for this process and d𝜎∕d𝑦 dis-
tributions were found to be well described by a Glauber calculation. 
The study of the excited states of the 𝜌0 meson is particularly intrigu-
ing. These may not just be composed of radial excitations of the 𝜌0 but 
could also include hybrid (qqg) states [14,15]. The Particle Data Group 
(PDG) [16] identifies 𝜌(1450) and 𝜌(1700) as at least two possible excited 
states based on the previous experimental measurements conducted 
mainly in 𝑒+𝑒− annihilation and at lower collision energies [17–26]. 
However, such data are relatively sparse and have large uncertainties. 
In UPCs, such a high-mass resonance was observed by the ALICE Col-
laboration [11] in exclusive two-pion events. Another possible decay 
mode of an excited 𝜌 resonance involves four charged pions, 𝜋+𝜋−𝜋+𝜋− , 
in the final state. The photoproduction of the four-pion final state has 
been measured by the OMEGA spectrometer [27–29] and in UPCs, by 
the STAR Collaboration at RHIC [24]. Previous publications [17–26] 
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suggested that the measured invariant mass spectrum may be attributed 
to the two aforementioned resonances. Nonetheless, the accuracy of the 
data was insufficient for distinguishing these two resonances and deter-
mining their mixing angle. In contrast, a recent preliminary measure-
ment by the H1 Collaboration [30] suggests the possibility of fitting 
the data with a single broad resonance. To date, no measurements of 
this final state have been carried out at the LHC, making searches in 
the 𝜋+𝜋−𝜋+𝜋− final state crucial for understanding the nature of these 
resonances.

Finally, improved measurements of the exclusive photoproduction 
cross section of excited 𝜌 mesons have implications for the understand-
ing of nuclear shadowing. Exclusive photoproduction of a 𝜌0 off a nu-
cleon (𝛾𝑁 → 𝜌0𝑁) can proceed via the fluctuation of the photon to a 𝜌0
meson which scatters elastically off the target. There is, however, also 
the possibility to have contributions from cross terms, where the fluctu-
ation is to an excited 𝜌 which converts to a 𝜌0 in the scattering process 
(𝜌𝑁 → 𝜌0𝑁). The importance of these cross terms for the interpretation 
of exclusive vector meson production in terms of nuclear shadowing has 
been pointed out earlier [31].

This article reports on the first measurement of exclusive 
𝜋+𝜋−𝜋+𝜋−  photoproduction in Pb–Pb UPCs at √𝑠NN = 5.02 TeV. A 
resonance structure is found in the invariant mass spectrum and the 
cross section times branching ratio (𝜌→ 𝜋+𝜋+𝜋−𝜋−) is measured for an 
excited 𝜌 state in the rapidity interval |𝑦| < 0.5. The possibility of two 
excited resonances and their mixing is also studied.

2.  Experimental setup

The analyzed data were recorded by the ALICE Collaboration 
in the fall of 2015 when the LHC provided Pb–Pb collisions at 
√

𝑠NN = 5.02 TeV. A detailed description of the ALICE systems and their 
performance is given in Refs. [32,33]. The 𝜋+𝜋−𝜋+𝜋−  final state is re-
constructed using the Inner Tracking System (ITS) [34] and the Time 
Projection Chamber (TPC) [35] to measure the pion tracks. The Silicon 
Pixel Detector (SPD) makes up the first two layers of the ITS, the closest 
to the beam, and is used for both tracking and triggering purposes.

The TPC is the main tracking detector. It is a large cylindrical gaseous 
detector with a central membrane at high voltage and readout planes, 
composed of multiwire proportional chambers at each of the two end 
caps. It covers the full azimuthal range and pseudorapidity interval |𝜂| <
0.9 for tracks which fully traverse it. The ITS and TPC are located inside 
a large solenoid magnet, creating a uniform 0.5 T magnetic field parallel 
to the beam-direction axis.

The V0 and AD detectors are used as veto detectors to reject hadronic 
events. The V0 detector [36] is a set of two segmented scintillators, 
V0A and V0C. V0A covers the 2.8 < 𝜂 < 5.1 range, while V0C covers 
−3.7 < 𝜂 < −1.7. The AD [37] detector is a set of two arrays of scintil-
lation detectors, ADA and ADC, placed further away from the nominal 
interaction point and covering 4.7 < 𝜂 < 6.3 and −6.9 < 𝜂 < −4.9, respec-
tively.

The trigger used to obtain the data sample for the measurement de-
scribed in this Letter uses five signals: a topological SPD trigger and four 
vetoes of any activity within the time windows corresponding to nomi-
nal beam-beam interactions in ADA, ADC, V0A and V0C. SPD provides 
a topological trigger requiring at least two tracklets having an opening 
angle in azimuth larger than 153 degrees. Such a trigger leaves a sam-
ple with events containing at least two back-to-back tracks in central 
detectors.

The integrated luminosity is determined using a reference trigger 
based on the multiplicity of the V0A and V0C detectors [38]. The inte-
grated luminosity of the analyzed sample was 622 ± 16 mb−1.

For signal extraction and corrections for acceptance and efficiency, 
two event samples, for both coherent and incoherent photoproduc-
tion, were generated using the STARlight Monte Carlo [39], based 
on a Glauber-like eikonal formalism. The simulated excited 𝜌 meson 
events were generated according to a Breit-Wigner (B–W) shape dis-

cussed below with the mass and width equal to 𝑚 = 1720 MeV/𝑐2 and 
Γ = 249 MeV/𝑐2 and processed using realistic simulations of the ALICE 
detector based on GEANT 3.21 [40].

3.  Event selection and background subtraction

Events that meet the trigger criteria described above were selected if 
they contain exactly four good-quality tracks. The selected tracks were 
required to be reconstructed in both the ITS and the TPC with at least 
two hits in the ITS and 50 out of 159 space points in the TPC, or to 
be reconstructed only in the ITS with at least three hits. It was found 
that less than 1% of four track events have tracks that do not satisfy 
the pion PID hypothesis. Thus, taking into account the limited statistics 
of our sample, it was decided to omit the PID selection and consider all 
tracks to be pions. In addition, each track was required to have a distance 
of closest approach to the event interaction vertex of less than 3.2 cm 
in the beam direction, and less than 2.4 cm in the plane transverse to 
the beam direction. All four tracks were required to have at least one 
matching hit seen by the trigger. The four-track events with zero net 
charge were used to create the signal sample, while non-zero net charge 
events were used to estimate the combinatorial background.

Since coherently produced VMs typically have small summed 𝑝T of 
the four constituent tracks (event 𝑝T), events with a large 𝑝T are expected 
to be dominated by combinatorial background with more particles in the 
final state. However, given only four charged pions are detected, a good 
estimate of its 𝑝T spectrum can be obtained from non-zero net charge 
events.

In order to estimate the combinatorial and incoherent backgrounds 
in the signal region (𝑝T < 150 MeV/𝑐), the event 𝑝T distribution, in the 
invariant mass range 0.8 < 𝑚 < 2.5 GeV/𝑐2, is fitted using a combination 
of three templates (Fig. 1). First, the template corresponding to the com-
binatorial background (solid blue line) was obtained by fitting a fourth-
order polynomial function to the 𝑝T distribution of non-zero net charge 
events with exactly four charged pions. The other two templates were 
obtained from STARlight MC samples for the coherent (dashed orange 
histogram) and incoherent (fine-dashed magenta histogram) processes, 
respectively. A 𝜒2 minimization procedure was used to fit the data (red 
circles) to the sum of these three templates, where the normalization 
of each template was a free parameter. Since in the STARlight MC the 
𝑝Tspectrum is calculated using a nuclear form factor rather than through 
a full Glauber calculation, it does not describe the position of the coher-
ent peak precisely. Thus, the following iterative procedure was imple-
mented. After the initial fit is performed, the combinatorial and incoher-
ent contributions are subtracted bin-by-bin from the data sample. The 
ratio of the resulting spectra to the coherent MC sample follows a linear 
function in 𝑝T, which was used to calculate the weight applied to the co-
herent MC sample on an event-by-event basis before the template fit was 
repeated. The final result of this procedure is shown in Fig. 1 as a solid 
black histogram for the sum of three templates. The normalization factor 
of the combinatorial background was found from the 𝑝T> 600 MeV/𝑐 in-
terval to be 1.60 ± 0.15 (stat.), resulting in the yields of the three contri-
butions to the signal region (𝑝T < 150 MeV/𝑐): 𝑁coh = 1987 ± 54 (stat.), 
𝑁incoh = 134 ± 13 (stat.) and 𝑁comb = 320 ± 23 (stat.), respectively.

4.  Signal extraction

The 𝑚𝜋+𝜋−𝜋+𝜋− -dependent product of the cross section times the 
branching ratio was obtained as follows. First, the combinatorial back-
ground contribution, as obtained from the template fit shown in Fig. 1, 
was subtracted from the invariant mass spectra of zero net charge 
events in the signal region (𝑝T < 150 MeV/𝑐). Second, this background-
subtracted invariant mass spectrum was corrected bin-by-bin for detec-
tor acceptance and trigger efficiency (𝐴 × 𝜀). The 𝐴 × 𝜀 correction fac-
tor was calculated using the coherent sample of events generated by 
STARlight [39], which were processed through the ALICE detector re-
sponse simulation [40]. The correction was found to rise linearly as a 
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Fig. 1. Distribution of the event 𝑝T in events with zero net charge in the invari-
ant mass range 0.8 < 𝑚 < 2.5 GeV/𝑐2 and the rapidity interval |𝑦| < 0.5. The data 
(red circles) are shown together with the fitted function (solid black line) and its 
three components as described in the text. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this 
article.)

function of event mass from 0 at 1.0 GeV/𝑐2, reaching almost a constant 
value of 0.07 around 1.5 GeV/𝑐2. Finally, the corrected spectrum was 
scaled according to the following formula:

d2𝜎
d𝑦d𝑚

× BR =
𝑁𝜌 × (1 − 𝑓I) × 𝑓p
Δ𝑦 × Δ𝑚 × int

. (1)

Here BR is the branching ratio (𝜌→ 𝜋+𝜋+𝜋−𝜋−), 𝑁𝜌 is the number of 
𝜋+𝜋−𝜋+𝜋− events in each invariant mass bin after the acceptance and 
efficiency correction, 𝑓I is the correction for the remaining incoherent 
contribution, equal to (6.3 ± 1.0 (stat.))%, int is the integrated luminos-
ity of the analyzed sample, equal to 622 ± 16 mb−1, Δ𝑦 is the rapidity 
interval width in which the measurement is performed, equal to one 
unit of rapidity, and Δ𝑚 is the invariant mass bin width. Finally, 𝑓p
is the pileup correction, mainly from events with exchange of multiple 
photons that would invalidate the veto requirement in the dedicated de-
tectors. The probability of pileup is correlated with the average number 
of inelastic hadronic collisions per bunch crossing. The pileup effect is 
estimated using two different methods described in detail in Ref. [11], 
and its value is 1.071 ± 0.038 in the current measurement, with the un-
certainty taken as the difference between the two methods.

The amplitude of the resonance production is usually described by a 
relativistic Breit–Wigner (B–W) function as derived by Jackson [41]:

𝐵𝑊part =

√

𝑚part ⋅ 𝑚event ⋅ Γevent
𝑚2
event − 𝑚

2
part + 𝑖 ⋅ 𝑚part ⋅ Γevent

, (2)

where the mass-dependent width Γevent is given by

Γevent = Γpart ⋅
𝑚part

𝑚event
⋅

(

𝑚2
event − 𝑘 ⋅ 𝑚

2
𝜋

𝑚2
part − 𝑘 ⋅ 𝑚2

𝜋

)3∕2

. (3)

Here, 𝑚part , Γpart are the mass and the width of a resonance, 𝑚event is 
the event mass. The constant 𝑘 is equal to 4 for two-pion decays, since 
both pions have the same energy in the center-of-mass frame. For a four-
pion decay, the value of 𝑘 is not well defined. If all four pions have the 
same energy in the center of mass, one finds 𝑘 = 16. This is the most 
natural choice here, since this expression reflects how much the energy 
in the center of mass differs from the sum of the masses of the daughter 
particles. At the same time, it was found that the fit behavior and the 
extracted parameters do not show a strong dependence on the particular 
choice of the 𝑘 value.

In the present analysis, three approaches using the relativistic B–
W formula are used to describe the data. The first considers a single 

resonance:
d𝜎
d𝑚

= |𝐴 ⋅ 𝐵𝑊1|
2, (4)

The second one is a single BW-resonance interfering with a constant 
non-resonant term. This was proposed by Söding [42], and has been 
found to give a good description of exclusive 𝜌0 production [9–13]:
d𝜎
d𝑚

= |𝐴 ⋅ 𝐵𝑊1 + 𝑒−𝑖𝜑 ⋅ 𝐵|2, (5)

and the final fit is to two interfering BW-resonances:
d𝜎
d𝑚

= |𝐴 ⋅ 𝐵𝑊1 + 𝑒−𝑖𝜑 ⋅ 𝐵 ⋅ 𝐵𝑊2|
2, (6)

where 𝐴 and 𝐵 are the normalization factors and 𝜑 is the phase dif-
ference parameter. In addition to these, the masses and widths of the 
resonances are free parameters in the fit.

The panels in Fig. 2 show the results of the Log-Likelihood fits 
to the fully corrected invariant mass cross sections using the expres-
sions (4)–(6), respectively. The total uncorrelated uncertainty (teal open 
box), calculated as a statistical (black cross) and uncorrelated systematic 
(filled orange box) added in quadrature, is taken into account in the fits. 
The results of these fits are presented in Table 1, together with the PDG 
values and the previous measurement by the STAR Collaboration [24] 
for comparison.

The fit considering one B–W resonance provides mass and width pa-
rameters consistent with the 𝜌(1450) resonance reported by the Particle 
Data Group [16]. This result is 80 MeV/𝑐2, or about 2𝜎, lower than the 
value reported by STAR [24] for the 𝜋+𝜋−𝜋+𝜋− channel.

The fits by Eqs. (5) and (6) considerably improve the description of 
the data, especially in the higher-mass region. For the case of two inter-
fering resonances, the mass of the lighter resonance is lower than the 
one reported by PDG for 𝜌(1450), but still statistically compatible with 
it at a 1.7 𝜎, taking into account both the statistical and the system-
atic uncertainties of the current measurement. The mass of the heavier 
resonance is also slightly lower (2.2 𝜎) than the one reported by PDG. 
The widths of both resonances agree with the corresponding PDG values 
within the reported uncertainties. For the fit including interference with 
non-resonant four-pion production (5), the fit returns the mass value in 
the middle between the two resonances reported by PDG for 𝜌(1450)
and 𝜌(1700), respectively, at 3.0 𝜎 from each of them, and the width of 
the resonance is significantly larger than the PDG values for these reso-
nances. The fit with two interfering resonances provides results that are 
consistent with the resonances in the PDG. Other parameterizations that 
rely on alternative models of the non-resonant four-pion production, as 
shown in Ref. [30], might provide equally good description of the invari-
ant mass distribution for the case of the single broad resonance scenario 
(see Supplementary Fig. S1). Using alternative forms for the background 
did not significantly change the extracted mass and width of the single 
resonance.

The probabilities for the single, two resonance and single resonance 
with interference hypotheses producing 𝜒2 less than the observed values 
of 𝜒2 are 0.4, 65 and 85%, respectively. The single resonance hypoth-
esis without an interference term is thus strongly disfavored. A more 
complex fit including two resonances and a non-resonant component 
was also tested (see Supplementary Fig. S2). It showed no improvement 
in fit quality, yielded a negligible continuum contribution, and signifi-
cantly increased parameter uncertainties due to the increased number of 
free parameters of the fit. For these reasons it is not included in the pa-
per. Notably, it also yielded a negligible continuum contribution which 
is consistent with the Regge-based calculation performed for the two-
resonance scenario [43].

Previous measurements reported by the STAR [24] and the AL-
ICE [11] Collaborations for the two-pion decay channel did not observe 
any resonance around the 𝜌(1450) mass. This fact is not a contradiction, 
but instead can be explained by the hypothesis of the existence of mul-
tiple excited 𝜌 states with the two-pion decay channel being strongly 
suppressed for 𝜌(1450).
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Fig. 2. Corrected invariant mass spectrum for the coherent four pion photopro-
duction fitted with one resonance (top), one resonance interfering with non-
resonant production (middle) and two resonance with interference (bottom) 
models, as described in the text. Black error bars represent the statistical er-
ror, the orange band shows the uncorrelated systematic uncertainty, and the 
boxes show them added in quadrature. “Prob” reflects the probability of having 
the given or a higher 𝜒2∕ndf of the fit.

5.  Systematic uncertainties

Several sources of systematic uncertainties in the cross section mea-
surement are considered in this analysis. The uncorrelated uncertainties 
related to the acceptance and trigger efficiency and to background esti-
mation can influence the shape of the invariant mass distribution. They 
are taken into account before performing the fits to the spectra. They will 
influence the cross section, the mass, and the width of the resonances 
extracted. Other sources of systematic uncertainty are correlated across 
the invariant mass spectra, as they affect only the overall normalization, 
so they are added quadratically only for the cross section calculations.

Table 1 
Summary of the fit results. The first three rows present the masses 
and widths reported by PDG [16] and measured by the STAR Col-
laboration [24], while the second and third part list the values 
extracted from each of the fits by Eqs. (4), (5) and by Eq. (6), 
respectively. The given uncertainties for the ALICE results are sta-
tistical and systematic, respectively. STAR reports only statistical 
uncertainty, and the uncertainties in the PDG are their best esti-
mate.

𝑚 (MeV/𝑐2) Γ (MeV/𝑐2)
 PDG 𝜌(1450)  1465 ± 25  400 ± 60
 PDG 𝜌(1700)  1720 ± 20  250 ± 100
 STAR Au–Au  1540 ± 40  570 ± 60
 ALICE Pb–Pb single resonance  1463 ± 2 ± 15  448 ± 6 ± 14
 ALICE Pb–Pb single resonance
 with non-resonant continuum  1595 ± 26 ± 34  587 ± 50 ± 61
 ALICE Pb–Pb 𝜌(1450)  1385 ± 14 ± 36  431 ± 36 ± 82
 ALICE Pb–Pb 𝜌(1700)  1663 ± 13 ± 22  357 ± 31 ± 49
 Mixing angle  1.52 ± 0.16 ± 0.19 (rad)

The largest source of systematic uncertainty is geometric acceptance 
and trigger efficiency. It originates in the uncertainty on the angular 
distribution of the 𝜋+𝜋−𝜋+𝜋−  final state. Following the STAR mea-
surement [24], where the decay mode 𝜌0𝜋+𝜋−  was found to be pre-
ferred, in this analysis the excited 𝜌 from STARlight was forced to de-
cay according to this mode (which is different from the standard de-
cay mode in STARlight). The subsequent decay of 𝜌0 → 𝜋+𝜋− takes 
into account the spin of the 𝜌0 being 1. Events generated in this way 
were then used to calculate the acceptance and efficiency. At the same 
time, the PDG [16] mentions several other decay channels, in partic-
ular 𝜌→ 𝜋+𝜋−𝜋+𝜋− without an intermediate 𝜌0 resonance production. 
Various angular distributions between the final state particles of these 
decay channels would result in different fractions of the four pions to be 
found inside the tracker acceptance, and thus in the (uncorrelated) vari-
ations of the 𝐴 × 𝜀 corrections. The second possible effect (correlated) is 
related to the trigger used in this analysis, which requires a large open-
ing angle between the selected tracks. Therefore, the estimated trigger 
efficiency can also be affected by the angular distribution in the final 
state particles. To study these effects, the azimuthal angular distribution 
between two positive pions (the distribution for two negative pions is 
identical) in an event is reweighted to match the flat (isotropic) distribu-
tion [24]. The weight calculated for each event at the generator level is 
then propagated to estimate the 𝐴 × 𝜀 corrections. The correlated part of 
this uncertainty is 12%, while the uncorrelated part amounts to 6.5%.

The uncertainty related to the background subtraction is esti-
mated by varying the scale factor used to estimate the contribution 
from the combinatorial background obtained from the template fit 
(1.60 ± 0.15 (stat.)) within its uncertainty, between 1.45 and 1.75. The 
effect on the extracted cross section is 1.5%. The uncertainty associated 
with the reweighting of the 𝑝T spectrum of the STARlight MC was found 
to be negligible.

The B–W fits are performed with random combinations of the lower 
and upper limits of the fit range and of the bin width. These variations 
result in 1.7% uncertainty for the total cross section measurement. They 
also have a dominant effect on the systematic uncertainties of the pa-
rameters of the resonances (masses, widths and the mixing angle) ex-
tracted from fits. The reported values correspond to the average over 
all such fits, and the related systematic uncertainty is calculated as the 
root-mean-square deviation between them.

The uncertainty related to the remaining incoherent contribution is 
estimated by varying the requirement on the total transverse momentum 
of the 𝜋+𝜋−𝜋+𝜋−  final state from 0.1 to 0.2 GeV/𝑐. It is 1.5%.

The uncertainty on the track selection is estimated by changing the 
required number of TPC clusters matched to the track from 50 to 70 and 
repeating the complete analysis. The uncertainty corresponds to the full 
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Table 2 
Summary of the systematic uncertainties. First two 
rows show the systematic uncertainties uncorrelated 
across the invariant mass spectra which are taken into 
account while performing the fits. The second part of 
the table presents the sources of the correlated system-
atic uncertainty and their corresponding total value 
that is used in the calculations of the cross sections.
 Source  Uncertainty (%)
 Background subtraction 1.5
 Angular distribution 6.5

 Total uncorrelated 6.7

 Angular distribution 12.0
 Signal extraction 1.7
 Track selection 1.5
 Track matching 4.0
 Incoherent contribution 1.5
 Trigger efficiency 1.0
 Pileup 3.8
 Luminosity 2.6

 Total correlated 13.7

variation of the results and amounts to 1.5%. The uncertainty on the 
matching of TPC and ITS tracks is obtained by comparing the behaviour 
of real and simulated data under different detector conditions and is 
found to be 4% [11].

The uncertainty associated with the determination of the trigger ef-
ficiency of the SPD chips is obtained by changing the requirements on 
the events used for this data-driven method. In real data it could be 
that the SPD has other signals, e.g. from noise or soft electron-positron 
production. The performance of the matching algorithm is checked by 
comparing the results of applying it in data and in MC, where these ex-
tra effects are not present. A discrepancy of 1.0% is found and assigned 
as a systematic uncertainty.

The probability of the occurrence of pileup is correlated with the 
average number of inelastic hadronic collisions per bunch crossing, 𝜇. 
The uncertainty of the pileup correction is taken as the difference be-
tween the two methods used for its calculation [11]. One method uses 
an event sample obtained with an unbiased trigger based only on the 
timing of bunches crossing the interaction region. The second method 
divides the signal sample into subsets of events with a specific range of 
𝜇 values. The uncertainty of this correction is taken as the difference 
between these two methods and found to be 3.8% for the cross section 
measurement.

The uncertainty on the luminosity (2.6%) has two contributions 
which were added in quadrature, one from the measurement of the ref-
erence cross sections in van der Meer scans (2.5% [38]) and another 
from the determination of the live-time of the trigger used in this anal-
ysis (0.4%).

Table 2 lists the sources of systematic uncertainties for the extracted 
cross section. The first two rows present the uncorrelated systematic 
uncertainties considered in the fits of the invariant mass distributions. 
The rest of the table shows the correlated systematic uncertainties that 
influence only the extraction of the cross section.

6.  Cross section measurement

The total coherent cross section times the branching ratio is ob-
tained by integrating the fitted single B–W distribution over the invari-
ant mass range (0.8–2.5 GeV/𝑐2) and is found to be d𝜎(|𝑦| < 0.5)∕d𝑦 =
47.8 ± 2.3 (stat.) ± 7.7 (syst.) mb. The upper limit of the integration at 
2.5 GeV/𝑐2 is chosen to avoid the region where the fit significantly 
overestimates the data, ensuring a more accurate calculation of the 
cross section. The values obtained from the Eq. (6) fit by integrating 

Fig. 3. Cross sections for the one-resonance and two-resonances scenarios (full 
red circles) compared to the theoretical calculations from Ref. [44] (open black 
circles). Horizontal error bars on the data points show the statistical uncertainty 
and the boxes represent the statistical and systematic uncertainties added in 
quadrature. Horizontal error bars on the theory points show the theoretical un-
certainty. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)

each of the B–W resonances individually over the same mass range are 
24.8 ± 2.5 (stat.) ± 8.1 (syst.) mb and 10.1 ± 2.3 (stat.) ± 5.3 (syst.) mb for 
𝜌(1450) and 𝜌(1700), respectively. The individual resonances exhibit sig-
nificantly larger uncertainty values because of the correlation between 
the two contributions. The sum of these two cross sections is lower than 
the total observed cross section of the 𝜋+𝜋−𝜋+𝜋−  state due to the large 
interference component.

The final results are compared to a recent theoretical KGTT model 
(Klusek-Gawenda and Tapia Takaki) [44], as shown in Fig. 3. The KGTT 
model takes as input a 𝛾−p cross section based on the Donnachie-
Landshoff model, which assumes Reggeon and Pomeron exchange. This 
cross section is then scaled to the photonuclear interaction using a 
Glauber model. This model represents two separate calculations: one 
is done for two excited 𝜌 mesons, 𝜌(1450) and 𝜌(1700), and another for 
a one broad Breit-Wigner resonance to account for the recent H1 re-
sults [30] that suggested this possibility. As for this analysis, the cal-
culations were performed for the excited 𝜌 meson decaying into the 
𝜋+𝜋+𝜋−𝜋− final state. For the case of one broad resonance, the cross 
section is given for the single resonance component only, without ac-
counting for the non-resonant continuum or interference, therefore only 
the comparison with the cross section extracted from the Eq. (4) fit is 
presented. Our data is in good agreement with the KGTT model that 
considers two excited 𝜌 states, while it diverges by 2.1𝜎 from the KGTT 
calculation based on a singular resonance.

Additionally, one can compare the ratio between the 𝜌→ 𝜋+𝜋−𝜋+𝜋−

and 𝜌0 → 𝜋+𝜋− cross sections, BR × 𝜎𝜌∕𝜎𝜌0 , with the one measured by 
the STAR Collaboration [24]. This is done by dividing the total observed 
cross section by the results reported recently by the ALICE collabora-
tion in Ref. [11]. The 𝜌0 analysis used the same trigger requirements 
and analysis selections, leading to partial cancellation of the correlated 
systematic uncertainties (related to trigger efficiency, pileup and lumi-
nosity). The obtained value of the (𝜌→ 𝜋+𝜋−𝜋+𝜋−)∕(𝜌0 → 𝜋+𝜋−) ratio is 
0.088 ± 0.004 (stat.) ± 0.013 (syst.) for the central rapidity region |𝑦| < 0.5. 
One has to extrapolate this ratio to the full solid angle to compare it 
with the corresponding result from STAR [24]. The extrapolation fac-
tors were calculated as the ratios of the photoproduction cross sections 
in the full rapidity interval to the cross section in the measured rapid-
ity region. Their values were obtained using the STARlight MC [39] 
and the theoretical calculation from Ref. [44], with the difference be-
tween these two approaches taken as the systematic uncertainty. The 
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Table 3 
Summary of the cross section ratio measurement. The first part presents the 
cross section values both for the single and two resonance scenarios, as ex-
tracted from the fits by Eq. (4) and by Eq. (6), respectively. The second part 
lists the ratio between the 𝜌→ 𝜋+𝜋−𝜋+𝜋− and 𝜌0 → 𝜋+𝜋− cross sections ex-
pressed in percent obtained in this measurement and also reported by the 
STAR Collaboration [24]. Note that the STAR Collaboration performed this 
measurement for the case of mutual nuclear excitation. The given uncer-
tainties are statistical and systematic, respectively. 

BR × 𝜎∕d𝑦 (mb)
 ALICE Pb–Pb single resonance 47.8 ± 2.3 ± 7.7
 ALICE Pb–Pb 𝜌(1450) 24.8 ± 2.5 ± 8.1
 ALICE Pb–Pb 𝜌(1700) 10.1 ± 2.3 ± 5.3

√

𝑠NN 𝜎(𝜌→ 𝜋+𝜋−𝜋+𝜋−)∕𝜎(𝜌0 → 𝜋+𝜋−)

 STAR Au–Au [24]  200 GeV (13.4 ± 0.8 ± 4.4)%
 ALICE Pb–Pb  5.02 TeV (7.3 ± 0.4 ± 1.2)%

extrapolation factors are 8.8 ± 0.1 (syst.) and 10.6 ± 0.1 (syst.) for excited 
𝜌 and 𝜌0, respectively. The resulting cross section ratio, expressed in 
percent, is presented in Table 3, together with the STAR result. Our 
measurement is lower than the one reported by the STAR Collaboration 
which found different single-resonance masses and widths, and carried 
out their measurements accompanied by forward neutron emission due 
to mutual nuclear excitation, precluding a comprehensive comparison. 
Concurrently, the observed reduction in this ratio with increasing colli-
sion energies, from RHIC to the LHC, aligns qualitatively with theoret-
ical predictions by the KGTT model [44], attributable to a more rapid 
reduction of Reggeon exchange contributions in excited 𝜌 compared to 
𝜌0 photoproduction.

7.  Summary

The coherent 𝜋+𝜋−𝜋+𝜋−  production was studied for the first time 
in ultraperipheral Pb–Pb collisions at the LHC. The four-pion cross 
section integrated over the invariant mass range (0.8–2.5) GeV/𝑐2 is 
d𝜎(|𝑦| < 0.5)∕d𝑦 = 47.8 ± 2.3 (stat.) ± 7.7 (syst.) mb. The peak around the 
invariant mass 1.5 GeV/𝑐2 is consistent with the results reported by 
STAR Collaboration [24]. The 𝜋+𝜋−𝜋+𝜋−  invariant mass distribution 
can be described either by a single resonance plus a constant interfer-
ence term or by two interfering BW-distributions, 𝜌(1450) and 𝜌(1700), 
and the interference term between them. Different parameterizations of 
the non-resonant four-pion production contribution have been explored 
in the literature [30]. A cross check has shown that such a non-resonant 
contribution can give an equally good fit of the data, but it does not 
significantly modify the extracted mass and width of the resonance. The 
fit with two interfering resonances gives results in agreement with reso-
nances currently included in the PDG. The extracted masses and widths 
of the two resonances are 𝑚1 = 1385 ± 14 (stat.) ± 36 (syst.) MeV/𝑐2 and 
Γ1 = 431 ± 36 (stat.) ± 82 (syst.) MeV/𝑐2, and 𝑚2 = 1663 ± 13 (stat.) ±
22 (syst.) MeV/𝑐2 and Γ2 = 357 ± 31 (stat.) ± 49 (syst.) MeV/𝑐2, respec-
tively. The mixing angle between the two resonances is 𝜑 = 1.52 ±
0.16 (stat.) ± 0.19 (syst.) rad. The extracted cross section values are com-
pared to recent theoretical calculations [44]. The ratio of the cross sec-
tions of 𝜌 to 𝜌0 was also studied and is somewhat lower than the one 
measured by STAR in the events with mutual nuclear excitation. The 
observed reduction in this ratio with increasing collision energies could 
also be attributed to a more rapid reduction of Reggeon exchange con-
tributions in excited 𝜌 compared to 𝜌0 photoproduction.
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Appendix A.  Supplementary Material

The following alternative fits to the invariant mass distribution have 
also been investigated. Fig. A.4 shows the fit with the parameterization 
that relies on an alternative model of the non-resonant four-pion pro-
duction, inspired by Ref. [30], which can be expressed by the following 
equation:

d𝜎
d𝑚

= |𝐴 ⋅ 𝐵𝑊1 + 𝐵 ⋅
√

𝐹nr ⋅ 𝑒
𝑖𝜑
|

2. (A.1)

Here 𝐵𝑊1 is the relativistic B–W amplitude defined in the main 
manuscript, and 𝐴 is its real amplitude. The parameter 𝐵 sets the am-
plitude of the non-resonant continuum, and its shape is given by:

𝐹nr = Θ
(

𝑚event − 4𝑚𝜋
)

(

𝑚2
event − 16𝑚2

𝜋
)

1 +
[

(𝑚event −𝑀0)∕Γ0
]2
, (A.2)

with 𝑀0 and Γ0 treated as free parameters of the fit. Here Θ(𝑥) denotes 
the unit (Heaviside) step: Θ(𝑥) = 1 for 𝑥 > 0 and Θ(𝑥) = 0 for 𝑥 ≤ 0, i.e. 
below the kinematic boundary.

Equation  (A.1) gives a fit quality comparable to the flat-
continuum function presented in the main manuscript (𝜒2∕ndf = 13∕21
vs. 15∕22) and returns 𝑚 = 1686 ± 95 (stat.) MeV/𝑐2 and Γ = 543 ±
127 (stat.) MeV/𝑐2, consistent within uncertainties with the single-
resonance and a flat continuum model, consistent within uncertainties 
with the single-resonance and a flat continuum model, but with consid-
erably larger uncertainties.

Fig. A.4. Corrected invariant mass spectrum for the coherent four-pion pho-
toproduction fitted to the model described by a single resonance and an alter-
native shape of the non-resonant production given by eq. A.2. Black error bars 
represent the statistical uncertainty, the orange band shows the uncorrelated 
systematic uncertainty, and the boxes show them added in quadrature. “Prob” 
reflects the probability of obtaining the given or a higher 𝜒2∕ndf of the fit.

In addition, the non-resonant four-pion production along with the 
two interfering resonances is also considered:
d𝜎
d𝑚

= |

|

𝐴 ⋅ 𝐵𝑊1 + 𝑒−𝑖𝜑 ⋅ 𝐵 ⋅ 𝐵𝑊2 + 𝑒−𝑖𝜓 ⋅ 𝐶 |

|

2, (A.3)

where the amplitudes, masses, and widths of the resonances and the two 
mixing angles are treated as free parameters of the fit.

Fig. A.5. Corrected invariant mass spectrum for the coherent four-pion photo-
production fitted with two resonances plus a non-resonant continuum, eq. A.3. 
Black error bars represent the statistical uncertainty, the orange band shows the 
uncorrelated systematic uncertainty, and the boxes show them added in quadra-
ture. “Prob” reflects the probability of obtaining the given or a higher 𝜒2∕ndf of 
the fit.

Adding the coherent constant non-resonant term in Eq.  (A.3) slightly 
changes 𝜒2∕ndf from 18∕21 to 13∕19, with masses and widths compatible 
with Table 1 of the manuscript, while the continuum normalization is 
consistent with zero. The additional freedom increases the uncertainties 
of all extracted values without a decisive gain in description quality; this 
variant is therefore documented only in this supplementary material.
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J. Bielčík 35, J. Bielčíková 86, A.P. Bigot 129, 
A. Bilandzic 95, G. Biro 46, S. Biswas 4, N. Bize 103, 
J.T. Blair 108, D. Blau 141, M.B. Blidaru 97, N. Bluhme38, 
C. Blume 64, G. Boca 21,55, F. Bock 87, T. Bodova 20, 
J. Bok 16, L. Boldizsár 46, M. Bombara 37, 
P.M. Bond 32, G. Bonomi 134,55, H. Borel 130, 
A. Borissov 141, A.G. Borquez Carcamo 94, H. Bossi 138, 
E. Botta 24, Y.E.M. Bouziani 64, L. Bratrud 64, 
P. Braun-Munzinger 97, M. Bregant 110, M. Broz 35, 
G.E. Bruno 96,31, M.D. Buckland 23, D. Budnikov 141, 
H. Buesching 64, S. Bufalino 29, P. Buhler 102, 
N. Burmasov 141, Z. Buthelezi 68,123, A. Bylinkin 20, 
S.A. Bysiak107, J.C. Cabanillas Noris 109, M.F.T. Cabrera116, 
M. Cai 6, H. Caines 138, A. Caliva 28, E. Calvo Villar 101, 
J.M.M. Camacho 109, P. Camerini 23, F.D.M. Canedo 110, 
S.L. Cantway 138, M. Carabas 113, A.A. Carballo 32, 
F. Carnesecchi 32, R. Caron 128, L.A.D. Carvalho 110, 
J. Castillo Castellanos 130, M. Castoldi 32, F. Catalano 32, 
S. Cattaruzzi 23, C. Ceballos Sanchez 142, R. Cerri 24, 
I. Chakaberia 74, P. Chakraborty 136,47, S. Chandra 135, 
S. Chapeland 32, M. Chartier 119, S. Chattopadhay135, 
S. Chattopadhyay 135, S. Chattopadhyay 99, T. Cheng 97,6, 
C. Cheshkov 128, V. Chibante Barroso 32, 
D.D. Chinellato 111, E.S. Chizzali II,95, J. Cho 58, 
S. Cho 58, P. Chochula 32, Z.A. Chochulska136, 
D. Choudhury41, P. Christakoglou 84, C.H. Christensen 83, 
P. Christiansen 75, T. Chujo 125, M. Ciacco 29, 
C. Cicalo 52, M.R. Ciupek97, G. ClaiIII,51, F. Colamaria 50, 
J.S. Colburn100, D. Colella 31, M. Colocci 25, 
M. Concas 32, G. Conesa Balbastre 73, Z. Conesa del 
Valle 131, G. Contin 23, J.G. Contreras 35, 
M.L. Coquet 103,130, P. Cortese 133,56, M.R. Cosentino 112, 
F. Costa 32, S. Costanza 21,55, C. Cot 131, J. Crkovská 94, 
P. Crochet 127, R. Cruz-Torres 74, P. Cui 6, 
M.M. Czarnynoga136, A. Dainese 54, G. Dange38, 
M.C. Danisch 94, A. Danu 63, P. Das 80, P. Das 4, 
S. Das 4, A.R. Dash 126, S. Dash 47, A. De Caro 28, G. de 
Cataldo 50, J. de Cuveland38, A. De Falco 22, D. De 
Gruttola 28, N. De Marco 56, C. De Martin 23, S. De 
Pasquale 28, R. Deb 134, R. Del Grande 95, 
L. Dello Stritto 32, W. Deng 6, K.C. Devereaux18, 
P. Dhankher 18, D. Di Bari 31, A. Di Mauro 32, 
B. Diab 130, R.A. Diaz 142,7, T. Dietel 114, Y. Ding 6, 
J. Ditzel 64, R. Divià 32, D.U. Dixit 18, Ø. Djuvsland20, 
U. Dmitrieva 141, A. Dobrin 63, B. Dönigus 64, 
J.M. Dubinski 136, A. Dubla 97, P. Dupieux 127, 
N. Dzalaiova13, T.M. Eder 126, R.J. Ehlers 74, 
F. Eisenhut 64, R. Ejima 92, D. Elia 50, B. Erazmus 103, 
F. Ercolessi 25, B. Espagnon 131, G. Eulisse 32, 
D. Evans 100, S. Evdokimov 141, L. Fabbietti 95, 
M. Faggin 27, J. Faivre 73, F. Fan 6, W. Fan 74, 
A. Fantoni 49, M. Fasel 87, A. Feliciello 56, 
G. Feofilov 141, A. Fernández Téllez 44, L. Ferrandi 110, 
M.B. Ferrer 32, A. Ferrero 130, C. Ferrero IV,56, 
A. Ferretti 24, V.J.G. Feuillard 94, V. Filova 35, 
D. Finogeev 141, F.M. Fionda 52, E. Flatland32, F. Flor 116, 
A.N. Flores 108, S. Foertsch 68, I. Fokin 94, S. Fokin 141, 

U. Follo IV,56, E. Fragiacomo 57, E. Frajna 46, 
U. Fuchs 32, N. Funicello 28, C. Furget 73, A. Furs 141, 
T. Fusayasu 98, J.J. Gaardhøje 83, M. Gagliardi 24, 
A.M. Gago 101, T. Gahlaut47, C.D. Galvan 109, 
D.R. Gangadharan 116, P. Ganoti 78, C. Garabatos 97, 
J.M. Garcia44, T. García Chávez 44, E. Garcia-Solis 9, 
C. Gargiulo 32, P. Gasik 97, H.M. Gaur38, A. Gautam 118, 
M.B. Gay Ducati 66, M. Germain 103, A. Ghimouz125, 
C. Ghosh135, M. Giacalone 51, G. Gioachin 29, 
P. Giubellino 97,56, P. Giubilato 27, A.M.C. Glaenzer 130, 
P. Glässel 94, E. Glimos 122, D.J.Q. Goh76, 
V. Gonzalez 137, P. Gordeev 141, M. Gorgon 2, 
K. Goswami 48, S. Gotovac33, V. Grabski 67, 
L.K. Graczykowski 136, E. Grecka 86, A. Grelli 59, 
C. Grigoras 32, V. Grigoriev 141, S. Grigoryan 142,1, 
F. Grosa 32, J.F. Grosse-Oetringhaus 32, R. Grosso 97, 
D. Grund 35, N.A. Grunwald94, G.G. Guardiano 111, 
R. Guernane 73, M. Guilbaud 103, K. Gulbrandsen 83, 
T. Gündem 64, T. Gunji 124, W. Guo 6, A. Gupta 91, 
R. Gupta 91, R. Gupta 48, K. Gwizdziel 136, L. Gyulai 46, 
C. Hadjidakis 131, F.U. Haider 91, S. Haidlova 35, 
M. Haldar4, H. Hamagaki 76, A. Hamdi 74, Y. Han 139, 
B.G. Hanley 137, R. Hannigan 108, J. Hansen 75, 
M.R. Haque 97, J.W. Harris 138, A. Harton 9, 
M.V. Hartung 64, H. Hassan 117, D. Hatzifotiadou 51, 
P. Hauer 42, L.B. Havener 138, E. Hellbär 97, 
H. Helstrup 34, M. Hemmer 64, T. Herman 35, 
S.G. Hernandez116, G. Herrera Corral 8, F. Herrmann126, 
S. Herrmann 128, K.F. Hetland 34, B. Heybeck 64, 
H. Hillemanns 32, B. Hippolyte 129, F.W. Hoffmann 70, 
B. Hofman 59, G.H. Hong 139, M. Horst 95, A. Horzyk 2, 
Y. Hou 6, P. Hristov 32, P. Huhn64, L.M. Huhta 117, 
T.J. Humanic 88, A. Hutson 116, D. Hutter 38, 
M.C. Hwang 18, R. Ilkaev141, M. Inaba 125, 
G.M. Innocenti 32, M. Ippolitov 141, A. Isakov 84, 
T. Isidori 118, M.S. Islam 99, S. Iurchenko141, 
M. Ivanov 97, M. Ivanov13, V. Ivanov 141, K.E. Iversen 75, 
M. Jablonski 2, B. Jacak 18,74, N. Jacazio 25, 
P.M. Jacobs 74, S. Jadlovska106, J. Jadlovsky106, 
S. Jaelani 82, C. Jahnke 110, M.J. Jakubowska 136, 
M.A. Janik 136, T. Janson70, S. Ji 16, S. Jia 10, 
A.A.P. Jimenez 65, F. Jonas 74, D.M. Jones 119, 
J.M. Jowett 32,97, J. Jung 64, M. Jung 64, A. Junique 32, 
A. Jusko 100, J. Kaewjai105, P. Kalinak 60, A. Kalweit 32, 
A. Karasu Uysal V,72, D. Karatovic 89, O. Karavichev 141, 
T. Karavicheva 141, E. Karpechev 141, 
M.J. Karwowska 32,136, U. Kebschull 70, R. Keidel 140, 
M. Keil 32, B. Ketzer 42, S.S. Khade 48, A.M. Khan 120, 
S. Khan 15, A. Khanzadeev 141, Y. Kharlov 141, 
A. Khatun 118, A. Khuntia 35, Z. Khuranova 64, 
B. Kileng 34, B. Kim 104, C. Kim 16, D.J. Kim 117, 
E.J. Kim 69, J. Kim 139, J. Kim 58, J. Kim 69, 
M. Kim 18, S. Kim 17, T. Kim 139, K. Kimura 92, 
A. Kirkova36, S. Kirsch 64, I. Kisel 38, S. Kiselev 141, 
A. Kisiel 136, J.P. Kitowski 2, J.L. Klay 5, J. Klein 32, 
S. Klein 74, C. Klein-Bösing 126, M. Kleiner 64, 
T. Klemenz 95, A. Kluge 32, C. Kobdaj 105, R. Kohara124, 
T. Kollegger97, A. Kondratyev 142, N. Kondratyeva 141, 
J. Konig 64, S.A. Konigstorfer 95, P.J. Konopka 32, 
G. Kornakov 136, M. Korwieser 95, S.D. Koryciak 2, 
C. Koster84, A. Kotliarov 86, N. Kovacic89, V. Kovalenko 141, 
M. Kowalski 107, V. Kozhuharov 36, I. Králik 60, 
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