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Editor: Maurizio Pierini The intense photon fluxes from relativistic nuclei provide an opportunity to study photonuclear interactions in
ultraperipheral collisions. In particular, it allows for the investigations of excited, light-flavour vector mesons.
The measurement of coherently photoproduced z*z~z*z~ final states in ultraperipheral Pb-Pb collisions at
\/m = 5.02 TeV is presented for the first time. The cross section, do/dy, times the branching ratio (p —
atxtr~n~) is found to be 47.8 + 2.3 (stat.) + 7.7 (syst.) mb in the rapidity interval |y| < 0.5. The invariant mass
distribution is not well described with a single Breit-Wigner resonance without an interference term. Including in-
terference with a non-resonant contribution results in the mass and width values being too far from those reported
in PDG, while the production of two interfering resonances, p(1450) and p(1700), also provides a good descrip-
tion of the data. The values of the masses (m) and widths (I') of the resonances extracted from the fit assuming
two interfering resonances are m, = 1385 + 14 (stat.) + 3 (syst.) MeV/c2, I') =431 + 36 (stat.) + 82 (syst.) MeV/c2,
my = 1663 + 13 (stat.) + 22 (syst.) MeV/c? and T', = 357 + 31 (stat.) + 49 (syst.) MeV/c?, respectively. The measured
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cross sections times the branching ratios are compared to recent theoretical predictions.

1. Introduction

Collisions involving ultrarelativistic heavy ions offer a rich area for
research. The distance between the centers of two nuclei at the moment
of their closest approach, called the impact parameter, is one of the
most important characteristics of the interaction. When this distance
exceeds the sum of the nuclear radii, ultraperipheral collisions (UPCs)
can occur [1-3]. In this case, the charges of all Z protons in a nucleus
act coherently and the photon fluxes from each nucleus are enhanced by
a factor of Z> compared to proton beams. This enhancement, together
with the high beam energies at the LHC, produces strong fluxes of high-
energy photons. At the same time, the requirement of coherent emission
from nuclei limits the photon virtuality to Q? < (#/R,)?. Photons with
higher virtuality are strongly suppressed by the nuclear electromagnetic
form factor [4-7].

Photon-induced reactions at the LHC include purely electromagnetic
photon-photon processes and photon-nucleus interactions. The latter in-
cludes exclusive processes where the photon fluctuates to a bound qq
system, typically a vector meson (VM), which then scatters elastically
off the nucleus. The total cross section for this process can be factorized
into the photon flux and the cross section of the corresponding interac-
tion.

Elastic scattering of the VM can proceed either off the entire target
nucleus (coherently), where the nucleus usually remains intact, or off
only one of the nucleons (incoherently), where the target nucleus typi-
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cally breaks up, emitting nucleons at very forward rapidities. For coher-
ent processes, the size of the lead ion restricts the transverse momentum
(pr) of the VM to about 100 MeV/c, while it is below 1 GeV/c for incoher-
ent processes. VM photoproduction dominates the hadronic structure of
the photon, and the main contribution to the total exclusive photopro-
duction cross section comes from the y + p — p° + p process. Scaling
from a proton to a nuclear target is often implemented using a Glauber
approach assuming the VM dominance model [8].

Coherent p° photonuclear production was thoroughly investigated
in Au-Au UPCs at RHIC [9,10] and in Pb-Pb [11], p-Pb [12] and Xe-Xe
UPCs [13] at LHC. The cross section for this process and do/dy dis-
tributions were found to be well described by a Glauber calculation.
The study of the excited states of the p° meson is particularly intrigu-
ing. These may not just be composed of radial excitations of the p° but
could also include hybrid (qqg) states [14,15]. The Particle Data Group
(PDG) [16] identifies p(1450) and p(1700) as at least two possible excited
states based on the previous experimental measurements conducted
mainly in e*e” annihilation and at lower collision energies [17-26].
However, such data are relatively sparse and have large uncertainties.
In UPCs, such a high-mass resonance was observed by the ALICE Col-
laboration [11] in exclusive two-pion events. Another possible decay
mode of an excited p resonance involves four charged pions, z* 7~z 7™,
in the final state. The photoproduction of the four-pion final state has
been measured by the OMEGA spectrometer [27-29] and in UPCs, by
the STAR Collaboration at RHIC [24]. Previous publications [17-26]
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suggested that the measured invariant mass spectrum may be attributed
to the two aforementioned resonances. Nonetheless, the accuracy of the
data was insufficient for distinguishing these two resonances and deter-
mining their mixing angle. In contrast, a recent preliminary measure-
ment by the H1 Collaboration [30] suggests the possibility of fitting
the data with a single broad resonance. To date, no measurements of
this final state have been carried out at the LHC, making searches in
the #*tz~z*z~final state crucial for understanding the nature of these
resonances.

Finally, improved measurements of the exclusive photoproduction
cross section of excited p mesons have implications for the understand-
ing of nuclear shadowing. Exclusive photoproduction of a p° off a nu-
cleon (yN — p°N) can proceed via the fluctuation of the photon to a p°
meson which scatters elastically off the target. There is, however, also
the possibility to have contributions from cross terms, where the fluctu-
ation is to an excited p which converts to a p” in the scattering process
(pN — p"N). The importance of these cross terms for the interpretation
of exclusive vector meson production in terms of nuclear shadowing has
been pointed out earlier [31].

This article reports on the first measurement of exclusive
n*a~x*z~ photoproduction in Pb-Pb UPCs at (/syy = 5.02 TeV. A
resonance structure is found in the invariant mass spectrum and the
cross section times branching ratio (p - #*z*z~z~) is measured for an
excited p state in the rapidity interval |y| < 0.5. The possibility of two
excited resonances and their mixing is also studied.

2. Experimental setup

The analyzed data were recorded by the ALICE Collaboration
in the fall of 2015 when the LHC provided Pb-Pb collisions at
\/snn = 5.02 TeV. A detailed description of the ALICE systems and their
performance is given in Refs. [32,33]. The z#*z~z*z~ final state is re-
constructed using the Inner Tracking System (ITS) [34] and the Time
Projection Chamber (TPC) [35] to measure the pion tracks. The Silicon
Pixel Detector (SPD) makes up the first two layers of the ITS, the closest
to the beam, and is used for both tracking and triggering purposes.

The TPC is the main tracking detector. It is a large cylindrical gaseous
detector with a central membrane at high voltage and readout planes,
composed of multiwire proportional chambers at each of the two end
caps. It covers the full azimuthal range and pseudorapidity interval || <
0.9 for tracks which fully traverse it. The ITS and TPC are located inside
a large solenoid magnet, creating a uniform 0.5 T magnetic field parallel
to the beam-direction axis.

The VO and AD detectors are used as veto detectors to reject hadronic
events. The VO detector [36] is a set of two segmented scintillators,
VOA and VOC. VOA covers the 2.8 <5 < 5.1 range, while VOC covers
—3.7 <n < —1.7. The AD [37] detector is a set of two arrays of scintil-
lation detectors, ADA and ADC, placed further away from the nominal
interaction point and covering 4.7 < n < 6.3 and —6.9 < n < —4.9, respec-
tively.

The trigger used to obtain the data sample for the measurement de-
scribed in this Letter uses five signals: a topological SPD trigger and four
vetoes of any activity within the time windows corresponding to nomi-
nal beam-beam interactions in ADA, ADC, VOA and VOC. SPD provides
a topological trigger requiring at least two tracklets having an opening
angle in azimuth larger than 153 degrees. Such a trigger leaves a sam-
ple with events containing at least two back-to-back tracks in central
detectors.

The integrated luminosity is determined using a reference trigger
based on the multiplicity of the VOA and VOC detectors [38]. The inte-
grated luminosity of the analyzed sample was 622 + 16 mb~".

For signal extraction and corrections for acceptance and efficiency,
two event samples, for both coherent and incoherent photoproduc-
tion, were generated using the STARIlight Monte Carlo [39], based
on a Glauber-like eikonal formalism. The simulated excited p meson
events were generated according to a Breit-Wigner (B-W) shape dis-
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cussed below with the mass and width equal to m = 1720 MeV/c? and
[ =249 MeV/c? and processed using realistic simulations of the ALICE
detector based on GEANT 3.21 [40].

3. Event selection and background subtraction

Events that meet the trigger criteria described above were selected if
they contain exactly four good-quality tracks. The selected tracks were
required to be reconstructed in both the ITS and the TPC with at least
two hits in the ITS and 50 out of 159 space points in the TPC, or to
be reconstructed only in the ITS with at least three hits. It was found
that less than 1% of four track events have tracks that do not satisfy
the pion PID hypothesis. Thus, taking into account the limited statistics
of our sample, it was decided to omit the PID selection and consider all
tracks to be pions. In addition, each track was required to have a distance
of closest approach to the event interaction vertex of less than 3.2 cm
in the beam direction, and less than 2.4 cm in the plane transverse to
the beam direction. All four tracks were required to have at least one
matching hit seen by the trigger. The four-track events with zero net
charge were used to create the signal sample, while non-zero net charge
events were used to estimate the combinatorial background.

Since coherently produced VMs typically have small summed py of
the four constituent tracks (event p;), events with a large p are expected
to be dominated by combinatorial background with more particles in the
final state. However, given only four charged pions are detected, a good
estimate of its pr spectrum can be obtained from non-zero net charge
events.

In order to estimate the combinatorial and incoherent backgrounds
in the signal region (py < 150 MeV/c), the event p; distribution, in the
invariant mass range 0.8 < m < 2.5 GeV/c?, is fitted using a combination
of three templates (Fig. 1). First, the template corresponding to the com-
binatorial background (solid blue line) was obtained by fitting a fourth-
order polynomial function to the p; distribution of non-zero net charge
events with exactly four charged pions. The other two templates were
obtained from STARIlight MC samples for the coherent (dashed orange
histogram) and incoherent (fine-dashed magenta histogram) processes,
respectively. A y*> minimization procedure was used to fit the data (red
circles) to the sum of these three templates, where the normalization
of each template was a free parameter. Since in the STARlight MC the
prspectrum is calculated using a nuclear form factor rather than through
a full Glauber calculation, it does not describe the position of the coher-
ent peak precisely. Thus, the following iterative procedure was imple-
mented. After the initial fit is performed, the combinatorial and incoher-
ent contributions are subtracted bin-by-bin from the data sample. The
ratio of the resulting spectra to the coherent MC sample follows a linear
function in py, which was used to calculate the weight applied to the co-
herent MC sample on an event-by-event basis before the template fit was
repeated. The final result of this procedure is shown in Fig. 1 as a solid
black histogram for the sum of three templates. The normalization factor
of the combinatorial background was found from the p;> 600 MeV/c in-
terval to be 1.60 + 0.15 (stat.), resulting in the yields of the three contri-
butions to the signal region (pr < 150 MeV/c): N, = 1987 + 54 (stat.),
Nineon = 134 + 13 (stat.) and N, = 320 + 23 (stat.), respectively.

4. Signal extraction

The m+,-,+,--dependent product of the cross section times the
branching ratio was obtained as follows. First, the combinatorial back-
ground contribution, as obtained from the template fit shown in Fig. 1,
was subtracted from the invariant mass spectra of zero net charge
events in the signal region (pr < 150 MeV/c). Second, this background-
subtracted invariant mass spectrum was corrected bin-by-bin for detec-
tor acceptance and trigger efficiency (A X ). The A X € correction fac-
tor was calculated using the coherent sample of events generated by
STARlight [39], which were processed through the ALICE detector re-
sponse simulation [40]. The correction was found to rise linearly as a
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Fig. 1. Distribution of the event p; in events with zero net charge in the invari-
ant mass range 0.8 < m < 2.5 GeV/c? and the rapidity interval |y| < 0.5. The data
(red circles) are shown together with the fitted function (solid black line) and its
three components as described in the text. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

function of event mass from 0 at 1.0 GeV/c?, reaching almost a constant

value of 0.07 around 1.5 GeV/c2. Finally, the corrected spectrum was
scaled according to the following formula:
Lo N _Np><(1—f1)><fp

dydm T Ay X AmX Ly

(€Y

Here BR is the branching ratio (p - z*z*z~z"), N, is the number of
xtz~xtz~events in each invariant mass bin after the acceptance and
efficiency correction, f; is the correction for the remaining incoherent
contribution, equal to (6.3 + 1.0 (stat.))%, Ly, is the integrated luminos-
ity of the analyzed sample, equal to 622 + 16 mb~!, Ay is the rapidity
interval width in which the measurement is performed, equal to one
unit of rapidity, and Am is the invariant mass bin width. Finally, f,
is the pileup correction, mainly from events with exchange of multiple
photons that would invalidate the veto requirement in the dedicated de-
tectors. The probability of pileup is correlated with the average number
of inelastic hadronic collisions per bunch crossing. The pileup effect is
estimated using two different methods described in detail in Ref. [11],
and its value is 1.071 + 0.038 in the current measurement, with the un-
certainty taken as the difference between the two methods.

The amplitude of the resonance production is usually described by a
relativistic Breit-Wigner (B-W) function as derived by Jackson [41]:

Mpart * Meyent * revem

B Wpart =

event -

; (2)

2 .
mpan +i- mpart . l—‘event

where the mass-dependent width I, is given by

> 2 3/2
m m —k-m
part
Cevent = |‘part . . < event ,T> . 3

Mevent mlz)z\rt —k- m?!

Here, my,., Ty are the mass and the width of a resonance, mg, is
the event mass. The constant k is equal to 4 for two-pion decays, since
both pions have the same energy in the center-of-mass frame. For a four-
pion decay, the value of k is not well defined. If all four pions have the
same energy in the center of mass, one finds k = 16. This is the most
natural choice here, since this expression reflects how much the energy
in the center of mass differs from the sum of the masses of the daughter
particles. At the same time, it was found that the fit behavior and the
extracted parameters do not show a strong dependence on the particular
choice of the k value.

In the present analysis, three approaches using the relativistic B—
W formula are used to describe the data. The first considers a single
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resonance:
d
ﬁ=Mﬂmﬁ &)

The second one is a single BW-resonance interfering with a constant
non-resonant term. This was proposed by Soding [42], and has been
found to give a good description of exclusive p° production [9-13]:

9% _ 4. BW, +e7 - BP, ®)
dm

and the final fit is to two interfering BW-resonances:

g—” —|A-BW, + ¢ . B- BW,[%, 6)
m

where A and B are the normalization factors and ¢ is the phase dif-
ference parameter. In addition to these, the masses and widths of the
resonances are free parameters in the fit.

The panels in Fig. 2 show the results of the Log-Likelihood fits
to the fully corrected invariant mass cross sections using the expres-
sions (4)-(6), respectively. The total uncorrelated uncertainty (teal open
box), calculated as a statistical (black cross) and uncorrelated systematic
(filled orange box) added in quadrature, is taken into account in the fits.
The results of these fits are presented in Table 1, together with the PDG
values and the previous measurement by the STAR Collaboration [24]
for comparison.

The fit considering one B-W resonance provides mass and width pa-
rameters consistent with the p(1450) resonance reported by the Particle
Data Group [16]. This result is 80 MeV/c2, or about 26, lower than the
value reported by STAR [24] for the z* 7~z z~ channel.

The fits by Egs. (5) and (6) considerably improve the description of
the data, especially in the higher-mass region. For the case of two inter-
fering resonances, the mass of the lighter resonance is lower than the
one reported by PDG for p(1450), but still statistically compatible with
it at a 1.7 o, taking into account both the statistical and the system-
atic uncertainties of the current measurement. The mass of the heavier
resonance is also slightly lower (2.2 ¢) than the one reported by PDG.
The widths of both resonances agree with the corresponding PDG values
within the reported uncertainties. For the fit including interference with
non-resonant four-pion production (5), the fit returns the mass value in
the middle between the two resonances reported by PDG for p(1450)
and p(1700), respectively, at 3.0 ¢ from each of them, and the width of
the resonance is significantly larger than the PDG values for these reso-
nances. The fit with two interfering resonances provides results that are
consistent with the resonances in the PDG. Other parameterizations that
rely on alternative models of the non-resonant four-pion production, as
shown in Ref. [30], might provide equally good description of the invari-
ant mass distribution for the case of the single broad resonance scenario
(see Supplementary Fig. S1). Using alternative forms for the background
did not significantly change the extracted mass and width of the single
resonance.

The probabilities for the single, two resonance and single resonance
with interference hypotheses producing »? less than the observed values
of y? are 0.4, 65 and 85 %, respectively. The single resonance hypoth-
esis without an interference term is thus strongly disfavored. A more
complex fit including two resonances and a non-resonant component
was also tested (see Supplementary Fig. S2). It showed no improvement
in fit quality, yielded a negligible continuum contribution, and signifi-
cantly increased parameter uncertainties due to the increased number of
free parameters of the fit. For these reasons it is not included in the pa-
per. Notably, it also yielded a negligible continuum contribution which
is consistent with the Regge-based calculation performed for the two-
resonance scenario [43].

Previous measurements reported by the STAR [24] and the AL-
ICE [11] Collaborations for the two-pion decay channel did not observe
any resonance around the p(1450) mass. This fact is not a contradiction,
but instead can be explained by the hypothesis of the existence of mul-
tiple excited p states with the two-pion decay channel being strongly
suppressed for p(1450).
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Fig. 2. Corrected invariant mass spectrum for the coherent four pion photopro-
duction fitted with one resonance (top), one resonance interfering with non-
resonant production (middle) and two resonance with interference (bottom)
models, as described in the text. Black error bars represent the statistical er-
ror, the orange band shows the uncorrelated systematic uncertainty, and the
boxes show them added in quadrature. “Prob” reflects the probability of having
the given or a higher y2/ndf of the fit.

5. Systematic uncertainties

Several sources of systematic uncertainties in the cross section mea-
surement are considered in this analysis. The uncorrelated uncertainties
related to the acceptance and trigger efficiency and to background esti-
mation can influence the shape of the invariant mass distribution. They
are taken into account before performing the fits to the spectra. They will
influence the cross section, the mass, and the width of the resonances
extracted. Other sources of systematic uncertainty are correlated across
the invariant mass spectra, as they affect only the overall normalization,
so they are added quadratically only for the cross section calculations.

Physics Letters B 872 (2026) 140006

Table 1

Summary of the fit results. The first three rows present the masses
and widths reported by PDG [16] and measured by the STAR Col-
laboration [24], while the second and third part list the values
extracted from each of the fits by Egs. (4), (5) and by Eq. (6),
respectively. The given uncertainties for the ALICE results are sta-
tistical and systematic, respectively. STAR reports only statistical
uncertainty, and the uncertainties in the PDG are their best esti-

mate.

m (MeV/c?) T (MeV/c?)
PDG p(1450) 1465 + 25 400 + 60
PDG p(1700) 1720 + 20 250 + 100
STAR Au-Au 1540 + 40 570 + 60
ALICE Pb-Pb single resonance 1463 + 2 + 15 448 + 6 + 14
ALICE Pb-Pb single resonance
with non-resonant continuum 1595 + 26 + 34 587 + 50 + 61
ALICE Pb-Pb p(1450) 1385 + 14 + 36 431 + 36 + 82
ALICE Pb-Pb p(1700) 1663 + 13 + 22 357 + 31 + 49

Mixing angle 1.52 + 0.16 + 0.19 (rad)

The largest source of systematic uncertainty is geometric acceptance
and trigger efficiency. It originates in the uncertainty on the angular
distribution of the z*z~z*z~ final state. Following the STAR mea-
surement [24], where the decay mode p'z*z~ was found to be pre-
ferred, in this analysis the excited p from STARIlight was forced to de-
cay according to this mode (which is different from the standard de-
cay mode in STARIlight). The subsequent decay of p° — z*z~ takes
into account the spin of the p° being 1. Events generated in this way
were then used to calculate the acceptance and efficiency. At the same
time, the PDG [16] mentions several other decay channels, in partic-
ular p —» z* 7z~ z*xz~ without an intermediate p° resonance production.
Various angular distributions between the final state particles of these
decay channels would result in different fractions of the four pions to be
found inside the tracker acceptance, and thus in the (uncorrelated) vari-
ations of the A X ¢ corrections. The second possible effect (correlated) is
related to the trigger used in this analysis, which requires a large open-
ing angle between the selected tracks. Therefore, the estimated trigger
efficiency can also be affected by the angular distribution in the final
state particles. To study these effects, the azimuthal angular distribution
between two positive pions (the distribution for two negative pions is
identical) in an event is reweighted to match the flat (isotropic) distribu-
tion [24]. The weight calculated for each event at the generator level is
then propagated to estimate the A X e corrections. The correlated part of
this uncertainty is 12 %, while the uncorrelated part amounts to 6.5 %.

The uncertainty related to the background subtraction is esti-
mated by varying the scale factor used to estimate the contribution
from the combinatorial background obtained from the template fit
(1.60 £ 0.15 (stat.)) within its uncertainty, between 1.45 and 1.75. The
effect on the extracted cross section is 1.5 %. The uncertainty associated
with the reweighting of the p; spectrum of the STARlight MC was found
to be negligible.

The B-W fits are performed with random combinations of the lower
and upper limits of the fit range and of the bin width. These variations
result in 1.7 % uncertainty for the total cross section measurement. They
also have a dominant effect on the systematic uncertainties of the pa-
rameters of the resonances (masses, widths and the mixing angle) ex-
tracted from fits. The reported values correspond to the average over
all such fits, and the related systematic uncertainty is calculated as the
root-mean-square deviation between them.

The uncertainty related to the remaining incoherent contribution is
estimated by varying the requirement on the total transverse momentum
of the z*z~ 2%z~ final state from 0.1 to 0.2 GeV/c. It is 1.5 %.

The uncertainty on the track selection is estimated by changing the
required number of TPC clusters matched to the track from 50 to 70 and
repeating the complete analysis. The uncertainty corresponds to the full
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Table 2

Summary of the systematic uncertainties. First two
rows show the systematic uncertainties uncorrelated
across the invariant mass spectra which are taken into
account while performing the fits. The second part of
the table presents the sources of the correlated system-
atic uncertainty and their corresponding total value
that is used in the calculations of the cross sections.

Source Uncertainty (%)
Background subtraction 1.5
Angular distribution 6.5
Total uncorrelated 6.7
Angular distribution 12.0
Signal extraction 1.7
Track selection 1.5
Track matching 4.0
Incoherent contribution 1.5
Trigger efficiency 1.0
Pileup 3.8
Luminosity 2.6
Total correlated 13.7

variation of the results and amounts to 1.5%. The uncertainty on the
matching of TPC and ITS tracks is obtained by comparing the behaviour
of real and simulated data under different detector conditions and is
found to be 4% [11].

The uncertainty associated with the determination of the trigger ef-
ficiency of the SPD chips is obtained by changing the requirements on
the events used for this data-driven method. In real data it could be
that the SPD has other signals, e.g. from noise or soft electron-positron
production. The performance of the matching algorithm is checked by
comparing the results of applying it in data and in MC, where these ex-
tra effects are not present. A discrepancy of 1.0 % is found and assigned
as a systematic uncertainty.

The probability of the occurrence of pileup is correlated with the
average number of inelastic hadronic collisions per bunch crossing, u.
The uncertainty of the pileup correction is taken as the difference be-
tween the two methods used for its calculation [11]. One method uses
an event sample obtained with an unbiased trigger based only on the
timing of bunches crossing the interaction region. The second method
divides the signal sample into subsets of events with a specific range of
u values. The uncertainty of this correction is taken as the difference
between these two methods and found to be 3.8 % for the cross section
measurement.

The uncertainty on the luminosity (2.6 %) has two contributions
which were added in quadrature, one from the measurement of the ref-
erence cross sections in van der Meer scans (2.5% [38]) and another
from the determination of the live-time of the trigger used in this anal-
ysis (0.4 %).

Table 2 lists the sources of systematic uncertainties for the extracted
cross section. The first two rows present the uncorrelated systematic
uncertainties considered in the fits of the invariant mass distributions.
The rest of the table shows the correlated systematic uncertainties that
influence only the extraction of the cross section.

6. Cross section measurement

The total coherent cross section times the branching ratio is ob-
tained by integrating the fitted single B-W distribution over the invari-
ant mass range (0.8-2.5 GeV/c?) and is found to be do(|y| < 0.5)/dy =
47.8 +£2.3 (stat.) + 7.7 (syst.) mb. The upper limit of the integration at
2.5 GeV/c? is chosen to avoid the region where the fit significantly
overestimates the data, ensuring a more accurate calculation of the
cross section. The values obtained from the Eq. (6) fit by integrating
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Fig. 3. Cross sections for the one-resonance and two-resonances scenarios (full
red circles) compared to the theoretical calculations from Ref. [44] (open black
circles). Horizontal error bars on the data points show the statistical uncertainty
and the boxes represent the statistical and systematic uncertainties added in
quadrature. Horizontal error bars on the theory points show the theoretical un-
certainty. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

each of the B-W resonances individually over the same mass range are
24.8 +2.5 (stat.) + 8.1 (syst.) mb and 10.1 + 2.3 (stat.) + 5.3 (syst.) mb for
p(1450) and p(1700), respectively. The individual resonances exhibit sig-
nificantly larger uncertainty values because of the correlation between
the two contributions. The sum of these two cross sections is lower than
the total observed cross section of the z*z~z %z~ state due to the large
interference component.

The final results are compared to a recent theoretical KGTT model
(Klusek-Gawenda and Tapia Takaki) [44], as shown in Fig. 3. The KGTT
model takes as input a y—p cross section based on the Donnachie-
Landshoff model, which assumes Reggeon and Pomeron exchange. This
cross section is then scaled to the photonuclear interaction using a
Glauber model. This model represents two separate calculations: one
is done for two excited p mesons, p(1450) and p(1700), and another for
a one broad Breit-Wigner resonance to account for the recent H1 re-
sults [30] that suggested this possibility. As for this analysis, the cal-
culations were performed for the excited p meson decaying into the
#Txtn~n~ final state. For the case of one broad resonance, the cross
section is given for the single resonance component only, without ac-
counting for the non-resonant continuum or interference, therefore only
the comparison with the cross section extracted from the Eq. (4) fit is
presented. Our data is in good agreement with the KGTT model that
considers two excited p states, while it diverges by 2.1¢ from the KGTT
calculation based on a singular resonance.

Additionally, one can compare the ratio between the p — 2tz 7zt 7~
and p° —» 7tz cross sections, BR x 0,/0,0, with the one measured by
the STAR Collaboration [24]. This is done by dividing the total observed
cross section by the results reported recently by the ALICE collabora-
tion in Ref. [11]. The p° analysis used the same trigger requirements
and analysis selections, leading to partial cancellation of the correlated
systematic uncertainties (related to trigger efficiency, pileup and lumi-
nosity). The obtained value of the (p — z* 7~ zt77)/(p° — 7+ 7z ") ratio is
0.088 + 0.004 (stat.) + 0.013 (syst.) for the central rapidity region |y| < 0.5.
One has to extrapolate this ratio to the full solid angle to compare it
with the corresponding result from STAR [24]. The extrapolation fac-
tors were calculated as the ratios of the photoproduction cross sections
in the full rapidity interval to the cross section in the measured rapid-
ity region. Their values were obtained using the STARlight MC [39]
and the theoretical calculation from Ref. [44], with the difference be-
tween these two approaches taken as the systematic uncertainty. The
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Table 3

Summary of the cross section ratio measurement. The first part presents the
cross section values both for the single and two resonance scenarios, as ex-
tracted from the fits by Eq. (4) and by Eq. (6), respectively. The second part
lists the ratio between the p — z*z~z*z~ and p° — z*z~ cross sections ex-
pressed in percent obtained in this measurement and also reported by the
STAR Collaboration [24]. Note that the STAR Collaboration performed this
measurement for the case of mutual nuclear excitation. The given uncer-
tainties are statistical and systematic, respectively.

BR X 6/dy (mb)

ALICE Pb-Pb single resonance 478+23+77
ALICE Pb-Pb p(1450) 248 +£25+8.1
ALICE Pb-Pb p(1700) 10.1 £23+53
SNN o(p— atantn))o(p’ = ntn")
STAR Au-Au [24] 200 GeV (134 +08+4.4)%
ALICE Pb-Pb 5.02 TeV (713+04+12)%

extrapolation factors are 8.8 + 0.1 (syst.) and 10.6 + 0.1 (syst.) for excited
p and p°, respectively. The resulting cross section ratio, expressed in
percent, is presented in Table 3, together with the STAR result. Our
measurement is lower than the one reported by the STAR Collaboration
which found different single-resonance masses and widths, and carried
out their measurements accompanied by forward neutron emission due
to mutual nuclear excitation, precluding a comprehensive comparison.
Concurrently, the observed reduction in this ratio with increasing colli-
sion energies, from RHIC to the LHC, aligns qualitatively with theoret-
ical predictions by the KGTT model [44], attributable to a more rapid
reduction of Reggeon exchange contributions in excited p compared to
p° photoproduction.

7. Summary

The coherent z*z~z*z~ production was studied for the first time
in ultraperipheral Pb-Pb collisions at the LHC. The four-pion cross
section integrated over the invariant mass range (0.8-2.5) GeV/c? is
do(|y| < 0.5)/dy = 47.8 +£ 2.3 (stat.) + 7.7 (syst.) mb. The peak around the
invariant mass 1.5 GeV/c? is consistent with the results reported by
STAR Collaboration [24]. The #*z~x*z~ invariant mass distribution
can be described either by a single resonance plus a constant interfer-
ence term or by two interfering BW-distributions, p(1450) and p(1700),
and the interference term between them. Different parameterizations of
the non-resonant four-pion production contribution have been explored
in the literature [30]. A cross check has shown that such a non-resonant
contribution can give an equally good fit of the data, but it does not
significantly modify the extracted mass and width of the resonance. The
fit with two interfering resonances gives results in agreement with reso-
nances currently included in the PDG. The extracted masses and widths
of the two resonances are m, = 1385 + 14 (stat.) + 36 (syst.) MeV/c* and
I'y =431 +36 (stat.) &+ 82 (syst.) MeV/c2, and my = 1663 =+ 13 (stat.) +
22 (syst.) MeV/c? and I, =357 +31 (stat.) + 49 (syst.) MeV/c?, respec-
tively. The mixing angle between the two resonances is ¢ =1.52 +
0.16 (stat.) = 0.19 (syst.) rad. The extracted cross section values are com-
pared to recent theoretical calculations [44]. The ratio of the cross sec-
tions of p to p* was also studied and is somewhat lower than the one
measured by STAR in the events with mutual nuclear excitation. The
observed reduction in this ratio with increasing collision energies could
also be attributed to a more rapid reduction of Reggeon exchange con-
tributions in excited p compared to p° photoproduction.
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Appendix A. Supplementary Material

The following alternative fits to the invariant mass distribution have
also been investigated. Fig. A.4 shows the fit with the parameterization
that relies on an alternative model of the non-resonant four-pion pro-
duction, inspired by Ref. [30], which can be expressed by the following
equation:

dd—; = |A-BW, + B-\/F, -e'?%

(A1)

Here BW, is the relativistic B-W amplitude defined in the main
manuscript, and A is its real amplitude. The parameter B sets the am-
plitude of the non-resonant continuum, and its shape is given by:
(m2 - 16 mi)

event

1+ [(mevem - 1‘40)/1_‘0]27

F, = ®(mcvcm - 4m7z) (A.2)

with M, and I, treated as free parameters of the fit. Here ©(x) denotes
the unit (Heaviside) step: ©(x) = 1 for x > 0 and ©(x) =0 for x <0, i.e.
below the kinematic boundary.

Equation  (A.1) gives a fit quality comparable to the flat-
continuum function presented in the main manuscript (y2/ndf = 13/21
vs. 15/22) and returns m = 1686 +95 (stat.) MeV/c?> and I' =543 +
127 (stat.) MeV/c2, consistent within uncertainties with the single-
resonance and a flat continuum model, consistent within uncertainties
with the single-resonance and a flat continuum model, but with consid-
erably larger uncertainties.
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Fig. A.4. Corrected invariant mass spectrum for the coherent four-pion pho-
toproduction fitted to the model described by a single resonance and an alter-
native shape of the non-resonant production given by eq. A.2. Black error bars
represent the statistical uncertainty, the orange band shows the uncorrelated
systematic uncertainty, and the boxes show them added in quadrature. “Prob”
reflects the probability of obtaining the given or a higher y?/ndf of the fit.
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In addition, the non-resonant four-pion production along with the
two interfering resonances is also considered:

do _ |A-BW, +e™® . B.-BW,+e¥ . C[,
dm
where the amplitudes, masses, and widths of the resonances and the two

mixing angles are treated as free parameters of the fit.

(A.3)
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Fig. A.5. Corrected invariant mass spectrum for the coherent four-pion photo-
production fitted with two resonances plus a non-resonant continuum, eq. A.3.
Black error bars represent the statistical uncertainty, the orange band shows the
uncorrelated systematic uncertainty, and the boxes show them added in quadra-
ture. “Prob” reflects the probability of obtaining the given or a higher »2/ndf of
the fit.

Adding the coherent constant non-resonant term in Eq. (A.3) slightly
changes y?/ndf from 18/21 to 13/19, with masses and widths compatible
with Table 1 of the manuscript, while the continuum normalization is
consistent with zero. The additional freedom increases the uncertainties
of all extracted values without a decisive gain in description quality; this
variant is therefore documented only in this supplementary material.
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