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Using data samples of ð10087� 44Þ × 106 J=ψ events and ð2712.4� 14.3Þ × 106 ψð3686Þ events
collected with the BESIII detector at the BEPCII collider, we search for the CP violating decays J=ψ →
K0

SK
0
S and ψð3686Þ → K0

SK
0
S. No significant signals are observed over the expected background yields.

The upper limits on their branching fractions are set as BðJ=ψ → K0
SK

0
SÞ < 4.7 × 10−9 and Bðψð3686Þ →

K0
SK

0
SÞ < 1.1 × 10−8 at the 90% confidence level. These results improve the previous limits by a factor of

three for J=ψ → K0
SK

0
S and two orders of magnitude for ψð3686Þ → K0

SK
0
S.
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I. INTRODUCTION

Experimental studies of the decays of vector charmo-
nium states ψ [ψ ¼ J=ψ or ψð3686Þ] to final states
consisting of identical bosons, such as K0

SK
0
S, serve to test

various symmetry principles and conservation laws in the
Standard Model. First, studies of these decays are helpful to
test Bose symmetry [1], which implies that a state com-
posed of identical bosons remains unchanged under
exchange of any two particles. The K0

SK
0
S final state is

forbidden in the ψ decays by Bose-Einstein statistics.
Studies of these decays therefore provide valuable data
to validate Bose symmetry. Second, investigations of these
decays are valuable to search for potential violation of CP
symmetry beyond the one present in neutral kaon oscil-
lations. The branching fractions of the possible CP violat-
ing decays J=ψ → K0

SK
0
S and ψð3686Þ → K0

SK
0
S, arising

from K0 − K̄0 oscillations, are predicted to be ð1.94�
0.20Þ × 10−9 for J=ψ and ð0.56� 0.08Þ × 10−9 for
ψð3686Þ [2,3]. Third, studies of these decays are also
important to test the CPT symmetry, which is a general
feature of Lorentz-invariant local quantum field theories
with a hermitian Hamiltonian. However, some quantum
gravity models imply a violation of CPT symmetry. In the
K0

SK
0
S decay channel, this violation may be quantified with

a complex parameter ω ∼ 10−3 [4–6]. This parameter can
be constrained using the ratio of the branching fractions of
J=ψ or ψð3686Þ into K0

SK
0
S and K0

SK
0
L.

Additionally, the K0
SK

0
S states from ψ decays are sensi-

tive to test quantum nonlocality versus Einstein–Podolsky-
Rosen (EPR) locality [7]. EPR locality within a two-state
system of massive particles allows a nonzero yield of K0

SK
0
S

states from the spacelike separated coherent quantum
system of neutral kaons. The corresponding branching
fractions of J=ψ → K0

SK
0
S and ψð3686Þ → K0

SK
0
S are pre-

dicted to be ð5.5� 1.0Þ × 10−6 and ð2.1� 0.3Þ × 10−6 [8],
respectively, after considering potential CP violation and
kaon regeneration. Quantum nonlocality, on the other hand,
completely forbids these decays. Searching for these
decays can thus provide experimental data for testing the
EPR argument.
Experimentally, the MARKIII Collaboration reported the

first search for J=ψ → K0
SK

0
S by using 2.7 million J=ψ

events in 1985, and set an upper limit to its branching
fraction at 5.2 × 10−6 at the 90% confidence level (CL) [9].
The BES experiment searched for J=ψ → K0

SK
0
S and

ψð3686Þ → K0
SK

0
S with 58 million J=ψ events and 14 mil-

lion ψð3686Þ events, yielding upper limits of 1.0 × 10−6

and 4.6 × 10−6 at the 95% CL [10], respectively. In 2009
and 2012, the BESIII Collaboration searched for J=ψ →
K0

SK
0
S in 1.3 billion J=ψ events and set an upper limit of

1.4 × 10−8 at the 90% CL [11].
In this paper, we search for the CP violating decays

J=ψ → K0
SK

0
S and ψð3686Þ → K0

SK
0
S with ð10087� 44Þ ×

106 J=ψ events [12] and ð2712.4� 14.3Þ × 106 ψð3686Þ
events [13] accumulated by the BESIII detector. The data
sample statistics are approximately 7.7 times and 190 times
larger than previous studies for J=ψ and ψð3686Þ [10,11],
respectively. To avoid potential bias, a semiblind analysis is
carried out using a randomly selected 10% of the full
dataset. This subset serves to evaluate the background level,
verify consistency between the data and simulation samples,
and validates the analysis strategy. The final results are then
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derived with the full dataset by applying the established
analysis strategy.

II. BESIII EXPERIMENT AND MONTE
CARLO SIMULATION

The BESIII detector [14] records symmetric eþe−
collisions provided by the BEPCII storage ring [15] in
the center-of-mass energy range from 1.84 to 4.95 GeV,
with a peak luminosity of 1.1 × 1033 cm−2 s−1 achieved
at

ffiffiffi
s

p ¼ 3.773 GeV.
The cylindrical core of the BESIII detector covers 93%

of the full solid angle and consists of a helium-based
multilayer drift chamber (MDC), a time-of-flight system
(TOF), and a CsI(Tl) electromagnetic calorimeter (EMC),
which are all enclosed in a superconducting solenoidal
magnet providing a 1.0 T magnetic field. The magnetic
field was 0.9 T in 2012. The solenoid is supported by an
octagonal flux-return yoke with resistive plate counter
muon identification modules interleaved with steel. The
charged-particle momentum resolution at 1 GeV=c is
0.5%, and the dE=dx resolution is 6% for electrons from
Bhabha scattering. The EMC measures photon energies
with a resolution of 2.5% (5%) at 1 GeV in the barrel (end
cap) region. The time resolution in the plastic scintillator
TOF barrel region is 68 ps, while that in the end cap region
is 110 ps. The end cap TOF system was upgraded in 2015
using multigap resistive plate chamber technology, pro-
viding a time resolution of 60 ps, which benefits 87% of
the J=ψ data and 83% of the ψð3686Þ data used in this
analysis [16].
Simulated data samples produced with a Geant4-based

[17,18] Monte Carlo (MC) package, which includes the
geometric description [19,20] of the BESIII detector and
the detector response, are used to determine detection
efficiencies and to estimate backgrounds. The simulation
models the beam energy spread and initial state radiation in
the eþe− annihilations with the generator KKMC [21].
The inclusive MC sample, consisting of 1.001 × 1010

J=ψ events, includes both the production of the J=ψ
resonance and the continuum processes incorporated in
KKMC. The inclusive MC sample consisting of 2.7 × 109

ψð3686Þ events includes the production of the ψð3686Þ
resonance, the initial state radiation production of the J=ψ ,
and the continuum processes incorporated in KKMC. All
particle decays are modeled with EvtGen [22,23] using
branching fractions either taken from the Particle Data
Group (PDG) [24], when available, or otherwise estimated
with Lundcharm [25,26]. Final-state radiation from charged
final-state particles is incorporated using the PHOTOS pack-
age [27]. To estimate the detection efficiencies, the signal
decays J=ψ → K0

SK
0
S and ψð3686Þ → K0

SK
0
S are generated

with the VSS model, which describes the decay of a vector
particle into two scalar particles [22,23]. The K0

S → πþπ−

decays are modeled by the uniform phase space.

III. EVENT SELECTION

Having chosen K0
S → πþπ−, the final states of both

decays are πþπ−πþπ−. At least four charged particles with
zero net charge are required to satisfy the polar angle
condition j cos θj < 0.93, where θ is defined with respect to
the z-axis, which is the symmetry axis of the MDC. The
particle identification (PID) for charged tracks is performed
by combining the measurements of the specific ionization
energy loss (dE=dx) in the MDC and the flight time in the
TOF to form likelihoods LðhÞ (h ¼ p, K, π) for each
hadron h hypothesis. Charged tracks are identified as pions
when the pion hypothesis has the greatest likelihood.
Each K0

S candidate is reconstructed from two oppositely
charged tracks assigned as πþ and π−. They are constrained
to originate from a common vertex and are required to have
an invariant mass within jMπþπ− −MK0

S
j < 18 MeV=c2 and

30 MeV=c2 for J=ψ → K0
SK

0
S and ψð3686Þ → K0

SK
0
S,

where MK0
S
is the K0

S nominal mass [24]. The decay length

of the K0
S candidate away from the interaction point is

required to be greater than twice the vertex resolution.
The momenta of πþπ− are required to be within
ð1.40; 1.55Þ GeV=c and ð1.70; 1.84Þ GeV=c for J=ψ →
K0

SK
0
S and ψð3686Þ → K0

SK
0
S, respectively. If there is more

than one combination of two K0
S candidates, the one with

the lowest sum of χ2 from the second vertex fit [28] is
selected.
A four-constraint (4C) kinematic fit with energy and

momentum conservation is performed for all possible final
state combinations. To suppress the background from
ψ → γK0

SK
0
S, we require χ

2
K0

SK
0
S
< χ2

γK0
SK

0
S
. Events satisfying

χ24C < 15 and χ24C < 30 are kept for J=ψ and ψð3686Þ
decays, respectively. To suppress the background from
ψð3686Þ → πþπ−J=ψ , J=ψ → lþl−ðl ¼ e; μÞ due to
the misidentification of leptons and pions, the mass of
any combination of πþπ− pair is required to be less
than 3 GeV=c2.
The signal region is defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpK0

S1
− p0Þ2 þ ðpK0

S2
− p0Þ2

q
< 5σ; ð1Þ

where the pK0
S1
and pK0

S2
are the momenta of the two K0

S in
the ψ rest frame with a central value p0 determined by
fitting the corresponding signal MC samples. The K0

S
momentum resolution σ from the signal MC sample is
the weighted average of the standard deviations of two
Gaussian functions with the same mean. The σ values
are 1.2 MeV=c for J=ψ → K0

SK
0
S and 1.7 MeV=c for

ψð3686Þ → K0
SK

0
S. The number of signal events is obtained

by counting the remaining events within the signal region.
After applying the above selection criteria, the detection
efficiencies of J=ψ → K0

SK
0
S and ψð3686Þ → K0

SK
0
S are
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determined to be ð23.22� 0.02Þ% and ð20.14� 0.02Þ%,
respectively.

IV. BACKGROUND ANALYSIS

The backgrounds for ψ → K0
SK

0
S are dominated by other

ψ hadronic decays and the continuum process.
Studies of the J=ψ inclusive MC sample show that the

main backgrounds for J=ψ → K0
SK

0
S are from J=ψ →

γK0
SK

0
S and J=ψ → πþπ−πþπ−. An exclusive MC sample

of J=ψ → γK0
SK

0
S is generated using the amplitude analysis

generator [29] which provides the best agreement to data
according to preliminary results from a mass-dependent
analysis. Other exclusive MC samples of J=ψ →
πþπ−πþπ−, J=ψ → K�ð892Þ0K̄0 þ c:c: and J=ψ →
K0

SK
0
L are generated with the EvtGen models to estimate

the background. Study of the ψð3686Þ inclusive MC sample
shows that only a few background events survive after
applying all selection criteria. Large exclusive MC
samples of ψð3686Þ→K0

SK
0
L, ψð3686Þ→ γχc0;2 (χc0;2 →

K0
SK

0
S), ψð3686Þ→ρ0πþπ−, ψð3686Þ→K�ð892Þ0K̄0þc:c:,

ψð3686Þ → γK0
SK

0
S, and ψð3686Þ → πþπ−J=ψðJ=ψ →

lþl−Þ are generated to estimate the background.
According to the branching fractions from the PDG [24],
the total numbers of J=ψ and ψð3686Þ events as well as the
detection efficiencies determined with each exclusive MC
sample, the total normalized background yields are 6.1�
1.9 for J=ψ → K0

SK
0
S and 6.7� 3.6 for ψð3686Þ → K0

SK
0
S.

The continuum background for J=ψ → K0
SK

0
S is

studied by using a sample of 168.3 pb−1 collision data
taken at

ffiffiffi
s

p ¼ 3.08 GeV; the continuum contribution for
ψð3686Þ → K0

SK
0
S is investigated by analyzing a data

sample of 473.19 pb−1 taken at
ffiffiffi
s

p ¼ 3.65 GeV and
2.93 fb−1 of events collected at

ffiffiffi
s

p ¼ 3.773 GeV [30].
The contribution from the continuum process is estimated
with Nobs

cont × fc, where Nobs
cont is the number of events in the

2D K0
S momentum signal region for each dataset, and fc

denotes the scale factor that, taking into account the energy
dependence of the cross section, is calculated as

fc ¼
Lψ

Lcont
·
scont
sψ

; ð2Þ

where Lψ and sψ are the corresponding integrated lumi-
nosity and the square of the center-of-mass energy for J=ψ
or ψð3686Þ, the values of Lψ are 2962.72 pb−1 [12] and
3877.05 pb−1 [13], respectively; Lcont and scont are the
values for the data sample collected at

ffiffiffi
s

p ¼ 3.08, 3.65, or
3.773 GeV, respectively. No event survives in the signal
region for any dataset.
The decays ψ → K0

SK
0
L, followed by the CP violating

decay K0
L → πþπ−, could pose an irreducible source of

background events that cannot be distinguished from signal
decays. However, given the momenta of the ψ decay

daughters and the effective detector volume in which we
reconstruct the neutral Kaon decay to πþπ−, the effective
decay rate of this contribution is several orders of magni-
tude smaller than the upper limits derived in this analysis;
these decays can therefore be safely neglected at the current
level of precision.

V. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the branching fraction
measurements are from the total number of ψ events, the
quoted branching fraction, tracking of charged particles,
PID, the 4C kinematic fit, and the K0

S reconstruction.
The uncertainties of the total numbers of J=ψ and

ψð3686Þ events are 0.4% [12] and 0.5% [13], respectively.
The uncertainty of the quoted BðK0

S → πþπ−Þ from the
PDG [24] is 0.2% for two K0

S mesons.
The control sample J=ψ → πþπ−π0 is used to study the

MDC tracking and PID uncertainties of charged pions. The
difference in the tracking efficiencies between data and MC
simulation is assigned as 0.5% for each charged pion.
Therefore, the systematic uncertainty due to the MDC
tracking efficiency is 2.0% for four tracks in J=ψ and
ψð3686Þ decays. The differences in two-dimensional
(momentum versus polar angle) PID efficiencies between
data and MC simulation of the control samples are assigned
as the systematic uncertainties for four charged pions. The
resulting values are 2.7% for J=ψ → K0

SK
0
S and 2.5%

for ψð3686Þ → K0
SK

0
S.

The control sample ψð3686Þ → πþπ−K0
SK

0
S is used to

study the correction factors for the helix parameters of
charged tracks from the K0

S decays. The correction factors
are determined from the pull distributions of data and MC
simulation [31]. The difference of signal efficiencies before
and after helix correction is taken as the systematic
uncertainty of the 4C kinematic fit. They are 6.2% for
J=ψ → K0

SK
0
S and 1.8% for ψð3686Þ → K0

SK
0
S.

The systematic uncertainty from the K0
S reconstruction is

estimated by using the control samples J=ψ → K0
SK

0
L and

ψð3686Þ → K0
SK

0
L. Two charged pions are selected using

PID and the angle between them is required to be within
[15°, 50°]. To improve the purity, EMC shower variables
are used to distinguish signal and background with a graph
neural network [32] model on the recoil side of the πþπ−

system. The differences in the K0
S reconstruction efficien-

cies between data and MC simulation are taken as the
systematic uncertainties, which are 5.2% for J=ψ → K0

SK
0
S

and 7.6% for ψð3686Þ → K0
SK

0
S. These control samples are

also used to verify the consistency between data and MC,
with good agreement observed.
Table I lists the systematic uncertainties from all sources.

Assuming that each source is independent, the total
systematic uncertainties are obtained by summing these
uncertainties in quadrature.
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VI. RESULTS

After unblinding all data, four candidate events for
J=ψ → K0

SK
0
S and one event for ψð3686Þ → K0

SK
0
S are

observed in the corresponding signal region, as shown in
Fig. 1. As estimated in Sec. IV, no significant signal events
are observed over the expected numbers of background
events. A maximum likelihood estimator, extended from
the profile likelihood approach [33], is used to determine
the upper limits on the branching fractions. The likelihood
function depends on the parameter of interest Bðψ →
K0

SK
0
SÞ and the nuisance parameters θ ¼ ðϵsig; NbkgÞ. The

likelihood function is defined as

LðBðψ → K0
SK

0
SÞ;θÞ

¼ P

�
Nobs;Bðψ → K0

SK
0
SÞ ·Nψ ·B2

K0
S→πþπ− · ϵsig

þ
X
i

Nbkg;i

�
·
Y
i

P
�
Nexp

bkg;i;Nbkg;i

�
·G

�
ϵMC
sig ; ϵsig;σϵMC

sig

�
;

ð3Þ

where the number of observed events Nobs is assumed to
follow a Poisson distribution (P). Here, the detection
efficiency ϵsig follows a Gaussian distribution (G) with
mean value ϵMC

sig and uncertainty σϵMC
sig
, which are determined

from signal MC samples and systematic uncertainties
studies. The number of background events Nbkg obeys a
Poisson distribution (P) with expected value Nexp

bkg, which is
determined from the background study. The subscript i
represents all background types, including those from ψ
decay and continuum. The number of ψ events Nψ , is
obtained from an analysis of the inclusive J=ψ [ψð3686Þ]
sample [12,13].
Figure 2 shows the likelihood curves for J=ψ → K0

SK
0
S

and ψð3686Þ → K0
SK

0
S. We implicitly use a flat prior for the

branching fraction in the determination of the upper limits.
After integrating the likelihood distributions with all factors
included, the upper limits of the branching fractions at
the 90% CL after considering systematic uncertainties
are determined to be BðJ=ψ → K0

SK
0
SÞ < 4.7 × 10−9 and

Bðψð3686Þ → K0
SK

0
SÞ < 1.1 × 10−8 as listed in Table II.

VII. SUMMARY

Using ð10087� 44Þ × 106 J=ψ events and ð2712.4�
14.3Þ × 106 ψð3686Þ events collected by the BESIII detec-
tor, we have searched for the CP violating decays J=ψ →
K0

SK
0
S and ψð3686Þ → K0

SK
0
S. A semiblind analysis finds

no significant excess in the datasets with respect to
the expected background yields. The upper limits on
their branching fractions at the 90% CL are determined
to be BðJ=ψ → K0

SK
0
SÞ < 4.7 × 10−9 and Bðψð3686Þ →

K0
SK

0
SÞ < 1.1 × 10−8, where the systematic uncertainties

have been taken into account. The results improve the

TABLE I. Relative systematic uncertainties (in %) in the
branching fraction measurements.

Source J=ψ → K0
SK

0
S ψð3686Þ → K0

SK
0
S

Nψ 0.4 0.5
BPDGðK0

S → πþπ−Þ 0.2 0.2
Tracking 2.0 2.0
PID 2.7 2.5
4C kinematic fit 6.2 1.8
K0

S reconstruction 5.2 7.6

Total 8.8 8.5

1.46 1.465 1.47 1.475
)c (GeV/

K
p

1.46

1.465

1.47

1.475

)c
 (G

eV
/

Kp

3

5
(a)

1.76 1.77 1.78
)c (GeV/

K
p

1.76

1.77

1.78)c
 (G

eV
/

Kp

3

5
(b)

FIG. 1. Two-dimensional K0
S momentum distributions for

(a) J=ψ → K0
SK

0
S and (b) ψð3686Þ → K0

SK
0
S. The black and blue

circles correspond to 3σ and 5σ determined from the individual
signal MC samples, respectively.
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FIG. 2. The normalized likelihood distributions for
(a) J=ψ → K0

SK
0
S and (b) ψð3686Þ → K0

SK
0
S. The blue arrows

indicate the 90% CL upper limits.
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previous best limits [10,11] by a factor of three for J=ψ →
K0

SK
0
S and two orders of magnitude for ψð3686Þ → K0

SK
0
S,

which can be used to constrain new physics parameters.
Experimental results have already excluded the EPR locality
expectations [8]. These upper limits reach the level of the
CP violation expectations [2] and could provide experi-
mental evidence for further theoretical studies. Using the
ratio of the branching fractions of J=ψ and ψð3686Þ into
K0

SK
0
S and K0

SK
0
L [24], the CPT violation parameter jωj is

estimated to be ð4.91� 0.14Þ × 10−3 and ð1.44� 0.04Þ ×
10−2 for the respective upper limits of J=ψ → K0

SK
0
S

and ψð3686Þ → K0
SK

0
S.
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