
J
H
E
P
1
1
(
2
0
2
5
)
0
7
7

Published for SISSA by Springer

Received: May 19, 2025

Accepted: August 8, 2025

Published: November 13, 2025

Measurement of the phase between strong and

electromagnetic amplitudes in the decay J/ψ → φη

The BESIII collaboration

E-mail: besiii-publications@ihep.ac.cn

Abstract: The first direct measurement of the relative phase between the strong and

electromagnetic amplitudes for a J/ψ decaying into a vector-pseudoscalar final state is

performed using 26 energy points of e+e− annihilation data between 3.00 GeV and 3.12 GeV.

The data sets were collected by the BESIII detector with a total integrated luminosity

of 452 pb−1. By investigating the interference pattern in the cross section lineshape of

e+e− → φη, the relative phase between the strong and electromagnetic amplitudes of J/ψ

decay is determined to be within [133◦, 228◦] at 68% confidence level.

Keywords: e+-e− Experiments, Particle and Resonance Production, QCD

ArXiv ePrint: 2505.05888

Open Access, © The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2025)077



J
H
E
P
1
1
(
2
0
2
5
)
0
7
7

Contents

1 Introduction 1

2 BESIII experiment and data sets 2

3 Event selection and background analysis 3

4 Observed cross section of e+e−
→ φη 4

4.1 Signal yield 4

4.2 Efficiency determination 6

4.3 Systematic uncertainty 6

5 Cross section lineshape of e+e−
→ φη 8

6 Summary 11

The BESIII collaboration 15

1 Introduction

At center-of-mass (CM) energies in the vicinity of the J/ψ resonance, the annihilation of e+e−

into hadronic final states can be described in terms of three amplitudes [1]: J/ψ production

followed by the purely strong decay of the J/ψ meson (mediated by 3 gluons), denoted as A3g,

the purely electromagnetic (EM) decay of the J/ψ meson (mediated by a virtual photon),

denoted as Aγ , and the continuum Quantum Electrodynamic (QED) process, denoted as

Acont, as shown in figure 1. A3g and Aγ proceed via e+e− → virtual photon → J/ψ → f ,

while the continuum QED process is direct e+e− → virtual photon → f . The relative phase

φγ,3g between the strong and EM amplitudes for the hadronic decays of the J/ψ can be

directly determined by analyzing the interference pattern in the cross section lineshape of

the produced particles as a function of the CM energy,
√
s. The total Born cross section

for the e+e− → f process can be expressed as:

σf (s) ∝ |Acont(s) + [Aγ(s) + A3g(s) · eiφγ,3g ] · eiφcont,γ |2, (1.1)

where φcont,γ is the relative phase between EM and continuum processes, and it is determined

to be 0◦ by analyzing the interference patterns in the cross section lineshapes of J/ψ → e+e−,

J/ψ → µ+µ−, and J/ψ → ηπ+π− processes [1–4]. The process of J/ψ → ηπ+π− violates G-

parity conservation and proceeds purely through electromagnetic decay. Assuming φcont,γ = 0◦,

the total cross section of e+e− → f in the vicinity of the J/ψ resonance can be recast as:

σf (s) ∝ |Acont(s) + Aγ(s) + A3g(s) · eiφγ,3g |2. (1.2)

Thus far, no existing theory has provided a satisfactory explanation for the origin or

implications of φγ,3g. Experimentally, model-dependent analyses, which rely on SU(3) flavor
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(a) (b) (c)

Figure 1. The three classes of diagrams for e+e− → φη in the vicinity of a charmonium resonance [1].

The charmonium state is represented by a charm quark loop. (a) Charmonium strong decay via 3 gluons.

(b) Charmonium EM decay via a virtual photon. (c) The continuum process via a virtual photon.

symmetry and symmetry breaking of light quarks, observe φγ,3g to be around 90◦ using J/ψ

two-body decays into meson pairs with quantum numbers (JP ) of 1−0− [5, 6], 0−0− [7, 8],

1−1− [8], and 1+0− [9], and for J/ψ decays into NN̄ baryon pairs [10, 11]. Similar model-

dependent analyses suggest ψ(2S) decays to pairs of mesons with 0−0− also have φγ,3g around

90◦ [12], but ψ(2S) decays to pairs of mesons with 1−0− and 1+0− are found to have a

value of φγ,3g around 0◦ [9]. BESIII recently determined φγ,3g for the J/ψ in the e+e− → 5π

multi-hadron process to be (84.9 ± 3.6)◦ or (−84.7 ± 3.1)◦, which is model independent [1].

More research is needed to understand the difference between J/ψ and ψ(2S) decays. In

addition, experimental results can be used to provide more constraints on QCD calculations.

Until now, there has been no model-independent measurement of φγ,3g in the decay of the

J/ψ into vector-pseudoscalar (V P ) mesons. The scan data collected around the J/ψ resonance

by the BESIII detector provides a unique opportunity for the direct phase measurement of

J/ψ decays. In this analysis, we measure φγ,3g in the process J/ψ → φη by analyzing the

interference pattern in the cross section lineshape of e+e− → φη directly for the first time.

2 BESIII experiment and data sets

The BESIII detector [13] records symmetric e+e− collisions provided by the BEPCII storage

ring [14], which operates with the CM energy range from
√
s = 1.85 GeV to 4.95 GeV, with a

peak luminosity of 1.1×1033 cm−2 s−1 achieved at
√
s = 3.773 GeV. BESIII has collected large

data samples in this energy region [15–17]. The cylindrical core of the BESIII detector covers

93% of the full solid angle and consists of a helium-based multilayer drift chamber (MDC), a

plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter

(EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T

magnetic field. The solenoid is supported by an octagonal flux return yoke with resistive plate

counter muon-identification modules interleaved with steel. The charged-particle momentum

resolution at 1 GeV/c is 0.5%, and the resolution of the rate of energy loss, dE/dx, is 6%

for electrons from Bhabha scattering. The EMC measures photon energies with a resolution

of 2.5% (5.0%) at 1 GeV in the barrel (end-cap) region. The time resolution in the TOF

barrel region is 68 ps, while that in the end-cap region is 110 ps. The end-cap TOF system

was upgraded in 2015 using multigap resistive plate chamber technology, providing a time

resolution of 60 ps [18–20].

In this analysis, the data samples collected in 2012, 2015, 2018, and 2019 at 26 different

CM energies with a total integrated luminosity of about 452 pb−1 are used. The CM energies

and the integrated luminosities of each data sample are summarized in table 1. The CM
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energies are measured by the Beam Energy Measurement System (BEMS), in which photons

from a CO2 laser are Compton back scattered off the electron beam and detected by a

high-purity Germanium detector [21]. The integrated luminosities are determined using

e+e− → γγ events [22].

Monte Carlo (MC) simulated data samples produced with a GEANT4-based software

package [23], which includes the geometric description of the BESIII detector and the detector

response, are used to determine reconstruction efficiencies and to estimate backgrounds. The

simulation models the beam energy spread and initial state radiation (ISR) in the e+e−

annihilation with the generator KKMC [24, 25]. An MC sample of J/ψ inclusive decays is

used to explore possible hadronic backgrounds. In this sample, the production of the J/ψ

resonance is simulated by the generator KKMC [24, 25]. The known decay modes of the J/ψ

are generated with EVTGEN [26, 27] incorporating branching fractions from the Particle

Data Group (PDG) [28] and the remaining unknown decays are generated according to the

LUNDCHARM [29] model. Radiation from charged final state particles is incorporated using

the PHOTOS program [30]. The signal MC samples for the e+e− → φη process at each energy

point, generated using P-waves in the production process with the CONEXC generator [31],

which accounts for the vacuum polarization and radiative effects up to next-to-leading order,

are used to estimate the reconstruction efficiency. The beam energy spread is incorporated in

all MC samples. We correct the helix parameters of charged kaons to reduce the difference

between simulated and data samples [32]. The φ mesons are generated with invariant masses

up to 1.08 GeV/c2. This range of 0.98 < Mφ < 1.08 GeV/c2 is used as a definition of the

φ signal reported in this paper [33].

3 Event selection and background analysis

To select e+e− → φη events, φ and η candidates are reconstructed through their K+K− and

γγ decay modes, respectively. Candidate events are required to have at least two candidate

charged kaons with opposite charge and at least two candidate photons.

Charged kaons detected by the MDC are required to be within the MDC acceptance

of |cos θ| < 0.93, where θ is the polar angle with respect to the symmetry axis of the MDC,

and their distance of closest approach to the interaction point is required to be within 10 cm

along the beam direction and 1 cm in the transverse plane. For each charged track, particle

identification (PID) is implemented with the specific ionization energy loss (dE/dx) measured

by the MDC and the time of flight recorded by the TOF. The combined confidence levels for

kaon and pion hypotheses (CLπ and CLK) are calculated. A kaon is identified by requiring

CLK > 0.001 and CLK > CLπ.

Photon candidates are reconstructed by showers in the EMC. The photon candidates are

required to be in the barrel region (|cos θ| < 0.80) of the EMC with at least 25 MeV of energy

deposition, and in the endcap region (0.86 < |cos θ| < 0.92) with at least 50 MeV of energy

deposition. To exclude showers induced by the charged tracks, the opening angle between

a candidate shower and the closest charged track must be greater than 10◦. To suppress

electronic noise and showers unrelated to the candidate event, the difference between the

EMC time and the event start time is required to be within [0, 700] ns.

– 3 –
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Figure 2. Fit to the M(K+K−) distribution at
√
s = 3096.986 MeV. The black dots with error

bars are candidate events in the η mass window of M(γγ). The red solid curve is the fit result. The

green dotted line is the fitted background shape. The blue histogram is the M(K+K−) spectrum for

candidate events in the sη sidebands of M(γγ).

A four-constraint (4C) kinematic fit is applied under the hypothesis e+e− → K+K−γγ,

constraining the measured four-momenta of all particles to the four-momentum of the e+e−

system. For each event, the K+K−γγ combination with the least χ2
4C is retained for further

study. Events with χ2
4C > 85 are rejected.

To further suppress background, a requirement on the invariant mass of the γγ system,

M(γγ), is applied, |M(γγ) −Mη| < 30 MeV/c2, where Mη is the nominal η mass [28] and

30 MeV/c2 corresponds to 3 times the detector resolution in the measurement of M(γγ).

After applying the above selection criteria, the yield of e+e− → φη candidates is determined

by fitting the invariant mass spectrum of the K+K− system, M(K+K−), in the range

0.98 < M(K+K−) < 1.08 GeV/c2. Potential peaking backgrounds from non-η φ processes in

the M(K+K−) spectrum are analyzed using candidate events in the sidebands of M(γγ),

60 < |M(γγ) −Mη| < 90 MeV/c2. An example of this background in the data sample at√
s = 3096.986 MeV is illustrated by the blue histogram in figure 2. It is negligible for each

energy point.

4 Observed cross section of e+e−
→ φη

The observed cross section is calculated with

σobs
φη =

Nsig

L · ε · B , (4.1)

where Nsig is the yield of observed signal events, L is the integrated luminosity, ε is the

detection efficiency, and B = B(φ → K+K−) · B(η → γγ) = (19.3 ± 0.2)% is the product of

branching fractions for the φ → K+K− and η → γγ decays quoted from the PDG [28].

4.1 Signal yield

The number of signal e+e− → φη events is determined by an unbinned maximum-likelihood

fit to the M(K+K−) spectrum. The signal is modeled by an MC-simulated shape. The

background is described with an ARGUS function [34], with the endpoint set to the kinematic
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√
s (MeV) L (pb−1) Nsig ε (%) σobs

φη (pb)

3000.00±0.20 15.85±0.11 25.7+5.6
−4.9 36.3±0.2 23.1+5.0

−4.4

3020.00±0.20 17.32±0.12 22.0+5.1
−4.3 36.9±0.2 17.7+4.1

−3.5

3049.66±0.03 14.92±0.16 20.0+4.8
−4.2 37.3±0.2 18.5+4.5

−3.9

3058.71±0.03 15.06±0.16 28.0+5.6
−5.0 37.5±0.2 25.6+5.2

−4.6

3080.00±0.20 293.42±0.95 497.3+24.1
−23.4 37.5±0.2 23.3+1.2

−1.1

3082.51±0.04 4.77±0.06 7.1+3.1
−2.4 37.9±0.2 20.4+8.9

−7.0

3087.59±0.13 2.47±0.02 8.0+3.2
−2.5 38.1±0.2 44.1+17.5

−13.8

3088.87±0.02 15.56±0.17 28.3+6.4
−5.7 38.0±0.2 24.8+5.6

−5.0

3091.78±0.03 14.91±0.16 35.0+6.3
−5.6 38.2±0.2 31.9+5.8

−5.1

3094.71±0.08 2.14±0.03 34.5+6.4
−5.6 39.9±0.2 209.8+38.8

−34.1

3095.45±0.08 1.82±0.02 90.9+10.2
−9.8 40.1±0.2 645.7+72.9

−70.6

3095.73±0.08 2.92±0.02 291.3+18.4
−17.7 40.4±0.2 1277.9+82.5

−79.2

3095.84±0.08 2.14±0.03 328.4+19.1
−18.5 40.2±0.2 1979.8+119.8

−116.0

3096.20±0.07 4.98±0.03 827.9+32.0
−31.4 41.0±0.2 2098.2+85.4

−83.9

3096.99±0.08 3.10±0.02 755.7+29.9
−29.2 41.3±0.2 3054.4+127.1

−124.5

3097.23±0.10 1.68±0.01 418.1+22.2
−21.6 41.9±0.2 3073.3+168.0

−163.5

3097.23±0.08 2.07±0.03 473.2+24.0
−23.3 41.1±0.2 2879.4+154.0

−149.9

3097.65±0.08 4.66±0.03 860.5+32.2
−31.6 41.8±0.2 2286.0+90.5

−88.9

3098.36±0.08 2.20±0.03 229.8+17.1
−16.2 41.1±0.2 1316.5+100.4

−95.1

3098.73±0.08 5.64±0.03 335.1+20.1
−19.2 41.6±0.2 737.2+45.1

−43.1

3099.06±0.09 0.76±0.01 23.0+5.6
−4.9 41.0±0.2 382.4+93.2

−81.7

3101.38±0.11 1.61±0.02 13.0+4.0
−3.3 41.3±0.2 101.0+30.8

−25.5

3104.00±0.08 5.72±0.03 53.5+8.7
−8.1 41.2±0.2 117.6+19.2

−17.9

3105.60±0.09 2.11±0.03 7.8+3.3
−2.6 40.4±0.2 47.4+19.7

−15.9

3112.07±0.09 1.72±0.02 10.4+3.9
−3.2 39.9±0.2 78.3+29.3

−24.1

3119.89±0.12 1.26±0.02 3.0+2.1
−1.7 38.1±0.2 32.2+22.3

−15.2

Table 1. Summary of the CM energy, luminosity, signal yield, efficiency, and the observed cross

section of e+e− → φη at each energy point. Statistical uncertainties are quoted for the signal yields,

efficiencies, and the observed cross sections, while both statistical and systematic uncertainties are

combined in quadrature for the CM energies [1] and luminosity [1, 22].

threshold of twice the K± mass. Due to the low statistics of the data samples, the yield

follows a Poisson distribution [35] and cannot be approximated as a Gaussian distribution.

Therefore, an asymmetric uncertainty is estimated. An example of the fit result for data

at
√
s = 3096.986 MeV is illustrated in figure 2, and the corresponding signal yield for each

energy point is presented in table 1.
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Figure 3. Distribution of XISR = s′/s in the signal MC sample at
√
s = 3096.986 MeV. The red

(blue) line shows the generated (reconstructed) events. The events in the green shaded region are

used to obtain the efficiency.

4.2 Efficiency determination

The reconstruction efficiency at each energy point is obtained based on the signal MC samples

simulated with the CONEXC generator [31] and corrected by iteration.

In the CONEXC generator, the precision of simulated events with XISR = s′/s depends

on the precision of the cross section lineshape of e+e− → φη used as input to the generator

in the energy range below
√
s. Here, s represents the squared energy in the CM frame of

the e+e− system before the emission of ISR photons, and s′ represents the squared energy

after the emission. In this analysis, the cross section lineshape of e+e− → φη obtained

by combining the measurements from BaBar [36], BESIII [37], and Belle [38] in the range

between the φη mass threshold and 3.12 GeV is taken as input to the generator. Due to the

deviations of the cross section lineshape among different measurements and the complexities

arising from the φ(1680) and φ(2170) resonances, there is a large uncertainty on the cross

section lineshape in the range between the φη mass threshold and 2.9 GeV. Figure 3 shows

the XISR distribution in the MC sample simulated at
√
s = 3096.986 MeV. Only events with

XISR > 0.9 remain after the 4C kinematic fit. To reduce the uncertainty on the reconstruction

efficiency caused by the lineshape, only the simulated events with XISR > 0.9 are used to

estimate the reconstruction efficiency.

Additionally, the cross section lineshape in the range between 3.00 GeV and 3.12 GeV

is not precise enough. To reasonably simulate the ISR effect, an iterative MC-generating

method as described in refs. [31, 37, 39, 40] is applied. The iteration procedure is repeated

until the change in the cross section calculated by eq. (4.1) is less than 0.5%, which is the

calculation uncertainty of the CONEXC generator. Finally, the reconstruction efficiency and

the σobs
φη for each energy point are summarized in table 1.

4.3 Systematic uncertainty

Several sources of systematic uncertainties are considered on the observed cross section

measurement. These include differences between data and MC simulation for the tracking

efficiencies, PID efficiencies, photon reconstruction efficiencies, kinematic fit, mass window

– 6 –



J
H
E
P
1
1
(
2
0
2
5
)
0
7
7

selection of M(γγ), iteration procedure, input lineshape, and integrated luminosity mea-

surement. The uncertainties from the fit procedure, and the branching fractions of the

intermediate state decays are also considered.

• Luminosity. The integrated luminosity is determined using e+e− → γγ events with an

uncertainty of 1.0% [22].

• Branching fractions. The branching fractions are quoted from the PDG [28]:

B(φ → K+K−) is (49.1 ± 0.5)%, with an uncertainty of 1.0%; and B(η → γγ) is

(39.36 ± 0.18)%, with an uncertainty of 0.5%.

• Tracking and PID efficiencies. The systematic uncertainties of the tracking and PID

efficiencies are both assigned as 1.0% per track, determined using a control sample of

e+e− → K+K−π+π− events [37].

• Photon reconstruction. The systematic uncertainty due to the photon reconstruction is

assigned to be 1.0% per photon using a control sample of J/ψ → π+π−π0 events [37].

• Kinematic fit. A helix correction is performed on the kaon tracks [32, 37] to reduce the

difference between data and MC samples caused by the kinematic fit for each energy

point. The difference between the reconstruction efficiency obtained from the signal

MC samples with and without the helix correction is studied for each energy point. The

largest deviation, 0.3%, is taken as the systematic uncertainty for all energy points.

• Iteration procedure. The systematic uncertainty associated with the iterative procedure

is estimated by comparing the difference in the reconstruction efficiency between the

last two iterations for each energy point. The largest, 0.2%, is taken as the systematic

uncertainty for all energy points.

• Input lineshape. During the iteration mentioned in section 4.2, the cross section

lineshape of e+e− → φη input to the CONEXC generator is obtained by fitting the

measured cross sections. The fit parameters, along with their uncertainties, obtained

from the last fit iteration are listed in table 3. The uncertainties on these parameters

lead to an uncertainty of the efficiency obtained with the lineshape as input in the

simulation of the signal MC samples. We sample 100 sets of lineshape parameters

(φγ,3g,F , C) using the Gaussian Copula method [41] by considering their correlations.

With these 100 lineshapes as inputs, 100 sets of the signal MC samples at each energy

point are generated. The relative change of efficiency, εi−ε
ε , is calculated at each energy

point, where ε is the nominal efficiency and εi is the efficiency obtained from the ith

(i = 1, 2, . . . , 100) signal MC sample. The εi−ε
ε distribution is fitted using a Gaussian

function for each energy point. Conservatively, the maximum standard deviation of the

Gaussian functions, 1.8%, is taken as the systematic uncertainty on the reconstruction

efficiency caused by the input lineshape for all energy points.

• Mass window of M(γγ). The resolution of the mass of the η peak is determined by

fitting the M(γγ) spectrum. It is found to be 10 MeV/c2 and is consistent between data

and signal MC samples at each energy point. Therefore, the systematic uncertainty

caused by the η mass window in M(γγ) is ignored.

– 7 –
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• Fit procedure. The following three aspects are considered when evaluating the systematic

uncertainty associated with the fit procedure. (1) φ fit range. To study the uncertainty

caused by the φ fit range, an alternative fit is performed for each energy point by

changing the φ fit range from (0.98, 1.08) GeV/c2 to (0.98, 1.07) GeV/c2. (2) Signal

shape. To study the uncertainty caused by the signal shape, an alternative fit using

the MC-simulated shape convolved with a Gaussian function with free parameters is

performed for each energy point. (3) Background shape. To study the uncertainty

caused by the background shape, an alternative fit using an ARGUS function with

a floating endpoint is performed for each energy point. For each aspect, the largest

change of the signal yield among all energy points is taken as the systematic uncertainty

for all energy points.

A summary of all systematic uncertainties is presented in table 2. The sources marked

with stars are common and correlated systematic uncertainties for different energy points and

are from the efficiency, luminosity and branching fractions. The total systematic uncertainty

on σobs
φη , 4.2%, is obtained by summing the individual uncertainties in quadrature.

5 Cross section lineshape of e+e−
→ φη

The Born cross section of e+e− → φη in the vicinity of the J/ψ resonance, consisting of the

continuum and J/ψ resonance contributions, is expressed as [1, 36]:

σ(s) = Pφη(s) ·
( F
sa0

)2

· 4πα2

3s
·

∣

∣

∣

∣

∣

∣

1 +
3

α

s

M

Γee ·
(

1 + C · eiφγ,3g

)

(s−M2) + iMΓ

∣

∣

∣

∣

∣

∣

2

. (5.1)

Here Pφη(s) is the phase space of the φη final state expressed as:

Pφη(s) =

[

(s−M2
φ −M2

η )2 − 4M2
φM

2
η

s

]3/2

(5.2)

and F/sa0 is the form factor. We set a0 = 1.5 based on a pQCD theoretical prediction [42];

α is the fine structure constant; M and Γ are the mass and width of the J/ψ meson; Γee is

the partial width of J/ψ → e+e−; and C is the ratio between |A3g| and |Aγ |.
Due to the effects of ISR and the beam energy spread, the observed cross section cannot

be directly compared with the Born cross section. To take into account these effects, a two-fold

numerical integration is performed to describe the expected cross section for e+e− → φη:

σexp(s) =

∫

√
s+5SE

√
s−5SE

d
√
s′G

(√
s′, SE

)

∫ 1−XISR

0
dxF

(√
s′, x

)

· σ(s′ · (1 − x)), (5.3)

where
√
s′ is an integration parameter with the dimension of energy; and G

(√
s′, SE

)

is a

Gaussian function to describe the beam energy spread effect with a width of SE . As explained

in section 4.2, XISR is set as 0.9; and x = 2Eγ/
√
s, where Eγ is the energy of radiation
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Source Uncertainty (%)

Luminosity∗ 1.0

B(φ → K+K−)∗ 1.0

B(η → γγ)∗ 0.5

Tracking∗ 2.0

PID∗ 2.0

Photons reconstruction∗ 2.0

Kinematic fit∗ 0.3

Iteration procedure∗ 0.2

Input lineshape∗ 1.8

Mass window of M(γγ)∗ 0.0

φ fit range 0.4

Signal shape 0.5

Correlated 4.1

Total 4.2

Table 2. Relative systematic uncertainties (in percent) on the observed cross section of e+e− → φη

at each energy point. Systematic uncertainties for each energy point arise from the efficiency,

luminosity and branching fractions. The entry labeled luminosity is the luminosity systematic

uncertainty, the two entries labeled B(X → Y ) are the branching fraction systematic uncertainties,

and everything else is from the efficiency. The sources with star markers are the common and correlated

systematic uncertainties.

photon. The ISR function F (W,x) describes the probability of ISR photon emission. From

Kuraev and Fadin, it is expressed as [40]:

F (W,x) = β(1+δ)xβ−1 −β

(

1− x

2

)

+
β2

8

[

4(2−x) ln
1

x
− 1+3(1−x)2

x
ln(1−x)−6+x

]

,

(5.4)

with δ = 3
4
β + α

π

(

π2

3
− 1

2

)

+ β2
(

9
32

− π2

12

)

and β = 2α
π

(

2 ln
√

s
me

− 1
)

, where β is the effective

bremsstrahlung coupling-constant, and me is the invariant mass of electron. We use the ana-

lytical formula given in ref. [1] for the subsequent fit to improve the efficiency of the procedure.

The relative phase φγ,3g and other parameters (F , C, SE) are estimated with a least-χ2

fit to σobs
φη using the MINUIT package [43]. The χ2 is built with an effective variance-weighted

least squares method, and the correlated systematic uncertainties are considered by the

factored minimization method [35]. The χ2 function reads:

χ2 =
26
∑

i=1

(σobs
φη (si) − f · σexp(si))

2

(∆σobs
φη (si))2 +

[

1
2
(σexp(si,+) − σexp(si,−))

]2
+

(

1 − f

∆f

)2

+
3
∑

i=1

(

PPDG
i − P fit

i

∆PPDG
i

)2

.

(5.5)
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Figure 4. Fit results of the observed cross section lineshape for e+e− → φη. The left plot is for

the positive phase of φγ,3g and the right for the negative. The black points with error bars are the

observed cross section of e+e− → φη at each energy point. The solid red curve denotes the overall fit

result considering the effects of ISR and beam energy spread. The green solid curve is the lineshape

without these two effects. The other curves show the individual contribution of each components

without these two effects. The plots (c) and (d) zoom in around the J/ψ resonance peak, providing

a more detailed view of the interference patterns in the cross section lineshape for the positive and

negative phases, respectively.

In the first term of eq. (5.5), ∆σobs
φη is the combined statistical and uncorrelated systematic

uncertainties on the σobs
φη measurement, and si,± =

(√
si ± ∆

√
si
)2

, where ∆
√
si is the

uncertainty of the CM energy measured by the BEMS, and f is a normalization factor

introduced as a free parameter to consider the fluctuation on the σobs
φη measurement caused

by the correlated systematic uncertainty ∆f in table 2. In the third term, Pi (i = 1, 2, 3)

represents the parameters for the mass, width, and partial width of the e+e− decay mode

of the J/ψ meson. These parameters are constrained by considering their uncertainties

∆PPDG
i cited from the PDG [28].

Two separate solutions with positive and negative phases φγ,3g are found, as shown in

figure 4. The fitted parameters are listed in table 3. The uncertainty of the fit result includes

both statistical and systematic uncertainties, because all sources of systematic uncertainty

have been considered in the χ2 function. The scanned χ2 curve is shown in figure 5. As

shown in figure 5, these two solutions are indistinguishable within the 1σ confidence interval
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Positive phase Negative phase

χ2/ndf 24.9/21 24.9/21

φγ,3g (◦) 150+78
−17 211+17

−78

F 0.11±0.01

C 3.3±0.4

SE (MeV) 0.88±0.03

f 0.99±0.04

Table 3. Fit results of the lineshape e+e− → φη. The quoted uncertainties in the fit parameters

include both statistical and systematic uncertainties.

120 140 160 180 200 220 240

)° (
,3gγ

φ

0

1

2

3

4

2
χ

∆

Figure 5. 1D χ2-scan over a range of different values for φγ,3g. The dashed blue box represents the

interval where ∆χ2 = χ2 − χ2
min = 1, which corresponds to a 1σ confidence interval.

as shown in the dashed-blue box. This results from the non-linear nature of the χ2 function

arising from the low statistics of the data samples. Thus, the relative phase φγ,3g is measured

to be within the range [133◦, 228◦] within a 1σ confidence interval. The SE is consistent

with the previous analysis reported at BESIII [1].

6 Summary

For the first time, using 26 energy points of e+e− annihilation data between 3.00 GeV and

3.12 GeV, with a total integrated luminosity of 452 pb−1, the relative phase between strong

and EM amplitudes in the decay J/ψ → V P is measured directly through an analysis of

the cross section lineshape for e+e− → φη. The φγ,3g for J/ψ → φη is determined to be

within [133◦, 228◦] at the 68% confidence level.
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