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1 Introduction

The study of baryon decays of vector charmonium(-like) resonances provides a test of quantum

chromodynamics (QCD) [1, 2]. Below the open charm threshold, the mass spectrum of the

conventional charmonium resonances is consistent with the predictions from the potential

quark model [3]. Above the open charm threshold, the model predicts six vector charmonium

states from the threshold to 4.9 GeV, ordered as the 1D, 3S, 2D, 4S, 3D, and 5S states, while

far more vector states have been observed in this energy region. Several states, such as the

ψ(4040), ψ(4160), and ψ(4415), are seen as clear peaks in the center-of-mass energy-dependent

inclusive hadronic cross section and predominantly decay to open charm final states [4]. Other

states, such as the ψ(4230), ψ(4360), and ψ(4660), are mainly observed in decay channels with

hidden-charm intermediate states and are produced via initial state radiation (ISR) processes

at BaBar and Belle [5–14] or via direct production in e+e− annihilation at CLEO [15] and

BESIII [16, 17]. These vector states might not be resonances with simple cc̄ quark content,

and many hypotheses, such as hybrid, multiple-quark state and molecular models, have

been proposed to interpret them [18–24]. No solid conclusions can be made at present and

the nature of these vector charmonium(-like) states remains uncertain [25]. This reflects

our limited knowledge of the strong interaction in the non-perturbative region. To solve

these puzzles, more and improved experimental measurements are needed. Among these

measurements, charmonium states decaying into hyperon-antihyperon pairs, dominated by
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three-gluon or one-photon processes, are promising due to the simple topologies of their final

states compared to three-meson production. However, studies of substantial correlations

between these charmonium(-like) states and the production of baryonic final states above

open charm threshold are still insufficient. Although many experimental studies of baryonic

final states have been performed by the BESIII and Belle collaborations [26–52], the only

established decay is ψ(4660) → Λ+
c Λ̄−

c [9]. While there is also evidence for ψ(3770) → ΛΛ̄ [34],

ψ(3770) → Ξ−Ξ̄+ [45], and the three-body baryonic decay ψ(4160) → K−[Λ/Σ0]Ξ̄+ [46] with

an extra pseudoscalar meson, our knowledge is still lacking. Thus, more precise measurements

of exclusive cross sections of e+e− to baryonic final states above the open charm threshold

could provide additional insight into the nature of these vector charmonium(-like) states.

In this paper, we present a measurement of the Born cross sections for e+e− → pK−K−Ξ̄+

using data sets at center-of-mass (CM) energies
√
s between 3.5 GeV and 4.9 GeV corresponding

to a total integrated luminosity of 20 fb−1 [53, 54] collected by the BESIII detector [55, 56] at

the BEPCII collider [57]. Compared to previous studies, this process is a four-body interaction

that includes two pseudoscalar mesons. Throughout this paper, the charge conjugated channel

is always included. The possible resonances are studied by fitting the lineshape of the dressed

cross section of the process e+e− → pK−K−Ξ̄+. The products of branching fraction and

electronic partial width for possible charmonium(-like) states, i.e. ψ(3770), ψ(4040), ψ(4160),

ψ(4230), ψ(4360) and ψ(4660) decaying to pK−K−Ξ̄+, as well as their upper limits at the

90% confidence level (C.L.) are provided.

2 BESIII detector and Monte Carlo simulation

The BESIII detector records symmetric e+e− collisions provided by the BEPCII storage ring in

the CM energy range from 1.84 GeV to 4.95 GeV, with a peak luminosity of 1.1×1033 cm−2s−1

achieved at
√
s = 3.773 GeV. BESIII has collected large data samples in this energy region.

The cylindrical core of the BESIII detector covers 93% of the full solid angle and consists

of a helium-based multilayer drift chamber (MDC), a time-of-flight system (TOF), and a

CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting

solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal

flux-return yoke with resistive plate counter muon identification modules interleaved with steel.

The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution

is 6% for electrons from Bhabha scattering. The EMC measures photon energies with a

resolution of 2.5% (5%) at 1 GeV in the barrel (end cap) region. The time resolution in

the plastic scintillator TOF barrel region was 68 ps, while that in the end cap region was

110 ps. The end cap TOF system was upgraded in 2015 using multigap resistive plate

chamber technology providing a time resolution of 60 ps, which benefits 64% of the data

used in this analysis [58–60].

Monte Carlo (MC) simulated data samples produced with a geant4-based [61, 62]

package, which includes the geometric description of the BESIII detector and the detector

response, are used to determine detection efficiencies and to estimate backgrounds. The

simulation models the beam energy spread and ISR in the e+e− annihilations with the

generator kkmc [63, 64]. The inclusive MC sample includes the production of open charm

processes, the ISR production of vector charmonium(-like) states, and the continuum processes
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incorporated in kkmc. All particle decays are modeled with evtgen [65, 66] using branching

fractions either taken from the Particle Data Group (PDG) [67], when available, or otherwise

estimated with lundcharm [68]. Final state radiation (FSR) from charged particles is

incorporated using the photos package [69]. To determine the detection efficiencies and

evaluate the ISR factors in the e+e− → pK−K−Ξ̄+, Ξ̄+ → anything process, exclusive MC

samples with 6 × 105 signal events are generated for each of the 39 CM energies from 3.5 GeV

to 4.9 GeV using a phase space (PHSP) model and incorporating ISR effects.

3 Event selection

A partial reconstruction method is used to extract the signal process, where only the proton

and two kaons are reconstructed in each event and the presence of the Ξ̄+ is inferred through

the missing mass. The tracks from charged particles must at least fulfill the following criteria.

The polar angle for each track in the MDC must satisfy | cos θ| < 0.93, where θ is the angle

between the direction of the track and the positron beam direction. To suppress backgrounds,

decay vertices are limited in the distance Vr < 1 cm in the radial and |Vz| < 10 cm in

the axial direction from the interaction point. Particle identification (PID) probabilities,

Prob(H), H = p, K, π, are determined from the ionization energy loss measured in the

MDC combined with the time of flight measured with TOF. Tracks are identified as protons

if the proton hypothesis has the greatest probability (Prob(p) > Prob(K) and Prob(p) >

Prob(π)), while charged kaons are identified by requiring Prob(K) > Prob(p) and Prob(K)

> Prob(π). Events with exactly one p candidate and two K− candidates, denoted in the

following as K1 and K2, are kept for further analysis. If an extra candidate for the identified

tracks is present, the event is discarded.

To further suppress the background, a primary vertex fit for pK−K− is performed, and

events with χ2 < 100 are kept. The number of anti-baryons Ξ̄+ at each energy point is

determined using an unbinned maximum likelihood fit to the recoil mass of the pK−K−

system, defined as

M recoil
pK−K− =

√

[√
s−

(

Ep + E
K−

1

+ E
K−

2

)]2
−

∣

∣

∣~pp + ~p
K−

1

+ ~p
K−

2

∣

∣

∣

2
, (3.1)

where E
p(K−

1
,K−

2
) and ~p

p(K−
1

,K−
2

) are the energy and momentum of the proton (negative

kaons), respectively. The signal shape is modeled using a histogram of M recoil
pK−K− from MC

simulation, which is additionally convolved with a Gaussian function to account for different

mass resolutions between data and MC simulation when the signal significance is greater

than 3σ. Note that the resolution will be worse as the energy increases because the empirical

beam energy spread (0.9454
√
s− 2.147)/

√
2 MeV will dominate the effect. Using a detailed

background analysis in both data and MC simulation, the dominant background is determined

to be from misidentified particles. All backgrounds contribute either smooth shapes or shifted

peaks away from the signal region in the recoil mass spectra, ensuring no contamination of

the signal region. Consequently, the background shape is described by a first- or second-order

Chebyshev polynomial function. The fit results are presented in table 1 and shown in figure 1.
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Figure 1. Fits to the M recoil
pK−K−

spectra, where the black dots with error bars denote the data, the

red dashed lines denote the background contribution, and the blue lines denote total fit curves.
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4 Determination of Born cross section

The Born cross section (σB) for e+e− → pK−K−Ξ̄+ at each energy point is calculated as

σB =
Nobs

2L · ε · (1 + δISR) · 1
|1−Π|2

, (4.1)

where Nobs is the signal yield, the factor of 1/2 averages the charge-conjugate channels, L is

the integrated luminosity, ε is the detection efficiency, 1 + δISR is the ISR factor evaluated

using a quantum electrodynamics calculation [70]. The procedure to determine both ε and

1 + δISR is iterated [71] until the difference of their product between the last two rounds is

less than 0.5% [45]; the iteration line shape is selected as the power-law function (described

in section 6) only; and 1
|1−Π|2

is the vacuum polarization factor estimated according to

ref. [72]. The upper limit on the Born cross section is estimated at the 90% C.L. table 1

summarizes the numerical results.

5 Systematic uncertainty

The systematic uncertainty in the Born cross section measurements is evaluated for the

following sources: the tracking and PID for charged particles, the vertex fit of pK−K−, the

signal and background shapes, the input line shape and the quoted luminosity. Assuming

all sources are independent, the total systematic uncertainty is calculated by the quadratic

sum of the uncertainties due to all individual sources, as shown in table 2. All will be

discussed in the following.

5.1 Tracking

The systematic uncertainty associated with charged track reconstruction is evaluated as 1.0%

per track using the control samples of J/ψ → π0pp̄ [73] and J/ψ → K∗K [74]. Given that

three charged tracks are reconstructed, the systematic uncertainty is set to be 3.0%.

5.2 PID

The systematic uncertainty due to the PID is evaluated as 1.0% per track by the control

sample of J/ψ → pp̄η′ and ψ(3686) → K−ΛΞ̄+ + c.c. [75, 76]. There are three particles

identified, so this systematic uncertainty is assigned as 3.0%.

5.3 Vertex fit

The systematic uncertainty for the vertex fit is evaluated by the control sample of ψ(3686) →
π+π−J/ψ with J/ψ → pp̄, where a proton or anti-proton is missed in the reconstruction.

A cut for vertex χ2 < 30 is required to estimate the efficiency loss, and the difference for

relative efficiency between data and MC sample is taken as the systematic uncertainty, which

is assigned as 1.3%.
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√
s (GeV) L (pb−1) ε (%) 1 + δISR

1
|1−Π|2

Nobs σB (fb) S (σ)

3.510 405.7 15.27 0.915 1.045 6.6 ± 4.3 (< 13.2) 55.7 ± 36.3 ± 3.1 (< 111.4) 1.8

3.650 410.0 25.61 0.929 1.021 17.5 ± 6.5 87.8 ± 32.6 ± 4.8 3.4

3.773 2931.8 31.42 0.968 1.056 157.1 ± 23.4 83.5 ± 12.4 ± 4.6 7.2

3.871 219.2 34.39 0.959 1.051 5.0 ± 4.7 (< 12.5) 32.9 ± 30.9 ± 1.8 (< 82.3) 1.2

4.009 481.96 29.92 1.030 1.044 63.8 ± 16.1 205.7 ± 51.9 ± 11.3 4.6

4.128 401.5 25.21 1.077 1.052 43.8 ± 13.0 191.0 ± 56.7 ± 10.5 3.9

4.157 408.7 25.87 1.082 1.053 8.0 ± 10.2 (< 26.7) 33.2 ± 48.1 ± 1.8 (< 107.9) < 1

4.178 3194.5 25.92 1.095 1.054 291.2 ± 81.3 152.4 ± 42.5 ± 8.4 6.4

4.189 526.7 26.28 1.090 1.056 13.1 ± 11.7 (< 30.3) 41.1 ± 36.7 ± 2.3 (< 95.1) 1.2

4.199 526.0 26.55 1.089 1.056 2.6 ± 10.8 (< 21.0) 8.1 ± 33.6 ± 0.4 (< 65.3) < 1

4.209 517.1 26.40 1.098 1.057 −7.2 ± 9.6 (< 14.2) −22.7 ± 30.3 ± 1.2 (< 44.8) < 1

4.219 514.6 26.69 1.099 1.056 11.6 ± 10.2 (< 26.7) 36.4 ± 32.0 ± 2.0 (< 83.7) 1.2

4.226 1100.9 27.41 1.101 1.056 136.1 ± 20.7 193.9 ± 29.5 ± 10.7 7.8

4.236 530.3 27.62 1.105 1.056 16.7 ± 10.6 (< 31.8) 49.0 ± 31.1 ± 2.7 (< 93.4) 1.7

4.244 538.1 27.72 1.098 1.056 19.3 ± 11.4 (< 35.3) 55.8 ± 33.0 ± 3.1 (102.1) 1.8

4.258 825.67 27.98 1.101 1.054 102.1 ± 23.7 190.5 ± 44.2 ± 10.5 4.5

4.267 531.1 28.08 1.105 1.053 8.2 ± 10.4 (< 24.3) 23.6 ± 30.0 ± 1.3 (< 70.0) < 1

4.278 175.70 27.86 1.109 1.053 11.0 ± 8.9 (< 24.1) 96.2 ± 77.8 ± 5.3 (< 210.7) 1.3

4.288 502.4 28.05 1.111 1.053 8.9 ± 16.4 (< 34.4) 27.0 ± 49.8 ± 1.5 (< 104.4) < 1

4.312 501.2 28.59 1.112 1.052 10.0 ± 16.0 (< 34.8) 29.8 ± 47.7 ± 1.6 (< 103.7) < 1

4.337 505.0 29.09 1.127 1.051 −3.3 ± 18.1 (< 29.7) −9.5 ± 52.0 ± 0.5 (< 85.4) < 1

4.377 522.7 29.67 1.126 1.051 20.5 ± 14.9 (< 41.5) 55.8 ± 40.6 ± 3.1 (< 113.0) 1.4

4.396 507.8 29.90 0.969 1.051 13.1 ± 14.6 (< 34.7) 42.4 ± 47.2 ± 2.3 (< 112.3) < 1

4.416 1074.56 30.19 0.983 1.052 −3.0 ± 18.8 (< 31.1) −4.5 ± 28.0 ± 0.2 (< 46.3) < 1

4.436 569.9 30.34 0.887 1.054 −2.2 ± 15.5 (< 26.0) −6.8 ± 48.0 ± 0.4 (< 80.5) < 1

4.467 111.1 30.27 1.023 1.055 4.3 ± 7.7 (< 17.0) 59.3 ± 106.1 ± 3.3 (< 234.3) < 1

4.527 112.12 30.60 1.029 1.054 17.6 ± 7.6 (< 28.2) 236.5 ± 102.1 ± 13.0 (< 378.9) 2.7

4.599 586.9 31.05 1.034 1.055 28.7 ± 15.3 (< 49.7) 72.2 ± 38.5 ± 4.0 (< 125.0) 2.0

4.630 521.53 31.03 1.045 1.054 7.7 ± 14.7 (< 31.1) 21.6 ± 41.2 ± 1.2 (< 87.2) < 1

4.643 551.65 31.14 1.054 1.054 16.1 ± 17.7 (< 42.1) 42.2 ± 46.4 ± 2.3 (< 110.3) < 1

4.664 529.43 31.21 1.060 1.054 −8.8 ± 15.4 (< 22.6) −23.8 ± 41.7 ± 1.3 (< 61.2) < 1

4.684 1667.39 31.32 1.070 1.054 −4.5 ± 28.7 (< 46.2) −3.8 ± 24.4 ± 0.2 (< 39.2) < 1

4.701 535.54 31.17 1.071 1.055 23.9 ± 16.0 (< 46.2) 63.4 ± 42.4 ± 3.5 (< 122.0) 1.6

4.740 163.87 31.71 1.015 1.055 5.8 ± 10.1 (< 21.8) 52.1 ± 90.8 ± 2.9 (< 195.9) < 1

4.750 366.55 31.73 1.025 1.055 −5.7 ± 15.0 (< 25.8) −22.7 ± 59.6 ± 1.2 (< 102.6) < 1

4.780 511.47 31.66 1.036 1.055 45.7 ± 17.2 (< 68.8) 129.0 ± 48.6 ± 7.1 (< 194.2) 2.8

4.843 525.16 31.73 1.066 1.056 11.3 ± 19.3 (< 40.9) 30.1 ± 51.5 ± 1.7 (< 109.1) < 1

4.918 207.82 31.53 1.092 1.056 20.5 ± 12.3 (< 37.7) 135.7 ± 81.4 ± 7.5 (< 249.5) 1.8

4.950 159.28 31.26 1.100 1.056 −4.3 ± 10.4 (< 16.6) −37.2 ± 89.9 ± 2.0 (< 143.5) < 1

Table 1. Numerical results for the Born cross sections of e+e− → pK−K−Ξ̄+ at different energy

points. Upper limits on Nobs and σB at the 90% C.L. are listed in parentheses if the significances

are less than 3 σ. The first uncertainties are statistical and the second are systematic. The S is the

statistical significance of the signal.
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Source Uncertainty (%)

Tracking∗ 3.0

PID∗ 3.0

Vertex fit∗ 1.3

Signal and background shapes 3.1

Input line shape Negligible

Luminosity∗ 1.0

Total 5.5

Table 2. Relative systematic uncertainties in the cross section measurements, where * marks represent

the correlated systematic uncertainty.

5.4 Signal and background shapes

Due to the limited statistics, this systematic uncertainty is estimated by combining all data

samples. The signal shape is changed from the MC shape convolved with a Gaussian function

to the signal MC shape, and the background shape is adjusted from a second to third-order

Chebyshev polynomial function. The differences in the fitted signal yields, 0.7% for the

variation of the signal and 3.0% for the variation of the background shape, are taken as

the systematic uncertainty.

5.5 Input lineshape

The input lineshape is evaluated by varying the parameters that we used in the fit to the

dressed cross section with the line shape of power-law function only(described in section 6)

in the iterative procedure. The fitted lineshape is needed to determine the ISR correction,

but is only known up to the precision of the data. Thus, we use 200 lineshape samples drawn

randomly from a multivariate Gaussian using the covariance matrix of the fit performed in

section 5 to re-evaluate the ISR correction. The standard deviation of the product ε ·(1+δISR)

obtained in this way is used as a systematic uncertainty. This systematic uncertainty is

negligible (∼ 10−3).

5.6 Luminosity

The integrated luminosity is estimated using Bhabha scattering events, and the systematic

uncertainty for each energy point is assigned as 1% [53, 54].

6 Fit to the dressed cross section

Potential resonances in the lineshape of the cross sections for the process e+e− → pK−K−Ξ̄

are studied by fitting the dressed cross section σdressed = σB

|1−Π|2
using the least χ2 method,

where χ2 = ∆XTV −1∆X, and ∆X is the vector of residuals between the measured and

fitted cross section. The covariance matrix V incorporates the correlated and uncorrelated

uncertainties among different energy points, where the systematic uncertainties for tracking,

PID, vertex fit and luminosity mentioned in the previous section are assumed to be fully

– 7 –
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correlated if referring to the same energy point, and uncorrelated otherwise. The line shape

is described by a power-law (PL) function plus a Breit-Wigner (BW) function as

σ(
√
s) ∝

∣

∣

∣

∣

∣

c0P (
√
s)

1
√
s

N
+ eiφBW(

√
s;m,Γ,ΓeeB)

∣

∣

∣

∣

∣

2

. (6.1)

Here, c0 and N are free parameters. When no intermediate resonances are included in the

fit, we find c0 = (5.9 ± 2.6) × 10−5 and N = 1.2 ± 0.3. The P (
√
s) is the PHSP factor, φ

is the relative phase, and the BW function is defined as

BW(
√
s;m,Γ,ΓeeB) =

√
12πΓeeBΓ

s−m2 + imΓ
, (6.2)

where ΓeeB is the product of e+e− partial decay width and branching fraction of the assumed

resonance decaying into the pK−K−Ξ̄+ final state. In the current fit, both φ and ΓeeB are

the undetermined parameters. The considered resonances are the ψ(3770), ψ(4040), ψ(4160),

ψ(4230), ψ(4360), ψ(4415), and ψ(4660), and their masses and widths are fixed to the values

taken from the PDG [67]. The significance of a resonance is determined from the change

of χ2 and the number of degrees of freedom ndof for the hypothesis with and without the

resonance itself. None of the considered resonances have a significance above 3σ. Here, the

resonance parameters of ψ(4160) and ψ(4230) under the current statistics are hard to be

exactly separated from each other because these two states are quite close and overlap and

the interference picture can be sensitive to the resonance parameters. Figure 2 shows the

fit to the dressed cross sections without and with the different resonance assumptions. The

upper limits of ΓeeB have been evaluated at the 90% C.L. according to the χ2 distribution so

that
∫ ∆χ2

UL

0 χ2(x; ∆ndf)dx = 90%, where ∆χ2
UL is the difference of likelihood value between

the evaluated nominal result and the upper limit one, ∆ndf is the change in the degrees of

freedom. The fit with only PL function presents a quality of χ2/ndf = 87/37, corresponding

to a χ2-probability around 10−6. The total numerical results are summarized in table 3.

7 Summary

Using a data sample of e+e− collisions corresponding to a total integrated luminosity of 20

fb−1 collected with the BESIII detector at the BEPCII collider, we present a measurement

of the Born cross section for the process e+e− → pK−K−Ξ̄+ at 39 center-of-mass energies

between 3.5 and 4.9 GeV with a partial reconstruction technique. A fit to the dressed cross

sections for e+e− → pK−K−Ξ̄+ under the assumption of one resonance, i.e. ψ(3770), ψ(4040),

ψ(4160), ψ(4230), ψ(4360), ψ(4415) or ψ(4660) plus a continuum contribution is performed.

The values of the fitted parameters for ΓeeB for each assumed resonance are summarized in

table 3. No statistically significant evidence for any of the considered resonances decaying

into the pK−K−Ξ̄+ final state is found. Upper limits on the product of ΓeeB for all assumed

resonances decaying into pK−K−Ξ̄+ are determined at the 90% C.L. Compared with other

processes [34, 45, 46], there is still a lack of experimental information regarding the baryonic

decays of charmonium(-like) states. The results of this work provide new experimental

support on baryon production above the open charm region.
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Figure 2. Fits to the dressed cross sections under the assumption of the PL function only (top left),

and the PL plus a resonance, i.e. ψ(3770), ψ(4040), ψ(4160), ψ(4230), ψ(4360), ψ(4415), or ψ(4660).

The black dots with error bars are the dressed cross sections, where the uncertainty is combined

from both statistical and systematic uncertainties, and the blue lines denote the fit curves. For each

hypothesis, the panel below the main plot shows the pull distribution.
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Fit model φ (rad) ΓeeB (×10−3 eV) S (σ) χ2/ndf

PL − − − 87/(39 − 2)

+ψ(3770)I 0.57 ± 4.70 (0.0 ± 0.1)
0.2 87/(39 − 4)

+ψ(3770)II −1.52 ± 0.39 < 9.6 (8.6 ± 0.7)

+ψ(4040) 1.38 ± 0.16 < 17.8 (10.8 ± 3.3) 2.8 76/(39 − 4)

+ψ(4160)I 2.74 ± 0.94 (0.0 ± 0.1)
0.1 87/(39 − 4)

+ψ(4160)II −1.64 ± 0.08 < 25.4 (20.7 ± 2.2)

+ψ(4230)I 0.51 ± 0.39 (0.5 ± 0.3)
1.5 83/(39 − 4)

+ψ(4230)II 1.42 ± 0.08 < 17.8 (14.9 ± 1.3)

+ψ(4360)I −2.19 ± 0.34 (3.4 ± 3.4)
1.7 83/(39 − 4)

+ψ(4360)II −1.84 ± 0.14 < 33.3 (19.4 ± 7.7)

+ψ(4415) −1.80 ± 0.23 < 14.7 (4.7 ± 4.8) 1.7 82/(39 − 4)

+ψ(4660)I −2.46 ± 0.48 (2.1 ± 2.3)
1.1 84/(39 − 4)

+ψ(4660)II −1.90 ± 0.20 < 23.1 (13.1 ± 5.3)

Table 3. Results of the fits to the dressed cross sections. Here, the superscripts I and II denote the

different solutions, the numbers in parentheses represent the nominal results, S (σ) is the significance

for each resonance, and the upper limits of partial widths are evaluated at 90% C.L.
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