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Abstract: Ultrarelativistic heavy-ion collisions produce a state of hot and dense strongly
interacting QCD matter called quark-gluon plasma (QGP). On an event-by-event basis, the
volume of the QGP in ultracentral collisions is mostly constant, while its total entropy can
vary significantly due to quantum fluctuations, leading to variations in the temperature of the
system. Exploiting this unique feature of ultracentral collisions allows for the interpretation
of the correlation of the mean transverse momentum (〈pT〉) of produced charged hadrons and
the number of charged hadrons as a measure for the speed of sound, cs. This speed is related
to the rate at which compression waves travel in the QGP and is determined by fitting the
relative increase in 〈pT〉 with respect to the relative change in the average charged-particle
density (〈dNch/dη〉) measured at mid-rapidity. This study reports the event-average 〈pT〉
of charged particles as well as the variance, skewness, and kurtosis of the event-by-event
transverse momentum per charged particle ([pT]) distribution in ultracentral Pb-Pb collisions
at a center-of-mass energy of 5.02 TeV per nucleon pair using the ALICE detector. Different
centrality estimators based on charged-particle multiplicity or the transverse energy of the
event are used to select ultracentral collisions. By ensuring a pseudorapidity gap between the
region used to define the centrality and the region used to perform the measurement, the
influence of biases and their potential effects on the rise of the mean transverse momentum is
tested. The measured c2

s is found to strongly depend on the exploited centrality estimator and
ranges between 0.1146±0.0028 (stat.)±0.0065 (syst.) and 0.4374±0.0006 (stat.)±0.0184 (syst.)
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in natural units. The self-normalized variance shows a steep decrease towards ultracentral
collisions, while the self-normalized skewness variables show a maximum, followed by a fast
decrease. These non-Gaussian features are understood in terms of the vanishing of the
impact-parameter fluctuations contributing to the event-to-event [pT] distribution.

Keywords: Heavy Ion Experiments, Particle Correlations and Fluctuations, Quark Gluon
Plasma
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1 Introduction

It is well established that collisions of heavy ions at ultrarelativistic energies produce a
quark-gluon plasma (QGP) [1–7], a state of matter in which quarks and gluons are deconfined
and not bound inside hadrons. The QGP formed in a collision undergoes a quick phase of
thermalization [8] before it expands as a relativistic hydrodynamic fluid. The hydrodynamic
description of the QGP stands as one of the great successes in developing an effective theory
of many-body quantum chromodynamics (QCD) at high temperatures [6, 9, 10]. As the
system expands, both its energy and entropy density decrease and eventually the system
undergoes a phase transition as a consequence of which hadrons are formed [11, 12].

It has been suggested that the QGP phase can be studied by measuring the mean
transverse momentum (〈pT〉) of the produced hadrons in ultracentral Pb-Pb collisions [13–
15]. On an event-by-event basis, the volume of the QGP in ultracentral collisions is mostly
constant, while the charged-particle multiplicity (Nch) can vary significantly [13]. The increase
of the charged-particle multiplicity is interpreted as fluctuations in the entropy, which is
created early in the collision primarily through interactions of the sea gluons of the colliding
nuclei [16]. As the volume is mostly constant, the corresponding rise in the entropy density
(s) leads to higher temperatures (T ), as the entropy density is approximately proportional to
T 3 for the QCD equation of state of high temperature deconfined matter [17].

The dependence of the pressure, P , of the QGP on the energy density, ǫ, is encoded in
the corresponding QCD equation of state P = P (ε) [18]. The equation of state determines
how gradients in the energy density profile give rise to pressure gradients [6]. These gradients
of pressure accelerate fluid elements, and facilitate a collective expansion. A fundamental
quantity that characterizes the expansion of hot dense matter is the speed of sound, denoted
as cs, which is the speed at which a compression wave travels in a medium. In a relativistic
fluid, it is given by c2

s = d P/d ǫ = d ln T/d ln s [19]. Assuming that the increase in the average
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transverse momentum is solely due to temperature fluctuations, and the charged-particle
multiplicity is proportional to the entropy density [15, 20] of the QGP, the speed of sound
can be determined experimentally [21, 22] as c2

s = d ln 〈pT〉/d ln Nch. However, this approach
does not account for the contribution to 〈pT〉 from radial flow, which is proportional to
the inverse size, 1/R, of the overlap region [23, 24] — radial flow pushes the 〈pT〉 to higher
values with increasing centrality [25].

The study of the event-by-event distribution of transverse momentum per charged particle,
denoted by [pT], in ultracentral collisions serves as a tool to probe quantum fluctuations of the
initial stage of the collision [26, 27]. For collisions with the same Nch, [pT] fluctuations arise
from impact parameter (b) variations and from a quantum nature. Quantum fluctuations
originate from the event-to-event positions of the nucleons when colliding and the partonic
content of the nucleons [23, 28]. At a fixed-impact parameter, [pT] fluctuations are small
and approximately Gaussian distributed but a non-zero skewness is predicted to be driven
by event-to-event impact-parameter fluctuations. In particular, ref. [26] predicts a rapid
increase of the skewness for Nch beyond the knee (Nch,knee) marking the rapid decline of the
multiplicity distribution for central collisions, followed by a fast decrease. The multiplicity
Nch,knee at the knee is defined as the average multiplicity of collisions at b = 0.

The ATLAS collaboration has reported the measurement of the higher-order moments of
[pT] in central collisions [22]. In particular, the Var([pT]) features a steep decrease towards
the ultracentral collision regime. This striking phenomenon is described in terms of the
disappearance of the impact-parameter fluctuations in collisions with the largest multiplicity.
Additionally, such observations can only be explained by the presence of a thermalized medium
early in the collision, and can serve as a probe of the transport properties of the QGP relying
on isotropic expansion instead of anisotropic flow [27]. The ALICE collaboration previously
measured the skewness and kurtosis of the event-by-event mean transverse momentum in
wide bins of average charged-particle density (〈dNch/dη〉) across different systems [29]. In
this article, the study of the higher-order moments of [pT] is restricted to the ultracentral
Pb-Pb collisions at

√
sNN = 5.02 TeV.

This study reports the measurement of the normalized variance (k2), normalized skewness
(k3), standardized skewness (γ〈[pT]〉), intensive skewness (Γ〈[pT]〉), and standardized kurtosis
(κ〈[pT]〉) of the event-by-event [pT] distribution, as well as the event-average 〈pT〉 and the event-
average 〈dNch/dη〉 in ultracentral collisions divided into narrow centrality intervals. The data
set corresponds to those collisions with the top 0–5% highest charged-particle multiplicities
and top 0–5% highest transverse energy. In this article, ‘ultracentral collisions’ denotes the
0–0.1% or smaller fractions of these events with the highest charged-particle multiplicities
or transverse energy. A primary purpose of this study is to compare results obtained using
charged-particle multiplicity (Nch) centrality estimators with those using transverse-energy
(ET) centrality estimators. Furthermore, different kinematic selections on the particles used
to define centrality are employed, as it has been found that the definition of the centrality
estimator used to measure the 〈pT〉 and 〈dNch/dη〉 can influence the extracted values of
c2

s [14, 30]. Some of the centrality estimators feature a different choice of pseudorapidity
gap with respect to the region used to determine 〈pT〉 as a function of 〈dNch/dη〉. This
is particularly relevant to select high-multiplicity events (ultracentral collisions) with a
suppressed contribution of particles from jet fragmentation.
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This article is organized as follows. The ALICE experimental setup is described in
section 2, focusing on the detectors which are relevant to the presented measurements.
Section 3 discusses the analyzed data samples, the event and track-selection criteria, the
centrality-estimator definitions, and the analysis techniques to measure the higher-order
moments of [pT] and the 〈pT〉 versus 〈dNch/dη〉 correlation. Section 3 also outlines the
estimation of systematic uncertainties. The results are presented and discussed in section 4,
including comparisons to Monte Carlo model predictions. Finally, section 5 gives the
summary and draws the conclusions.

2 Experimental setup

A detailed description of the ALICE detector and its performance is provided in refs. [31, 32].
Relevant detectors for this study include the V0 detector [33], the Inner Tracking System
(ITS) [34], the Time Projection Chamber (TPC) [35], and the Zero Degree Calorimeters
(ZDC) [36, 37].

The V0 detector is composed of two scintillator arrays placed along the beam axis (z) on
each side of the interaction point (z = 0): V0A at z = 340 cm and V0C at z = −90 cm. These
arrays cover the pseudorapidity regions 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C).
The V0 detector provides the minimum bias trigger, which is defined by the requirement
of signals in both V0A and V0C detectors in coincidence with a particle bunch crossing
corresponding to a beam-beam collision [33]. The V0 signals are proportional to the total
charge deposited in the scintillators, which correlates with the charged-particle multiplicity
in the V0 acceptance. The V0 detector is also used for centrality estimation [38] and for
removing beam induced (beam-gas) background based on timing information.

The ITS and TPC detectors are located within a solenoid that provides a maximum
0.5 T magnetic field parallel to the beam axis. The ITS is a six-layer silicon detector [34],
surrounding the beam pipe. The two innermost layers comprise the Silicon Pixel Detector
(SPD), located at average distances of 3.9 and 7.6 cm from the beam line with a pseudorapidity
coverage of |η| < 2 and |η| < 1.4, respectively. The track segments joining hits in the two SPD
layers are called tracklets. The number of tracklets (Ntracklets) is used to estimate the number
of primary charged particles produced in the collisions. The Silicon Drift Detector (SDD)
comprises the next two layers of the ITS. In addition to tracking, the SDD provide charged-
particle identification via the measurement of the specific ionization energy loss (dE/dx).
The TPC is the main tracking detector, covering the pseudorapidity range |η| < 0.9 with full
azimuthal coverage. By measuring drift time, the TPC provides three-dimensional space-point
information for each charged track, with up to 159 space points. Tracks originating from
the primary vertex can be reconstructed down to pT ∼ 100 MeV/c [32]. Charged-particle
multiplicity (Nch) and a proxy for the transverse energy (ET) measured with the TPC detector
are used to estimate the collisions centrality. Transverse energy is quantified as the summed
transverse mass (mT =

√

p2
T + m2

π), assuming the pion mass for all particles.
The ZDC measures the energy of the spectator nucleons in the forward direction, providing

a direct estimate of the average number of participating nucleons (〈Npart〉) in the collisions.
The 〈Npart〉 calculation is valid for central collisions (0–5%) where the contribution from
nuclear fragments that escape detection by the ZDC is negligible [38]. The neutron (ZNC
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and ZNA) calorimeters are placed at zero degrees with respect to the LHC beam axis to
detect forward going neutral particles at pseudorapidities |η| > 8.8, while the proton (ZPC
and ZPA) calorimeters are located externally to the outgoing beam vacuum tube. In this
study, the ZDC detector is only used to estimate the centrality dependent 〈Npart〉 [38].

3 Analysis procedure

Event and track selection

The present study uses data from Pb-Pb collisions at
√

sNN = 5.02 TeV collected during the
Run 2 data-taking period of the LHC in 2018. The primary-vertex position is reconstructed
using information from both the TPC and ITS detectors. A ±10 cm selection is applied to
the primary-vertex position along the beam axis to ensure uniform pseudorapidity coverage
in the SPD and TPC detectors at mid-rapidity. The total number of minimum bias collisions
analyzed after event and vertex selections amounts to about 193 million.

This analysis uses primary charged particles, which are defined as charged particles
produced directly in the collision with a mean proper lifetime τ that is larger than 1 cm/c, or
from decays of particles produced at the interaction point with τ shorter than 1 cm/c, excluding
daughters from long-lived weakly decaying hadrons and particles produced in interactions
with the detector material [39]. Tracks of primary charged particles are reconstructed using
the combined information from the ITS and TPC detectors. The track-selection criteria
are the same as the ones used in previous studies [25], and yield the best track quality and
minimal contamination from secondary particles. The reconstructed tracks are required to
have a minimum ratio between crossed rows and reconstructed space points in the TPC of
0.8. The fit quality for the ITS and TPC track points must satisfy χ2

ITS/Nhits < 36 and
χ2

TPC/Nclusters < 4, where Nhits and Nclusters are the number of hits in the ITS and the
number of reconstructed space points in the TPC associated to a track, respectively. To
limit the contamination from secondary particles, the distance-of-closest approach (DCA)
to the primary vertex in the transverse plane has to satisfy the pT-dependent selection:
|DCAxy| < A + B · pC

T , with A = 0.0182 cm, B = 0.035 cm, and C = −1.01. The pT is the
numerical value of the transverse momentum in units of GeV/c. A 2 cm selection is also
applied to the DCA along the z axis. Finally, primary charged particles are measured in
the kinematic range |η| ≤ 0.8 and 0.15 ≤ pT < 50 GeV/c.

Selecting ultracentral collisions

A primary objective of this analysis is to investigate the recently reported dependence of the
measured cs on the acceptance, kinematic selections, and the observable used to determine the
collision centrality [14, 30]. Table 1 summarizes the different centrality estimators, including
the kinematic selections on particles used for centrality estimation and for the measurement
of 〈pT〉 and 〈dNch/dη〉. Centrality estimators based on the number of SPD tracklets include
particles with transverse momenta starting from approximately 0.03 GeV/c and have no
upper pT limit. In contrast, the centrality estimators using the number of charged particles
reconstructed with the TPC are constrained to 0.15 ≤ pT < 50 GeV/c. This also applies
to the ET-based centrality estimators.
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Observable Label Centrality estimation 〈pT〉 and 〈dNch/dη〉 Minimum |∆η|

Nch in TPC
I |η| ≤ 0.8 |η| ≤ 0.8 0

II 0.5 ≤ |η| < 0.8 |η| ≤ 0.3 0.2

ET in TPC
III |η| ≤ 0.8 |η| ≤ 0.8 0

IV 0.5 ≤ |η| < 0.8 |η| ≤ 0.3 0.2

Ntracklets in SPD

V |η| ≤ 0.8 |η| ≤ 0.8 0

VI 0.5 ≤ |η| < 0.8 |η| ≤ 0.3 0.2

VII 0.3 < |η| < 0.6 |η| ≤ 0.3 0

VIII 0.7 ≤ |η| < 1 |η| ≤ 0.3 0.4

Nch in V0 IX −3.7 < η < −1.7 and 2.8 < η < 5.1 |η| ≤ 0.8 0.9

Table 1. The columns, from left to right, present: the observable used for centrality estimation,
the label identifying each estimator in the figures, the pseudorapidity interval used to measure event
activity for centrality classification, the pseudorapidity interval used to measure 〈pT〉 and 〈dNch/dη〉,
and the minimum pseudorapidity gap between the centrality estimation region and the region to
measure 〈pT〉 and 〈dNch/dη〉. The pT selections for charged tracks and tracklets are given in the text.

Significant autocorrelation effects are expected when the pseudorapidity intervals used
for centrality estimation and for 〈pT〉 and 〈dNch/dη〉 measurement completely overlap. This
occurs when event activity for centrality assessment is quantified in |η| ≤ 0.8, and 〈pT〉 and
〈dNch/dη〉 are measured within the same pseudorapidity window, as represented by labels I,
III, and V in table 1. Specifically, a multiplicity bias is expected with Nch-based estimators,
and an energy bias is expected with ET-based estimators.

A pseudorapidity gap is introduced between the centrality estimation region and the region
used for 〈pT〉 and 〈dNch/dη〉 measurement. This is particularly important for suppressing the
effects of particles from jet fragmentation. The fragmentation of jets into charged particles
with intermediate to high pT can increase both 〈pT〉 and 〈dNch/dη〉, which may not necessarily
reflect an increase in the entropy density of the QGP.

A pseudorapidity gap is introduced for centrality estimators based on the Nch in TPC
(II), ET in TPC (IV), Ntracklets in SPD (VI and VIII), and Nch in V0 (IX), as defined in
table 1. Notably, estimators labeled VIII and IX allow for the investigation of 〈pT〉 and
〈dNch/dη〉 dependence with a wider pseudorapidity gap.

This analysis also includes a case where the pseudorapidity region for centrality estimation
is adjacent to the region used for 〈pT〉 and 〈dNch/dη〉 measurement. This case utilizes the
Ntracklets in the SPD detector and is labeled as VII.

Previous ALICE publications employed a phenomenological approach to extract the aver-
age number of participating nucleons, 〈Npart〉, relying on a Glauber Monte Carlo calculation
convoluted with a negative binomial distribution (NBD) model for particle production to
fit the V0 amplitude distribution [38]. In this analysis, a data-driven method is employed
to measure the 〈Npart〉 in the 0–5% centrality interval.

Figure 1 illustrates the centrality dependence of 〈Npart〉, computed from the average
number of spectator nucleons reaching the ZDC detector [38]. The 〈Npart〉 is determined
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Figure 1. Average number of participating nucleons (〈Npart〉) as a function of centrality percentile in
Pb-Pb collisions at

√
sNN = 5.02 TeV. Data points are shown for centrality estimators based on Nch,

ET, Ntracklets within |η| ≤ 0.8, and Nch within −3.7 < η < −1.7 and 2.8 < η < 5.1. Uncertainty bars
represent the sum of statistical and systematic uncertainties, with the latter being the dominant source.
The systematic uncertainty is determined by varying the acceptance correction factors within their
uncertainties and assigning the maximum deviation from the nominal Npart value as the systematic
uncertainty.

using the following equation

〈Npart〉 = 2A −
(

〈EZNC〉
αZNC

+
〈EZNA〉
αZNA

+
〈EZPC〉
αZPC

+
〈EZPA〉
αZPA

)/

EA , (3.1)

where A = 208 is the mass number of the Pb nucleus, EA = 2.51 TeV is the beam energy
per nucleon, 〈EZNC〉, 〈EZNA〉, 〈EZPC〉, and 〈EZPA〉 represent the neutron and proton energies
deposited in the neutron and proton calorimeters on each side of the interaction point, and
αZNC = 0.933 ± 0.0165, αZNA = 0.931 ± 0.0164, αZPC = 0.5 ± 0.05, and αZPA = 0.52 ± 0.07

are the corresponding corrections for detection efficiency and acceptance, calculated with
Monte Carlo simulated events [40]. The uncertainties in the proton correction factors, which
encompass variations in beam optics during Pb-Pb data taking in 2018, are included in
the 〈Npart〉 estimation.

Figure 1 presents results for centrality estimators using Nch, ET, Ntracklets within |η| ≤ 0.8,
and Nch within −3.7 < η < −1.7 and 2.8 < η < 5.1. Similar results are obtained for the other
centrality estimators. The data demonstrate a consistent trend across all estimators, regardless
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of whether charged-particle multiplicity or transverse energy is used for event classification.
The 〈Npart〉 increases rapidly from the 4.5–5% to the 0.9–1% centrality interval and then
exhibits a slight saturation for the most central collisions. The relative increase of 〈Npart〉 in the
0–0.005% centrality interval compared to the 0.9–1% interval is approximately 1%, suggesting
that the volume of the QGP remains relatively constant in the ultracentral-collision limit.

The 〈Npart〉 values in the 0–0.1% centrality range, determined using the ET centrality
estimator, are systematically lower compared to those obtained with Nch centrality estimators,
indicating distinct selection biases. Specifically, collisions characterized by lower 〈Npart〉 tend
to exhibit lower Nch at mid-rapidity and greater impact-parameter fluctuations. The Nch-
based centrality estimators generally select higher 〈Npart〉 values for the same centrality
interval than the ET-based estimator. These selection biases are described in detail in
section 4 when examining the evolution of 〈pT〉 as a function of the centrality estimators.
Conversely, the Ntracklets-based centrality estimator yields the largest 〈Npart〉 increase from
1% to 0% centrality. Finally, the V0-based centrality estimator employs coarser binning
for the most ultracentral collisions.

The estimation of 〈Npart〉 with the V0-based centrality estimator yields a value of 388 for
the 0–5% centrality class, which agrees within 1% with a calculation using a NBD-Glauber
fit to the V0 amplitude distribution [41]. It is interesting to note that 〈Npart〉 does not reach
the asymptotic value of 416. This is expected, as previous calculations show the radius of
the overlap region saturates at around 6 fm [13], which is below the Pb nucleus radius of
6.7 fm. Therefore, reaching the asymptotic value is not possible, as the nuclei never fully
overlap in the ultracentral region explored.

Measuring 〈pT〉, 〈dNch/dη〉, and the higher-order moments of [pT]

The speed of sound is extracted from a fit to the correlation between the normalized event-
average transverse momentum, 〈pT〉norm = 〈pT〉/〈pT〉0–5%, and the normalized event-average
charged-particle density 〈dNch/dη〉norm = 〈dNch/dη〉/〈dNch/dη〉0–5%, where the normaliza-
tion constants are measured in the 0–5% centrality range. Both quantities are derived
from the centrality-dependent transverse-momentum spectra fully corrected for the accep-
tance, tracking inefficiency, and secondary-particle contamination. The spectra are measured
and corrected using standard methods [25], which involve employing HIJING event simu-
lations [42]. The generated particles are subsequently propagated through a simulation of
the ALICE detector using the GEANT 3 transport code [43]. The simulated particles are
reconstructed using the same algorithms as for the data. The corrections are determined
using a high-multiplicity sample, specifically collisions in the 0–5% centrality interval. The
tracking-inefficiency correction accounts for the particle composition of the charged-hadron
spectrum. The transverse-momentum dependent fractions of charged pions, kaons, protons,
and sigma baryons are used to refine the Monte Carlo-based tracking inefficiency correc-
tion [25]. The residual contamination from secondary particles (products of weak decays
and particles produced from interactions with the detector material) is estimated using
a data-driven approach based on a multi-template fit of the data DCAxy distributions in
transverse-momentum intervals. The DCAxy distributions are fitted with three Monte Carlo
templates representing the contribution from primary and secondary particles, with the latter
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originating from weak decays or from interactions with the detector material. The fraction
of secondary particles amounts to 12% at pT = 0.15 GeV/c and decreases asymptotically
to about 2% at pT = 3.5 GeV/c.

The 〈pT〉 and 〈dNch/dη〉 are derived from the pT spectra in the interval 0 ≤ pT ≤
10 GeV/c. Prior to the calculation, an extrapolation procedure is applied to estimate the
unmeasured yield in the interval between 0 ≤ pT < 0.15 GeV/c. The extrapolation procedure
closely follows that described in refs. [44, 45], where the transverse-momentum spectra are
fitted with a Boltzmann-Gibbs Blast-Wave model [46] in the interval between 0.15 ≤ pT ≤
1.5 GeV/c. The fit range is selected based on the χ2/ndf criterion. The extrapolated pT-
integrated yield amounts to approximately 9% of the yield in the 0 ≤ pT ≤ 10 GeV/c interval.

The statistical uncertainty on 〈pT〉 and 〈dNch/dη〉 is calculated by shifting each data
point by a fraction of its statistical uncertainty. The fraction is randomly drawn from a
Gaussian distribution with a standard deviation of 1, and new values of integrated yields and
mean transverse momenta are calculated. The procedure is repeated 1000 times, and the
standard deviations of 〈pT〉 and 〈dNch/dη〉 are used as the statistical uncertainties.

The reported higher-order moments of [pT], defined in (3.3)–(3.6), are the normal-
ized variance (knorm

2 = k2/k0–5%
2 ), skewness (knorm

3 = k3/k0–5%
3 ), standardized skewness

(γnorm
〈[pT]〉 = γ〈[pT]〉/γ0–5%

〈[pT]〉), intensive skewness (Γnorm
〈[pT]〉 = Γ〈[pT]〉/Γ0–5%

〈[pT]〉), and kurtosis (κnorm
〈[pT]〉 =

κ〈[pT]〉/κ0–5%
〈[pT]〉) as a function of 〈dNch/dη〉norm. The self-normalized quantities provide precise

measurements of the relative variations in ultracentral collisions with respect to their values
in the 0–5% centrality class since the common uncertainties between the numerator and
denominator cancel out.

The cumulants are genuine correlations unbiased by contributions from lower-order
correlations and are related to the properties of the distribution, such as the variance, skewness,
and kurtosis. The cumulants are constructed from the pT correlations, [p

(k)
T ], given by [47]

[p
(k)
T ] =

∑

i1 6=... 6=ik
wi1

. . . wik
pT,i1

. . . pT,ik
∑

i1 6=... 6=ik
wi1

. . . wik

, (3.2)

where the index runs over distinct k-particle tuplets, i1 6= . . . 6= ik, and wi are particle
weights to correct for non-uniform efficiencies of the detectors. The second-, third-, and
fourth-order pT-cumulants are

c2 = 〈[p(2)
T ]〉 − 〈[pT]〉2, (3.3)

c3 = 〈[p(3)
T ]〉 − 3〈[p(2)

T ]〉〈[pT]〉 + 2〈[pT]〉3, (3.4)

c4 = 〈[p(4)
T ]〉 − 4〈[p(3)

T ]〉〈[pT]〉 − 3〈[p(2)
T ]〉2 + 12〈[p(2)

T ]〉〈[pT]〉2 − 6〈[pT]〉4. (3.5)

The cumulants are then converted to their normalized, dimensionless form

k2 =
c2

〈[p(2)
T ]〉

, k3 =
c3

〈[p(3)
T ]〉

, γ〈[pT]〉 =
c3

c
3/2
2

, Γ〈[pT]〉 =
c3 · 〈[pT]〉

c2
2

, κ〈[pT]〉 =
c4 + 3c2

2

c2
2

.

(3.6)

The higher-order cumulants are measured at mid-rapidity (|η| < 0.8) and within 0.2 <

pT < 3 GeV/c as a function of the event-by-event charged-particle multiplicity density and
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transverse energy in the same kinematic phase space. The statistical uncertainty is estimated
using standard procedures [48], which employ the bootstrap method of random sampling
with replacement [49].

Systematic uncertainties

This section describes the calculation of the total systematic uncertainty on the average trans-
verse momentum, the event-by-event higher-order mean transverse-momentum cumulants, and
the average charged-particle density. Two sources of systematic uncertainty are considered.

The first is due to the used vertex and track selections. The effect of selecting events based
on the vertex position is studied by comparing the default results to the fully corrected 〈pT〉norm

and 〈dNch/dη〉norm obtained with an alternative vertex selection corresponding to ± 5 cm

and for the high-order cumulants corresponding to ± 7, and ± 9 cm. The average relative
systematic uncertainty is 0.02% for 〈pT〉norm and effectively zero for 〈dNch/dη〉norm in the
0–5% centrality range. However, in the higher-order mean transverse-momentum cumulants
analysis, it was found to be statistically insignificant based on the Barlow criterion [50].
The systematic uncertainty due to the track-selection criteria is investigated by varying the
selections employed on the tracks. In particular, the minimum ratio between crossed rows
and reconstructed space points in the TPC is shifted to 0.7 and 0.9 (the nominal is 0.8).
The χ2

ITS/Nhits is set to 25 and 49 (the nominal is 36), while the χ2
TPC/Nclusters is shifted

to 3 and 5 (the nominal is 4). The DCAz selection along the beam axis is also varied to 1
and 5 cm (the nominal is 2 cm). The relative systematic uncertainty for 〈pT〉norm is 0.21%
in the most central collisions and decreases with decreasing centrality. For the higher-order
cumulants, the quality of the reconstructed tracks is varied by increasing the number of
TPC space points from a default of 70 to 80 and 90, which leads to less than 0.5% variation
for the results based on mid-rapidity centrality estimators and less than a 3% variation for
the results based on forward centrality estimator. Additionally, a different track type is
considered, which includes additional tracks without hits in the innermost layer of the ITS to
recover a uniform distribution as a function of ϕ and η. This leads to a negligible variation
for mid-rapidity centrality estimators and around 3% for the forward centrality estimator.
Finally, the variations of the DCA in the longitudinal and transverse planes lead to differences
< 1% in the mid-rapidity-based cases and < 2% and < 3%, respectively, in the forward-based
cases. The systematic uncertainty is quantified as: Unc = 1 − (Xvar/Xnom)/(X0−5%

var /X0−5%
nom ),

where Xnom represents the nominal observable (average transverse momentum or higher-order
cumulants), and Xvar is the value of the same observable for a particular variation. The
second source of systematic uncertainty, which is only considered for the event-averaged mean
transverse momentum, is the choice of the Boltzmann-Gibbs Blast-Wave model to fit the
spectra during the extrapolation procedure. This is quantified by measuring the 〈pT〉norm

and 〈dNch/dη〉norm using alternative fit functions: the Lévy Tsallis [51], and Hagedorn [52]
parameterizations. The maximum 〈pT〉norm and 〈dNch/dη〉norm deviation with respect to the
results from using the nominal fit function is assigned as the systematic uncertainty.

Finally, the total systematic uncertainty is given by the sum in quadrature of the different
sources of systematic uncertainty. The dominant source of systematic uncertainty comes from
the vertex and track selections. The total relative systematic uncertainty on the 〈pT〉norm is
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Figure 2. Normalized spectra ratios as a function of the transverse momentum in Pb-Pb collisions at√
sNN = 5.02 TeV. Results are shown for centrality estimators based on Nch (top left), ET (top right),

Ntracklets (bottom left) within 0.5 ≤ |η| ≤ 0.8, and Nch within −3.7 < η < −1.7 and 2.8 < η < 5.1

(bottom right). Each panel displays normalized ratios for selected centrality classes. The centrality
percentile legend in the bottom left panel applies to mid-rapidity estimators, while the legend in the
bottom right panel applies to the forward estimator. Error bars represent statistical uncertainties.
Systematic uncertainties, which are largely canceled due to their common origin in both the numerator
and denominator, are not shown.

about 0.23% for the most central collisions and decreases to about 0.06% for collisions in the
4.5–5% centrality range. The total systematic uncertainty on the 〈dNch/dη〉norm is negligible.

4 Results and discussion

Figure 2 shows the ratios of normalized transverse-momentum spectra for the most central
collisions using the following centrality estimators: Ntracklets, Nch, ET ∈ 0.5 ≤ |η| ≤ 0.8, and
Nch ∈ −3.7 < η < −1.7 and 2.8 < η < 5.1. The normalized ratios are defined as

(d2N/〈dNch/dη〉dηdpT)Centrality percentile

(d2N/〈dNch/dη〉dηdpT)0–5%
. (4.1)

The normalized ratios are shown for the centrality estimators with pseudorapidity gap
between the region to estimate the collision centrality and the region to measure the pT

spectra. The charged-particle multiplicity based centrality estimators with the SPD and
TPC detectors show a yield depletion for pT . 1 GeV/c and a pronounced enhancement
in the 1 < pT < 6 GeV/c interval with a maximum at pT ≈ 4 GeV/c for the most central
collisions. This observation is reminiscent of radial flow [44, 53]. The radial-flow effects
are the strongest for the most central collisions and diminish towards less central events.
Furthermore, the normalized ratios in the 6–10 GeV/c transverse-momentum interval decrease,
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which suggests that any increase of the 〈pT〉 for ultracentral collisions with respect to the
average transverse momentum in the reference class (0–5%) is primarily attributed to the
entropy fluctuations and the hydrodynamic expansion of the QGP rather than to the effects
of jet fragmentation [13, 15]. The normalized pT-spectra ratios for events selected with the
V0 detector (bottom right panel in figure 2) show similar trends although the height of
the radial-flow bump is considerably smaller compared to the mid-rapidity estimators. The
spectra ratios with the ET-based centrality estimator (top right panel in figure 2) also show a
yield depletion at low transverse momentum, however they show a sharp ratio increase above
pT = 1 GeV/c for the most central bin, and do not go back below 1 for pT & 5 GeV/c. This
observation suggests a tight short-range correlation between the activity in the centrality
region and the region where the pT spectrum is measured, leading to a pT bias expected to
give a higher 〈pT〉 compared with the one found using the Nch-based centrality estimators.

Measured charged-particle multiplicity distributions from central collisions are well
described by a Gaussian distribution at fixed-impact parameter (b) [54]. The charged-particle
density at the knee is denoted by 〈dNch/dη〉knee, and it is defined as the mean value of the
charged-particle density distribution for collisions with b = 0, while the standard deviation
of this distribution is represented by σknee [54]. The mean and standard deviation at the
knee are determined by fitting the 〈dNch/dη〉norm-dependent event fraction distribution
with a model for the multiplicity distribution for fixed-impact parameter. Importantly, this
model does not rely on the concept of participant nucleons or any microscopic model of
the collision. The 〈dNch/dη〉norm and σ/σ0−5% at the knee are denoted by 〈dNch/dη〉norm

knee

and σnorm
knee , respectively. The event fraction distribution, P (〈dNch/dη〉norm), is modeled by

the integral of P (〈dNch/dη〉norm|b) over all values of b, where P (〈dNch/dη〉norm|b) is the
probability of 〈dNch/dη〉norm for fixed-impact parameter given by a Gaussian distribution.
Each Gaussian is characterized by the normalized mean, 〈dNch/dη〉norm(b) and the normalized
standard deviation, σnorm(b). The employed parametric forms are 〈dNch/dη〉norm(b) =

〈dNch/dη〉norm
knee exp(−a1b − a2b2 − a3b3) and σnorm(b) = σnorm

knee , where a1, a2, and a3 are free
parameters. Ref. [54] proposes an scenario where σnorm(b) ∝ 〈dNch/dη〉norm(b), which is
more suitable to describe the event fraction distribution of central and semicentral collisions.
Since, this study focuses on ultracentral collisions, using σnorm(b) = σnorm

knee describes well
the event fraction distribution of central collisions. Figure 3 illustrates the event fraction
distribution as a function of 〈dNch/dη〉norm derived from collisions selected with the Nch-, ET-,
and V0-based centrality estimators. For mid-rapidity estimators, the region for measuring
〈dNch/dη〉norm completely overlaps with the region for assessing collision centrality. This
means both quantities are determined within |η| ≤ 0.8. In figure 3, dashed vertical lines
indicate the position of 〈dNch/dη〉norm

knee . Table 2 provides a list of σnorm
knee and 〈dNch/dη〉norm

knee

values for all the studied centrality estimators. Fits to the data yielded χ2/ndf values equal
to 1.232, 0.538, and 0.028 for the Nch-, ET-, and V0-based centrality estimators, respectively.

The speed of sound, c2
s is extracted by fitting the 〈pT〉norm versus 〈dNch/dη〉norm corre-

lation to the parameterization proposed in ref. [13], based on the relation 〈pT〉 ∝ sc2
s with

s representing the entropy density

〈pT〉norm =

(

〈dNch/dη〉norm

f(〈dNch/dη〉norm, 〈dNch/dη〉norm
knee , σnorm

knee )

)c2
s

, (4.2)
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Figure 3. Event fraction distribution as a function of the normalized charged-particle density in
Pb-Pb collisions at

√
sNN = 5.02 TeV. Centrality classification is based on Nch (red circles) and ET

(blue squares) in |η| ≤ 0.8, and on forward Nch for the V0 (black crosses). 〈dNch/dη〉norm is derived
from the extrapolated spectra in |η| ≤ 0.8. Gray curves represent fits using the model from ref. [54].
The positions of 〈dNch/dη〉norm

knee , indicated by dashed vertical lines, are 1.137, 1.120, and 1.111 for the
Nch-, ET-, and V0-based centrality estimators, respectively.

Label 〈dNch/dη〉norm
knee σnorm

knee Speed of sound (c2
s )

I 1.1370 ± 0.0004 (stat.) 0.0348 ± 0.0005 (stat.) 0.1369 ± 0.0007 (stat.) ± 0.0015 (syst.)
II 1.1040 ± 0.0021 (stat.) 0.0202 ± 0.0006 (stat.) 0.1795 ± 0.0018 (stat.) ± 0.0083 (syst.)

III 1.1200 ± 0.0767 (stat.) 0.0359 ± 0.0033 (stat.) 0.4374 ± 0.0006 (stat.) ± 0.0184 (syst.)
IV 1.1010 ± 0.0131 (stat.) 0.0201 ± 0.0006 (stat.) 0.3058 ± 0.0015 (stat.) ± 0.0143 (syst.)

V 1.1450 ± 0.0001 (stat.) 0.0268 ± 0.0006 (stat.) 0.1773 ± 0.0013 (stat.) ± 0.0066 (syst.)
VI 1.1090 ± 0.0006 (stat.) 0.0185 ± 0.0012 (stat.) 0.1873 ± 0.0025 (stat.) ± 0.0143 (syst.)
VII 1.1120 ± 0.0026 (stat.) 0.0183 ± 0.0023 (stat.) 0.2083 ± 0.0024 (stat.) ± 0.0249 (syst.)
VIII 1.1248 ± 0.0169 (stat.) 0.0227 ± 0.0020 (stat.) 0.1473 ± 0.0023 (stat.) ± 0.0119 (syst.)

IX 1.1144 ± 0.0024 (stat.) 0.0186 ± 0.0023 (stat.) 0.1146 ± 0.0028 (stat.) ± 0.0065 (syst.)

Table 2. Values of σnorm
knee and 〈dNch/dη〉norm

knee obtained from fitting the event fraction distribution
shown in figure 3. The fit parameters are given for all the centrality estimators. The last column
lists the values of c2

s for all the centrality estimators in natural units. These values are obtained from
a fit to the correlation between 〈pT〉norm and 〈dNch/dη〉norm using eq. (4.2). The definition of each
estimator is given in table 1.
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with

f(〈dNch/dη〉norm, 〈dNch/dη〉norm
knee , σnorm

knee ) = 〈dNch/dη〉norm

−σnorm
knee

√

2

π

exp

(

− (〈dNch/dη〉norm−〈dNch/dη〉norm

knee
)2

2(σnorm

knee
)2

)

erfc

(

〈dNch/dη〉norm−〈dNch/dη〉norm

knee√
2σnorm

knee

) .

(4.3)

The values of 〈dNch/dη〉norm
knee and σnorm

knee are fixed in eq. (4.3) using the values reported
in table 2. Consequently, the function presented in eq. (4.3) depends on 〈dNch/dη〉norm.
The f(〈dNch/dη〉norm) has a rather simple behavior: f(〈dNch/dη〉norm) = 〈dNch/dη〉norm

in the limit when 〈dNch/dη〉norm is smaller than the ratio of particle densities at the knee.
Thus, eq. (4.2) becomes, 〈pT〉norm = 1 in this limit. Conversely, when 〈dNch/dη〉norm is
larger than the ratio of particle densities at the knee, f(〈dNch/dη〉norm) ≈ 〈dNch/dη〉norm

knee ,
and eq. (4.2) becomes: 〈pT〉norm ∝ (〈dNch/dη〉norm/〈dNch/dη〉norm

knee )c2
s . For example, for the

V0-based centrality estimator, f(〈dNch/dη〉norm) is equal to 1.099 at the knee.
Table 2 presents the obtained c2

s values, along with their statistical and total systematic
uncertainties, for each centrality estimator. The statistical uncertainty is calculated by
independently shifting each 〈pT〉norm data point by a fraction of its statistical uncertainty.
Each fraction is randomly drawn from a standard normal distribution, and each new 〈pT〉norm

versus 〈dNch/dη〉norm correlations is refitted. This procedure is repeated a thousand times,
resulting in a distribution of c2

s values. The c2
s distribution is then fitted with a Gaussian

function, and its variance is associated with the statistical uncertainty on c2
s . Two sources

of systematic uncertainty are considered. The first source arises from the choice of the
Boltzmann-Gibbs Blast-Wave [46] model to extrapolate the pT spectra. To assess this, the
c2

s is extracted using alternative models: the Lévy-Tsallis [51] and Hagedorn [52] (described
in section 3). The maximum difference between c2

s values obtained using the nominal and
alternative models is assigned as the systematic uncertainty. The second source stems from
the imprecise measurement of σnorm

knee and 〈dNch/dη〉norm
knee . This is assessed by incoherently

shifting these parameters around their nominal values. The shift amount is determined by
their uncertainty multiplied by a random factor drawn from a Gaussian distribution with
a mean of zero and standard deviation of one. Then, the 〈pT〉norm distribution is fit for
each shift. This process is repeated a thousand times, generating a distribution of c2

s values.
The standard deviation of this distribution, fitted with a Gaussian function, is assigned
as the systematic uncertainty due to the imprecise measurement of knee parameters. The
total systematic uncertainty on the value of c2

s is obtained by summing in quadrature the
systematic uncertainties from model dependence and knee parameter uncertainty.

Figure 4 shows the 〈pT〉norm as a function of 〈dNch/dη〉norm for the different centrality
estimators with fits to the data using eq. (4.2). The top left panel shows the results with
pseudorapidity gap: centrality estimated in 0.5 ≤ |η| < 0.8, and 〈pT〉 and 〈dNch/dη〉 measured
in |η| ≤ 0.3. The event activity is quantified using Nch and Ntracklets in the TPC and SPD
detectors, respectively. Both centrality estimators give similar results suggesting that the yield
of particles with transverse momentum below pT = 0.15 GeV/c has a negligible impact on
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Figure 4. Correlation between 〈pT〉norm and 〈dNch/dη〉norm in Pb-Pb collisions at
√

sNN = 5.02 TeV.
Each panel shows the results for different centrality estimators defined in table 1. 〈pT〉norm and
〈dNch/dη〉norm are derived from the pT spectra within the 0–10 GeV/c interval for all centrality
estimators. For ET-based centrality estimators, the y-axis scale should be read from the axis located
to the right of the bottom right panel. Lines on top of the data represent fits using eq. (4.2). The
fit range spans from 1 to the last point. Each panel displays the corresponding c2

s values with their
total uncertainty, determined by summing the statistical and systematic uncertainties in quadrature.
Vertical uncertainty bars in each point represent the combined statistical and systematic uncertainty.
The total uncertainty in the 〈dNch/dη〉norm is negligible and therefore not visible.

selecting collisions with similar entropy densities when using these two centrality estimators.
This is further supported by the similar c2

s values obtained with both estimators: c2
s is equal to

0.1873 ± 0.0145 and 0.1795 ± 0.0086 for the SPD and TPC centrality estimators, respectively.

The top right panel of figure 4 presents the results obtained with varying pseudorapidity
gaps (0, 0.4, and 0.9 units). 〈pT〉norm with zero gap rises at a steeper rate compared to
the cases with a gap, while 〈dNch/dη〉norm remains relatively constant regardless of the
presence of the pseudorapidity gap. This can be attributed to the finite width of jets, whose
fragmentation products can extend into the pseudorapidity region where 〈pT〉 is measured.
The rise rate of 〈pT〉norm is seen to decrease with increasing pseudorapidity gap, yielding c2

s

values of 0.2083 ± 0.0250 (no gap), 0.1873 ± 0.0145 (gap of 0.2 units) and 0.1473 ± 0.0122

(gap of 0.4 units), for the three cases using the Ntracklets centrality estimator. While it would
be interesting to investigate larger pseudorapidity gaps with the SPD detector, the strong
dependence of cluster reconstruction efficiency on the primary-vertex position along the beam
axis limits the maximum achievable pseudorapidity selection to one unit. The maximum
pseudorapidity gap is achieved using the V0 detector. The V0 amplitude-based centrality
estimator exhibits a narrower range in 〈dNch/dη〉norm, reaching only up to 1.1, compared to
the particle density obtained with SPD and TPC centrality estimators. It is known that the
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V0 detector has a better centrality resolution than central-barrel detectors [38]. 〈pT〉norm

with the V0 centrality estimator also increases, albeit at a lower rate, yielding the lowest
speed of sound, c2

s = 0.1146 ± 0.0072. Accordingly, the data suggest a decreasing trend in
the extracted c2

s with increasing pseudorapidity gap width.
The bottom left panel of figure 4 shows 〈pT〉norm using multiplicity-based centrality

estimators (Nch in the TPC and Ntracklets in the SPD). In this case, there is no pseudorapidity
gap, and the pseudorapidity regions for centrality estimation and transverse-momentum
spectra measurement fully overlap (|η| ≤ 0.8). The 〈dNch/dη〉norm reach with the Nch

estimator is the highest among all centrality estimators. This is attributed to the fact that
the same particles are used for both centrality determination and pT spectra measurement
within the same pseudorapidity region. Using overlapping pseudorapidity intervals introduces
a multiplicity bias. Local fluctuations combined with this bias, including measurement
uncertainties, lead to a broader distribution along the 〈dNch/dη〉norm axis, while 〈pT〉norm

remains relatively unchanged, resulting in a lower extracted c2
s (0.1369 ± 0.0017 compared to

0.1795 ± 0.0086 with a pseudorapidity gap of 0.2 units). The 〈pT〉norm distribution obtained
using the Ntracklets-based centrality estimator with full overlap also appears to be stretched
along the 〈dNch/dη〉norm axis compared to the cases with pseudorapidity gap. This results in
a steeper 〈pT〉norm and a larger extracted c2

s compared to the Nch estimator. These results
can be partially explained by the overlap between SPD tracklets and global tracks, causing
a significant multiplicity bias but still smaller than the one introduced by estimating both
centrality and 〈dNch/dη〉norm using the same pool of global tracks.

The bottom right panel of figure 4 shows the results obtained using the transverse energy-
based centrality estimators. The centrality estimator with full pseudorapidity overlap (|η| ≤
0.8) introduces a transverse-momentum bias leading to the largest 〈pT〉norm. Furthermore, the
〈dNch/dη〉norm reaches 1.18, suggesting an additional multiplicity bias due to jet fragmentation.
Introducing a 0.2 unit pseudorapidity gap reduces 〈dNch/dη〉norm to around 1.14, consistent
with the values obtained using SPD and TPC multiplicity-based estimators with the same gap.
Moreover, the 〈pT〉norm rise becomes less steep compared to the case with full overlap, although
the extracted c2

s is higher than that obtained with multiplicity-based estimators. This could be
attributed to an interplay between the finite width of jets and the transverse-momentum bias.
Finally, the different 〈pT〉norm distributions measured using the multiplicity-based centrality
estimators exhibit a shallow local minimum at 〈dNch/dη〉norm ≈ 1.04. This feature is less
noticeable when the ET-based centrality estimator is employed. The minimum corresponds
to collisions in the 0.9–1% centrality range. In ref. [14], it is discussed that while the average
entropy density, average temperature at hydrodynamic initialization, QGP size, and impact
parameter all vary monotonically near 1% centrality, the impact parameter essentially stops
changing below 1% centrality. This observation is consistent with the observed centrality
percentile at which the plateau in the 〈Npart〉 distribution commences (see figure 1). Therefore,
the local minimum could be attributed to the impact parameter ceasing to vary, or varying
only minimally.

Appendix A shows the correlation between 〈pT〉norm and 〈dNch/dη〉norm using the ET-
based and Nch-based centrality estimators. In both cases, a minimum pseudorapidity gap of
0.2 units was maintained between the pseudorapidity region used for centrality estimation and
the region used to measure 〈pT〉norm and 〈dNch/dη〉norm. The ET-based centrality estimator

– 15 –



J
H
E
P
1
1
(
2
0
2
5
)
0
7
6

0.9 1 1.1 1.2

1

1.01

1.02

1.03  0.6≤| η 0.3 < |∈ trackletsNVII, 

0.9 1 1.1 1.2

1

1.01

1.02

1.03  1≤| η |≤ 0.7 ∈ trackletsNVIII, 

0.9 1 1.1 1.2

1

1.01

1.02

1.03
 < 5.1ηand 2.8 < 

 < -1.7η -3.7 < ∈ chNIX, 

1

1.01

1.02

1.03

Data
HIJING
Trajectum

 0.8≤| η |≤ 0.5 ∈ TEIV, 

1

1.01

1.02

1.03  0.8≤| η |∈ trackletsNV, 

1

1.01

1.02

1.03  0.8≤| η |≤ 0.5 ∈ trackletsNVI, 

1

1.01

1.02

1.03
ALICE

 = 5.02 TeVNNsPb, −Pb

 0.8≤| η |∈ chNI, 

1

1.01

1.02

1.03  0.8≤| η |≤ 0.5 ∈ chNII, 

1

1.01

1.02

1.03  0.8≤| η |∈ TEIII, 

0-5%
〉η/d

ch
Nd〈/〉η/d

ch
Nd〈

0
-5

%
〉

T
p〈/〉

T
p〈

Figure 5. Correlation between 〈pT〉norm and 〈dNch/dη〉norm in Pb-Pb collisions at
√

sNN = 5.02 TeV.
Each panel shows the results for different centrality estimators defined in table 1. The data are
compared with predictions from the HIJING [42] and Trajectum [55–57] models, represented by
continuous and dashed lines, respectively. The bands around the Trajectum predictions represent the
sum in quadrature of the statistical and systematic uncertainties, with the latter being the dominant
source. For the HIJING predictions, only the statistical uncertainty is shown (not visible in the plot).

uses charged particles with a lower pT threshold of 0.15 GeV/c, while the Nch-based centrality
estimator uses a lower pT threshold of 0.45 GeV/c. This selection is motivated by a prediction
from the Trajectum model [55–57]: defining an Nch-based centrality estimator using charged
particles with a relatively high pT threshold selects collisions with a higher 〈pT〉norm, compared
to using a lower pT threshold. A fit to the 〈pT〉norm versus 〈dNch/dη〉norm correlation with
the Nch-based centrality estimator and with a minimum pseudorapidity gap of 0.2 units
yields an extracted c2

s value that is about 27% higher when the lower pT threshold is set to
0.45 GeV/c compared to the value obtained using Ntracklets for centrality estimation with a
lower pT threshold of 0.03 GeV/c and with the same pseudorapidity gap. Furthermore, it is
shown that the extraction of the c2

s is robust against variations in the fit range.

Figure 5 shows the 〈pT〉norm versus 〈dNch/dη〉norm correlation in data compared to
predictions by the HIJING [42] and Trajectum [55–57] models for the different centrality
estimators defined in table 1. The HIJING model implements an independent source particle
production picture, where each collision is modeled as a superposition of independent nucleon-
nucleon collisions, neglecting interactions between the sources. Trajectum incorporates
a generalized TRENTo [58] initial stage, followed by a viscous hydrodynamic stage and
hadronization using SMASH [59]. It utilizes a continuous hybrid equation of state (EoS) that
interpolates between the hadron resonance gas (HRG) at low temperatures and the lattice
result by HotQCD at high temperatures [17]. Samples of ultracentral collisions are simulated
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using different EoS parameter settings [14]. The dashed lines in figure 5 represent the average
Trajectum predictions, with the bands indicating the sum in quadrature of the statistical and
systematic uncertainties. The latter are given by the one-standard-deviation uncertainty due
to variations in EoS parameters. Trajectum predictions for 〈pT〉norm versus 〈dNch/dη〉norm

are in good agreement with the data, reproducing the minimum and the subsequent rise
in 〈pT〉norm and capturing the experimental biases of all centrality estimators, in particular
the rapid rise of 〈pT〉norm observed with the ET-based estimator. HIJING predicts a steady
increase in 〈pT〉norm with increasing 〈dNch/dη〉norm for all centrality estimators, with a steeper
rise with the ET-based estimator with no pseudorapidity gap (less pronounced using the
same estimator with a gap of 0.2 units). In the ultracentral-collision limit the ET-based
estimator clearly favors events with an enhanced production of multiple jets [42], leading
to a larger 〈pT〉norm. Since HIJING does not include QGP formation, its reproduction of
the observed selection biases suggests that the rise of the 〈pT〉 in ultracentral collisions may
not directly probe entropy fluctuations in the QGP.

Figure 6 illustrates the dependence of the extracted c2
s on the pseudorapidity gap between

the centrality determination region and the transverse-momentum spectra measurement region.
The highest c2

s value is observed with the transverse energy-based centrality estimation and
full pseudorapidity overlap. This configuration biases 〈pT〉norm, potentially introducing a
jet-fragmentation bias. Introducing a pseudorapidity gap in the transverse-energy centrality
estimation reduces both 〈pT〉norm and 〈dNch/dη〉norm, leading to a lower c2

s of approximately
0.3. However, this value remains significantly higher than those obtained with multiplicity-
based estimators, likely due to the contribution of intermediate-to-high pT particles from
jet fragmentation to the spectra. Notably, the multiplicity-based centrality estimator with
the SPD and full overlap yields a c2

s (0.1773 ± 0.0068) similar to that obtained with a
larger pseudorapidity gap (0.1873 ± 0.0145). This similarity arises from a multiplicity bias
in the no-gap case, which stretches the 〈pT〉norm versus 〈dNch/dη〉norm distribution along
the 〈dNch/dη〉norm axis, resulting in a lower extracted c2

s . When the centrality and the
pT spectrum are determined in non-overlapping regions, the c2

s found with the Ntracklets

centrality estimator decreases with increasing pseudorapidity gap. This dependence on the
pseudorapidity gap is further supported by the even lower c2

s values obtained with the V0
centrality estimator.

Figure 6 also presents the extracted c2
s value by the CMS collaboration [21], where

the centrality is determined in the forward rapidity region (3 ≤ |η| ≤ 5) using the top
0–5% most energetic events. The 〈pT〉norm versus 〈dNch/dη〉norm correlation is measured in
|η| < 0.5. CMS reports a c2

s = 0.241±0.002 (stat.) ± 0.016 (syst.) in natural units, consistent
with Lattice QCD expectations. This value falls between the c2

s values obtained using the
charged-particle multiplicity and transverse-energy centrality estimators in ALICE data.
The CMS experimental setup employs a significantly wider pseudorapidity gap between the
centrality and observable pseudorapidity regions compared to ALICE, effectively suppressing
short-range 〈pT〉–〈pT〉 correlations due to jet finite width. However, even with this gap, the
ET-based centrality estimator remains sensitive to long-range 〈pT〉–〈pT〉 correlations [60].

Figure 6 shows the extracted c2
s values using simulated events from the Trajectum [55–57]

and HIJING [42] models. The model values are extracted by fitting the predicted 〈pT〉norm

versus 〈dNch/dη〉norm correlation using the same procedure and centrality estimators as for
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Figure 7. Higher-order moments of [pT] measured for events selected with the Nch (I) and ET (III)
centrality estimators at mid-rapidity in Pb-Pb collisions at

√
sNN = 5.02 TeV are shown in the left

and right columns, respectively. The knorm
2 distributions are fitted with a two-component model

(continuous gray line), where the estimated Geometrical component is also shown (dotted-dashed blue
line) [27]. The curves for the knorm

3 , γnorm
〈[pT]〉, Γnorm

〈[pT]〉, and κnorm
〈[pT]〉 distributions correspond to predictions

based on the fit of knorm
2 [26].
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estimator. Results using the V0M centrality estimator are similar to those from the mid-
rapidity multiplicity-based centrality estimator and are shown in appendix B.

Under the assumption of independent nucleon-nucleon particle production, higher-order
moments of [pT] are expected to depend on collision centrality and system size, as characterized
by Npart. The nth-order cumulant is expected to scale as ∝ 1/N

(n−1)
part , or equivalently as

∝ 1/N
(n−1)
ch [61, 62]. Consequently, knorm

2 ∝ 1/Npart. The knorm
2 distributions in panels

(a) and (b) exhibit a decreasing trend with increasing 〈dNch/dη〉norm. While the knorm
2

decreases proportionally to 1/〈dNch/dη〉norm with the Nch-based centrality estimator, the
decrease is more rapid with the ET-based estimator for 〈dNch/dη〉norm . 1.1. The non-
trivial evolution of knorm

2 with the ET estimator can be attributed to the interplay of two
effects: jet-fragmentation bias, arising from the overlap of centrality assessment and knorm

2

measurement within the same pseudorapidity window, and volume fluctuations, stemming
from the centrality-dependent 〈Npart〉 (see figure 1). The ET estimator selects collisions with
lower 〈Npart〉 compared to the Nch estimator, resulting in larger volume fluctuations.

For a fixed 〈dNch/dη〉, the fluctuations of [pT], quantified by its variance, Var([pT]|〈dNch/dη〉),
arise from both volume and quantum fluctuations. Volume fluctuations originate from impact
parameter variations and are referred to as Geometrical fluctuations. Additionally, [pT] can
fluctuate even when both 〈dNch/dη〉 and b are constant, these are referred to as Intrinsic
fluctuations. The total variance can be expressed as Var([pT]|〈dNch/dη〉) = (〈[pT]

2〉b −
〈[pT]〉2

b) + 〈Var([pT]|〈dNch/dη〉)〉b, where [pT] represents the expected value of [pT] as a
function of b and 〈dNch/dη〉, and 〈· · · 〉 denotes an average over b. The first term describes
Geometrical fluctuations, while the second term represents the Intrinsic ones [27].

To fit the knorm
2 distribution using the two-component model described above, it is

assumed that the joint probability of 〈dNch/dη〉norm and [pT]norm at fixed-impact parameter
is given by a two-dimensional Gaussian [27] distribution. This distribution is defined by five
parameters: the mean and variance of [pT]norm and 〈dNch/dη〉norm, denoted by [pT]norm(b),
〈dNch/dη〉norm(b), Var([pT]norm|b), Var(〈dNch/dη〉norm|b), and the correlation coefficient, r(b),
between [pT]norm and 〈dNch/dη〉norm. The 〈dNch/dη〉norm(b) and Var(〈dNch/dη〉norm|b), or
equivalently, σnorm(b), are obtained from fitting the event fraction distribution as a function of
〈dNch/dη〉norm, as described earlier (see figure 3). Since the event-average transverse momen-
tum is independent of collision centrality for the 30% most central collisions [63], [pT]norm(b)

is assumed to be independent of b and is denoted by [pT]norm
0. The variance of [pT]norm

for fixed b is given by Var([pT]norm|b) = (1 − r(b)2)σ2
[pT](〈dNch/dη〉norm

knee /〈dNch/dη〉norm(b))α,
where σ[pT] is the standard deviation of [pT]norm for collisions at zero-impact parameter, and
α describes the decrease of the variance as a function of impact parameter. The parameters
σ[pT], α, and the correlation coefficient are treated as fit parameters and are assumed to
be independent of the impact parameter.

Fits to the knorm
2 distributions are performed separately for the Nch- and ET-based

centrality estimators. The obtained values with the Nch estimator are: σ[pT] = 4.780,
α = 1.613, and r = 0.921, while for the ET-based centrality estimator they are: σ[pT] =

14.539, α = 2.512, and r = 0.985. The most significant difference between the two sets of
parameters is observed for σ[pT], which is about three times larger for the ET-based centrality
estimator than for the Nch-based estimator. Fits to the data suggest that the ET-based
centrality estimator preferentially selects events where [pT] fluctuations primarily originate
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from Geometrical fluctuations. The relative contribution of the Geometrical component
to [pT] fluctuations decreases from 18% (55%) at 〈dNch/dη〉norm ≈ 1 to approximately 6%
(24%) at 〈dNch/dη〉norm ≈ 1.14 for the Nch-(ET-)based centrality estimators. In contrast,
the model suggests that [pT] variations primarily originate from Intrinsic fluctuations when
using the Nch-based centrality estimator. However, in the ultracentral-collision limit, the
variance decreases dramatically, which can be explained by a significant suppression of the
Geometrical component in this regime.

The ATLAS collaboration has reported higher-order moments of [pT] in ultracentral
collisions selected using the forward ΣET [22]. The ATLAS results exhibit closer qualitative
agreement with those obtained in this study for the ET-based centrality estimator, further
supporting the dominance of the Geometrical component.

Panels (c) to (h) of figure 7 show the knorm
3 ((c) and (d)), γnorm

〈[pT]〉 ((e) and (f)), and Γnorm
〈[pT]〉

((g) and (h)). Under the assumption of independent nucleon-nucleon particle production,
knorm

3 is expected to scale as knorm
3 ∝ 1/N2

part and γnorm
〈[pT]〉 ∝ 1/

√

Npart, while the centrality
dependence of Γnorm

〈[pT]〉 is expected to be milder than for γnorm
〈[pT]〉 [61].

Skewness (knorm
3 ) and kurtosis encode the non-Gaussian properties of the event-by-event

[pT] distribution. With the Nch-based centrality estimator, knorm
3 decreases with increasing

centrality, while a slight increase is observed around 〈dNch/dη〉norm ≈ 1.04. The standardized
(γnorm

〈[pT]〉) and intensive (Γnorm
〈[pT]〉) skewness distributions exhibit an increase with 〈dNch/dη〉norm,

reaching a maximum around the knee region, followed by a decreasing trend towards the
ultracentral-collision limit. The results with the ET-based centrality estimator exhibit similar
features, but with more pronounced maxima. The observed 〈dNch/dη〉norm dependence
deviates from the expectations under the assumption of independent particle sources. The
model predictions, overlaid on the distributions, demonstrate a dependence on the centrality
estimator. The model accurately predicts the observed increase and the maximum in the
standardized and intensive skewness distributions, except for the intensive skewness with
the ET-based centrality estimator.

Panels (i) and (j) of figure 7 show the kurtosis (κnorm
〈[pT]〉) of the event-by-event [pT]

distribution for Nch and ET centrality estimators, respectively. The kurtosis decreases slightly
below 〈dNch/dη〉norm = 1 before increasing towards the ultracentral collisions. While the
charged-particle multiplicity results show only a modest increase in the ultracentral-collision
limit, the ET-based results exhibit a peak around 〈dNch/dη〉norm ≈ 1.1. The predicted
κnorm

〈[pT]〉 for both centrality estimators show a dependence on 〈dNch/dη〉norm peaking below
〈dNch/dη〉norm

knee , with a shape very different from the relatively flat evolution of the data
for the entire 〈dNch/dη〉norm.

A key limitation of the model lies in its assumption of a Gaussian distribution of [pT]

at fixed-impact parameter. Since [pT] is a positive quantity, its distribution is expected to
exhibit positive skewness and kurtosis. This inherent property of the [pT] distribution will
contribute to the observed skewness and kurtosis [26].

Figure 8 compares the self-normalized higher-order moments of [pT] with predictions
from the HIJING [42] and Trajectum [55–57] model. Predictions are shown for the Nch-
and ET-based centrality estimators at mid-rapidity. Within the independent source pic-
ture implemented in the HIJING model, the nth-order cumulant is expected to scale as
∝ 1/N

(n−1)
ch [62]. However, this approach fails to accurately describe the event-to-event
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Figure 8. Higher-order moments of [pT] for events selected with the Nch (I) and ET (III) centrality
estimators at mid-rapidity in Pb-Pb collisions at

√
sNN = 5.02 TeV are shown in the left and

right columns, respectively. The data are compared with predictions from the HIJING [42] and
Trajectum [55–57] models. The width of the bands represents the statistical uncertainty in the
HIJING predictions. The bands around the Trajectum predictions represent the sum in quadrature
of the statistical and systematic uncertainties, with the latter being the dominant source.
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fluctuations of the average transverse momentum observed across the range from peripheral
to central collisions [64]. The shape of the predicted knorm

2 for both centrality estimators
qualitatively agrees with the data. Notably, HIJING predicts a more rapid decrease of knorm

2

for 〈dNch/dη〉norm & 1 with the ET-based centrality estimator, similar to what is seen in
data. However, the model fails to reproduce the observed bumpy structure in the knorm

3 ,
γnorm

〈[pT]〉, and Γnorm
〈[pT]〉 distributions around 〈dNch/dη〉norm ≈ 1.08. Finally, HIJING agrees with

the kurtosis data below 〈dNch/dη〉norm = 1 but underestimates the rise in the ultracentral
collision regime. The hydrodynamic Trajectum model accurately describes the higher-order
[pT] fluctuations for the Nch-based centrality estimator and captures the decrease in knorm

2 ,
the peaks in γ〈[pT]〉/γ0–5%

〈[pT]〉 and Γ〈[pT]〉/Γ0–5%
〈[pT]〉, and the rise in κ〈[pT]〉/κ0–5%

〈[pT]〉 in ultra-central
collisions. The ET-based predictions rely on a considerably smaller sample than the Nch-based
ones. Consequently, the substantial uncertainties in the Trajectum model’s predictions for
skewness and kurtosis preclude drawing conclusions. Nevertheless, the rapid decrease of
knorm

2 is well described in the ultracentral-collision limit.

5 Conclusions

This study investigates the dependence of 〈pT〉norm on 〈dNch/dη〉norm measured at mid-rapidity
in ultracentral Pb-Pb collisions at

√
sNN = 5.02 TeV using different centrality estimators

based on Nch and ET. Our findings reveal that the ET-based centrality estimator leads to a
steeper and higher 〈pT〉norm, potentially influenced by jet-fragmentation biases. Utilizing the
Nch-based centrality estimator mitigates these biases, and introducing a pseudorapidity gap
between the centrality and 〈pT〉norm measurement regions further reduces their impact. The
extracted c2

s is found to strongly depend on the exploited centrality estimator and ranges
between 0.1146 ± 0.0028 (stat.) ± 0.0065 (syst.) and 0.4374 ± 0.0006 (stat.) ± 0.0184 (syst.) in
natural units. Based on HIJING-model predictions, which show a steady rise of 〈pT〉 with
〈Nch〉, the observed increase of 〈pT〉norm in the ultracentral-collision limit cannot be solely
attributed to fluctuations in the initial state. Consequently, the extracted c2

s may not directly
correspond to the speed of sound in the QGP. These measurements confirm a prediction
from the Trajectum hydrodynamic model [14], and necessitate a reevaluation of how the
speed of sound can be extracted from heavy-ion data.

This study also presents measurements of higher-order moments of [pT] in ultracentral
collisions, focusing on comparisons between Nch and ET centrality estimators at mid-rapidity.
knorm

3 , γnorm
〈[pT]〉, and Γnorm

〈[pT]〉 exhibit an increase around 〈dNch/dη〉norm
knee followed by a decrease

towards the ultracentral-collision limit. These observations deviate from expectations based
on independent particle production sources, as implemented in the HIJING model. The
two-component model combining Intrinsic and Geometric sources of [pT] fluctuations [26, 27]
reproduces most features of the data and suggests that the observed maxima in skewness
variables may be attributed to Geometrical fluctuations in the initial state, which vanish
in the ultracentral-collision limit.
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Figure 9. 〈pT〉norm as a function of 〈dNch/dη〉norm. Results are shown for two centrality estimators:
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B Higher-order moments of [pT] moments with the V0M centrality

estimator
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