
Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Letter

Exploring nuclear structure with multiparticle azimuthal correlations at the
LHC

ALICE Collaboration1,∗

European Organization for Nuclear Research, Geneve 23, CH-1211, Geneva, Switzerland

a r t i c l e i n f o

Editor: Dr. M. Doser

a b s t r a c t

Details of the nuclear structure of 129Xe, such as the quadrupole deformation and the nuclear diffuseness, are
studied by extensive measurements of anisotropic-flow-related observables in Xe–Xe collisions at a centre-of-mass
energy per nucleon pair

√
s
NN

= 5.44 TeV with the ALICE detector at the LHC. The results are compared with

those from Pb–Pb collisions at
√
s
NN

= 5.02 TeV for a baseline, given that the 208Pb nucleus exhibits a very weak
deformation. Furthermore, comprehensive comparisons are performed with a state-of-the-art hybrid model us-
ing IP-Glasma+MUSIC+UrQMD. It is found that among various IP-Glasma+MUSIC+UrQMD calculations with
different values of nuclear parameters, the one using a nuclear diffuseness parameter of a0 = 0.492 and a nuclear
quadrupole deformation parameter of �2 = 0.207 provides a better description of the presented flow measure-
ments. These studies represent the first systematic exploration of nuclear structure at TeV energies, utilizing a
comprehensive set of anisotropic flow observables. The measurements serve as a critical experimental benchmark
for rigorously testing the interplay between nuclear structure inputs and heavy-ion theoretical models.

1. Introduction

Over the past two decades, low-energy nuclear physics has made
remarkable progress. Advancements in experimental methods such as
laser spectroscopy and Coulomb excitation techniques reveal additional
insights into the size and shape of atomic nuclei [1–6]. On the theoret-
ical side, the advent of ab-initio methods has allowed the description of
light and medium-mass nuclei from first principles [7–11] and a flag-
ship calculation of 208Pb has been recently reported [12]. Nevertheless,
systematic calculations of heavy-mass systems are still not yet possi-
ble, in particular, due to the computational difficulty in handling the
(necessary) three-body nuclear interaction in large model spaces [13].
Recent studies in high-energy heavy-ion collisions at the Relativis-
tic Heavy-Ion Collider (RHIC) [14–18] and the Large Hadron Collider
(LHC) [19–23] have demonstrated that nuclear collisions at ultrarela-
tivistic energies offer promising new approaches for nuclear structure
studies. These studies successfully probed the nuclear shape from light
to heavy nuclei [16–18,24–29] and the neutron skin of 208Pb, 96Zr,
and 96Ru [30,31]. Among these experimental approaches, anisotropic
flow phenomena have been found to carry the imaging power of the
nuclear structures at relativistic energies [16,24,32–38]. Anisotropic
flow, which quantifies the anisotropic azimuthal distribution of the mo-
menta of the produced particles, reflects the initial geometry and fluc-
tuations of the overlapping region and probes the shape (or structure)
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of the colliding nuclei [39–44]. The anisotropic flow is characterised
by the Fourier expansion of the azimuthal distribution of produced
particles [45]

dN

d'
∝ 1 + 2

∞∑

n=1

vn cos[n(' − Ψn)], (1)

where ' is the azimuthal angle of particle momentum and Ψn is the n
th-

order symmetry plane. The coefficients vn are called flow coefficients
and can be calculated as

vn = ⟨cos[n(' − Ψn)]⟩. (2)

Here, the brackets ⟨⟩ denote an average over all particles in one event.
With vn and Ψn, the n

th order (complex) anisotropic flow Vn are defined
as

Vn ≡ vne
inΨn . (3)

Systematic measurements of vn [14,19,23,46–51], event-by-event
flow fluctuations [52–57], and correlations between various flow co-
efficients [58–63] enabled the extraction of the transport properties of
the Quark-Gluon Plasma (QGP) and to constrain the initial conditions of
the heavy-ion collisions [64]. It has been shown that the low-harmonic
flow coefficients are linearly correlated with the initial eccentricity co-
efficients of the same order [65,66] and that the higher harmonic flow
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coefficients, in particular their nonlinear flow mode, carry informa-
tion about the correlations between different participant planes [59,61].
Furthermore, the correlation between v2 and v3, characterised by nor-
malised symmetric cumulants NSC(3, 2) [67], has been found to reflect
correlation between "2 and "3 eccentricity coefficients [58,62,68]. These
observables are widely recognised as powerful tools for precisely con-
straining the initial conditions of relativistic heavy-ion collisions [44].

For the initial state of heavy-ion collisions, the nuclear density profile
�(r, �, �) of the colliding nuclei can be described by the Woods–Saxon
distribution [34,69]

�(r, �, �) =
�0

1 + e[r−R(�,�)]∕a0
, (4)

where r, �, and � define the position of a nucleon presented in spherical
coordinates, of which the origin is the centre of the nucleus. The constant
�0 ensures that the integral of the distribution corresponds to the number
of nucleons in the nucleus. The a0 parameter represents the nuclear dif-
fuseness. The R(�, �) = R0(1 + �2[cos 
Y2,0 + sin 
Y2,2]) term models the
nuclear surface expanded in terms of spherical harmonics Yn,m, keep-
ing terms up to n = 2 that are the most relevant in the structure of
129Xe [20,27,33]. Notably, Y2,−2, Y2,−1, and Y2,1 are utilised to estab-
lish the intrinsic frame, which renders Y2,0 and Y2,2 as the only pertinent
degrees of freedom. In R(�, �), R0 denotes the nuclear radius, and �2
is the quadrupole deformation parameter. In low-energy nuclear exper-
iments, �2 for even-A isotopes of Xe can be extracted using the elec-
tric quadrupole transition probability B(E2)↑ from the ground 0+ to the
first-excited 2+ state [70,71], although such extraction can be deficient
by approximately 20% due to fragmentation of the low-lying electric-
quadrupole strength [72]. By interpolating the values between 128Xe
and 130Xe, �2 for

129Xe was estimated to be 0.18 ± 0.02 [20]. Finally, the
triaxial parameter 
 reflects the inequality of the axes of the spheroid.

As described flow observables effectively capture a snapshot of the
initial geometry of the collision and, by extension, offer a glimpse into
the structure of the colliding nuclei, such as quadrupole deformation
and triaxial structure. This “imaging power” of complex flow observ-
ables has been validated in recent theoretical model calculations and
has shown great promise [25,27,29,33,37,38]. A systematic study of var-
ious anisotropic flow observables is essential for investigating nuclear
structure at ultrarelativistic energies. Nevertheless, only simple flow ob-
servables involving fewer particle correlations, such as vn coefficients,
have been measured and used for studying nuclear structure [17,19].
The remaining, more complex flow observables, which involve multi-
particle correlations and are likely more sensitive to the structure of the
colliding nuclei [37,73], have not yet been explored experimentally.

This Letter presents systematic measurements of a comprehensive
set of flow observables using charged particles from Xe–Xe collisions at
a centre-of-mass energy per nucleon pair

√
s
NN

= 5.44 TeV recorded
by the ALICE detector, representing their first application to probe nu-
clear structure in heavy-ion collisions. In addition, the corresponding
measurements from Pb–Pb collisions at

√
s
NN

= 5.02 TeV , which pro-

vide a baseline because of the near-spherical shape of 208Pb [70], are
shown. Observables used in this study, including flow coefficients, flow
fluctuations, nonlinear flow modes, and correlations between flow coef-
ficients, are introduced in Section 2. Section 3 presents the experimental
setup and the evaluation of systematical uncertainties. The results are
discussed in Section 4, followed by the summary in Section 5.

2. Observables and analysis method

Flow coefficients vn are usually measured by using two and four-
particle cumulants [67,74–76]

vn{2} ≡
√
cn{2},

vn{4} ≡
4
√
−cn{4},

(5)

where cn{2} and cn{4} are the two and four-particle cumulants, respec-
tively. It is known that vn{2} and vn{4} carry opposite contributions

from flow fluctuations to the cumulant estimates [77]. When non-flow
effects, which are the azimuthal angle correlations not associated with
the symmetry plane, are small, the flow coefficients can be split into
mean flow and flow fluctuation according to

vn{2}
2 ≈ ⟨vn⟩2 + �2

vn
,

vn{4}
2 ≈ ⟨vn⟩2 − �2

vn
.

(6)

Here �vn is the standard deviation of the vn distribution, known as event-
by-event fluctuation of vn, and ⟨vn⟩ is the mean value of the vn distribu-
tion.

For n = 2 and n = 3, vn coefficients for central and midcentral col-
lisions are linearly correlated with the initial anisotropy coefficients
"n [65,66], where "n is determined from the initial energy density pro-
file [78]

"ne
inΦn = −

⟨rnein�⟩
⟨rn⟩ (n > 1), (7)

where ⟨⟩ represents an average among the transverse positions (r, �) of
all participating nucleons, with � representing the azimuthal angle and
r characterising the radial distance from the origin of the system. TheΦn

angle defines the symmetry plane of participant nucleons in the initial
conditions. Recent studies have shown that nuclear quadrupole defor-
mation strongly affects the initial eccentricity, particularly in the most
central collisions [16,24,34]. Therefore, the final state vn is expected to
be a powerful tool to probe the deformations.

The high order flow coefficients vn (n > 3) receive contributions not
only from the linear response to the initial "n but also from the nonlinear
response originated from lower order "2 and/or "3 [79–81]. For exam-
ple, the 4th order (complex) anisotropic flow V4 can be decomposed into
linear (V L

4
) and nonlinear (V NL

4
) components according to

V4 = V L
4
+ V NL

4
, (8)

whose magnitudes are denoted by vL
4
and v4,22, respectively. The sub-

script of v4,22 represents the part of v4 coming from "2
2
[79–81]. In Eq. (8)

V L
4
and V NL

4
are considered to be uncorrelated and v4,22 can be measured

via a projection of V4 onto the direction of V2 [59,81]

v4,22 =
ℜ⟨V4(V ∗

2
)2⟩

√⟨
|V2|4

⟩ . (9)

The magnitude of the linear component can be easily derived as vL
4
=√

v2
4
{2} − v2

4,22
.

Furthermore, the correlation between the symmetry planes Ψ4 and
Ψ2 can be probed via the nonlinear flow correlation �4,22 proposed in
Ref. [81]. It is defined by the ratio of v4,22 and v4{2}

�4,22 =
v4,22

v4{2}
≈ ⟨cos(4Ψ4 − 4Ψ2)⟩. (10)

In addition, the nonlinear component V NL
4

can be further decomposed
as

V NL
4

≈ �4,22(V2)
2,

�4,22 =
v4,22√⟨
|V2|4

⟩ =
ℜ⟨V4(V ∗

2
)2⟩

⟨
|V2|4

⟩ ,
(11)

where �4,22 is called the nonlinear flow-mode coefficient. It represents
the strength of nonlinear response to V4 and is independent of "2. Recent
studies with both transport and hydrodynamic model calculations have
shown that nonlinear flow mode observables such as v4,22, �4,22, and
�4,22, owing to their different sensitivities to different stages of heavy-
ion collisions [64,67,79,82–84], bring distinction power to the study of
deformation of the colliding nuclei [25,35,37].

All the observables measured in this study are based on two- andmul-
tiparticle correlations, which can be obtained using the Generic Frame-
work [67,76,85] for flow studies. To suppress non-flow contributions,
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a pseudorapidity gap |Δ�| > 1.0 was applied in the two-particle corre-
lations in the second harmonic. For high order (n ≥ 3) correlations, a
looser pseudorapidity gap of |Δ�| > 0.8 was applied to preserve more
particles for the analysis, considering the limited size of the Xe–Xe data
sample. For the multiparticle correlations, which are less sensitive to
non-flow contaminations, |Δ�| > 0.8 was also applied, except for v2{4},
where the pseudorapidity gap is unnecessary as their potential non-flow
effects are negligible [76,86].

Except v2{2}, v3{2}, v4{2}, and v2{4}, which are taken from
Ref. [19], the other observables are measured for the first time in
Xe–Xe collisions. For Pb–Pb collisions, measurements of most observ-
ables were significantly improved after using the entire Run 2 data com-
pared with previous measurements based only on the 2015 data sam-
ple [47,52,61,62].

3. Analysis details

The data sample analysed in this study was recorded by the ALICE
detector [87–90] during the Xe–Xe run at

√
s
NN

= 5.44 TeV in 2017 and
Pb–Pb runs at

√
s
NN

= 5.02 TeV in 2015 and 2018 at the LHC. Mini-
mum bias events were triggered by the coincidence of two scintillator
counter arrays, V0A and V0C [87,91], covering the pseudorapidity in-
tervals 2.8 < � < 5.1 and −3.7 < � < −1.7, respectively. Additional Pb–Pb
events in the 0–10% and 30–50% centrality classes were recorded in
2018, using central and semicentral triggers, respectively, to maximise
the integrated luminosity for central and semiperipheral collisions. Pile-
up events, where multiple collisions are included in one single event,
were rejected using the timing information from the V0 detectors and
selections on the correlation of the multiplicity measured by the In-
ner Tracking System (ITS) [87,92] and the Time Projection Chamber
(TPC) [87,93]. Charged particles are reconstructed in the central pseu-
dorapidity region from their hits in the ITS, which is composed of six
layers of silicon detectors surrounding the beam vacuum tube, and their
energy deposits in the TPC. The track reconstruction in the ITS and the
TPC provided the information on the primary vertex. The position of the
primary vertex along the beam direction, Vz, was required to be within
± 10 cm from the centre of the detector. The analysis was performed as
a function of collision centrality, determined using the information from
the V0 detectors [20,94] and expressed as percentiles of the total inelas-
tic Xe–Xe or Pb–Pb cross sections. The whole centrality range considered
in this analysis was 0–60%, where 0% corresponds to the most central
collisions. After the event selection, about 0.8 million Xe–Xe events and
163 million Pb–Pb events were analysed in this work.

Charged-particle tracks in the pseudorapidity region |�| < 0.8 and
transverse momentum region 0.2 < pT < 3.0 GeV/c were selected for the
analysis. The track quality was ensured by requiring at least 70 TPC
space points out of a maximum of 159 with an average �2 per degree
of freedom of the track fit lower than 2.5. The distance of the closest
approach (DCA) to the primary vertex in the beam direction, DCAz,
was required to be less than 2 cm. In addition, the DCA in the trans-
verse plane was required to be DCAxy < 0.0105 + 0.0350p−1.1

T
cm, with

pT measured in GeV/c, which gives a pT-dependent selection on DCAxy

with thresholds at 0.22 cm at 0.2 GeV/c and 0.02 cm at 3.0 GeV/c.
A pT-dependent weight obtained from simulations performed with the
HIJING event generator [95,96] combined with the GEANT3 transport
code [97] was applied to correct for the track reconstruction efficiency.
The track reconstruction efficiency ranges from 62% to 80% for pT < 1.0

GeV/c and drops slightly for higher pT reaching a roughly constant value
of about 76%. In addition, ' distributions of the reconstructed tracks
were utilised for extracting a non-uniform acceptance correction.

The sources of systematic uncertainty have been investigated by
varying the criteria for selecting events and tracks. For event selec-
tions, the requirement for primary vertex position from the centre of
the detector Vz was varied to ±5, ±7, and ±9 cm, respectively. In ad-
dition, the centrality estimation was alternatively determined by using
the number of hits in the second-most internal layer of the ITS. In gen-

eral, these sources yield uncertainties below 1%; except the uncertain-
ties associated with centrality estimation for v4,22, �4,22, and �4,22 whose
maximum levels reached 1%. Furthermore, the systematic effect from
pile-up events was studied by varying the selections on the correlations
between multiplicities from the ITS and the TPC being found negligible.

Similarly, for the track selections, the minimum number of TPC
space points was varied to 80, 90, and 100. The requirement for DCAxy

was changed to DCAxy < 0.0090 + 0.0300p−1.1
T

cm, with pT measured in
GeV/c, while DCAz was required to be within 1.0 or 0.5 cm. These
sources typically result in uncertainties of less than 1%. Finally, the
systematic uncertainties that were statistically significant according to
the recommendation in Ref. [98] were added in quadrature to obtain the
total systematic uncertainty. The total systematic uncertainties are typi-
cally less than 2% in the 0–60% centrality range, and they are denoted
as grey boxes in the figures in Section 4.

4. Results

Fig. 1 presents the measurements of v2{m}(m = 2, 4) in Xe–Xe and
Pb–Pb collisions as a function of centrality. In the upper panels,
v2{2, |Δ�| > 1.0} and v2{4} are shown. They increase from central to pe-
ripheral Xe–Xe and Pb–Pb collisions. The comparisons between Xe–Xe
and Pb–Pb results are quantified as ratios in the bottom panels. Consid-
ering the similar dynamic evolution of the created matter in Pb–Pb and
Xe–Xe collisions, the ratios of flow observables should largely cancel the
final state effects and thus mainly reflect the information on the initial
conditions, including the nuclear structure. This has been validated in
recent hydrodynamic and transport model calculations [37,101]. Both
v2{2, |Δ�| > 1.0} and v2{4} ratios decrease steeply with increasing cen-
trality percentile in central collisions and then level off for midcentral
collisions. The v2{2, |Δ�| > 1.0} ratio starts at approximately 1.5 in the
most central collisions and is larger than unity in the centrality range
0–15%, whereas the v2{4} ratio starts at approximately 1.3 and is above
unity only in the 5% most central collisions. In a central collision, the
fluctuations of the overlap region play a dominant role, and smaller sys-
tem size (Xe–Xe collisions) generates stronger fluctuations [102], which
causes both ratios to be larger than unity. In addition, the deformation
of 129Xe nuclei further enhances "2 in ultracentral collisions of 0–5%
centrality; this effect will be discussed in detail later. In midcentral col-
lisions, v2{2, |Δ�| > 1.0} and v2{4} ratios remain at approximately 0.9
and 0.85, respectively. The ratios are below unity due to viscous effects
during the medium expansion [19,103,104].

Unlike previous studies [27,38,105] that investigated nuclear struc-
ture based solely on initial-state estimates, the presented measurements
are compared with calculations using the sequential combination of the
impact-parameter Glasma (IP-Glasma) initial conditions, the MUSIC rel-
ativistic hydrodynamic model, and the ultrarelativistic quantum molec-
ular dynamics (UrQMD) model for hadronic rescatterings. This hybrid
model is denoted as IP-Glasma+MUSIC+UrQMD [99,100]. These cal-
culations are presented as bands of different colours, where the thick-
ness of bands denote the statistical uncertainties of the calculations. The
IP-Glasma+MUSIC+UrQMD model has successfully described particle
production and complex anisotropic flow measurements in Pb–Pb colli-
sions at the LHC [99], providing valuable insights into both the initial
conditions and the dynamical evolution of colliding systems. To investi-
gate the impact of nuclear structure, different initial conditions were
used for Xe–Xe calculations, varying the �2 quadrupole deformation
and the a0 nuclear diffuseness. The values of �2 and a0 were adopted
based on existing predictions. Specifically, a0 = 0.492 and �2 = 0.207

are taken from Ref. [27], �2 = 0.162 is from Ref. [106], and a0 = 0.57

is used in Ref. [107]. Notably, the setting of �2 = 0 represents a spe-
cial scenario of a spherical nucleus. Despite the ongoing investigation
into the nuclear shape phase transition of 129Xe, where the 
-soft struc-
ture was discussed [38], the current calculations set the 
 parameter to
zero, as all the presented flow observables have been found to be in-
sensitive to the triaxial structure [37]. For Pb–Pb calculations, a very
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Fig. 1. Panels (a) and (b): Charged particle v2{2, |Δ�| > 1.0} (left) and v2{4} (right) as a function of centrality in Xe–Xe and Pb–Pb collisions at
√
s
NN

= 5.44 TeV and√
s
NN

= 5.02 TeV , respectively. Panels (c) and (d): Ratio between Xe–Xe and Pb–Pb v2{2, |Δ�| > 1.0} (left) and v2{4} (right). Statistical and systematical uncertainties
are shown as vertical lines and grey boxes, respectively. The measurements are compared with IP-Glasma+MUSIC+UrQMD calculations [99,100] to constrain the
�2 and a0 parameters of

129Xe nuclei. The thickness of the bands represent statistical uncertainties.

weak deformation �2 = 0.055 of 208Pb is adopted [71], which is also
used in Ref. [27] when the ultra-relativistic energy is considered. In
Fig. 1, the IP-Glasma+MUSIC+UrQMD calculations in Pb–Pb collisions
(green bands) align well with the measurements of v2{2, |Δ�| > 1.0}

and v2{4} up to a centrality of 35%. However, beyond 35% central-
ity, the calculated values exceed the measurements. For Xe–Xe , in
the 0–15% centrality range, the calculations with a0 = 0.57, �2 = 0.207

(blue bands) and a0 = 0.492, �2 = 0.207 (brown bands) match the mea-
surements of v2{2, |Δ�| > 1.0} better, while they underestimate v2{4}

in 5–10% centrality. Then for the 15–25% centrality range, the mea-
surements of v2{2, |Δ�| > 1.0} and v2{4} are better described by the cal-
culations when the parameters are set to a0 = 0.492, �2 = 0.207 (brown
bands). Furthermore, in the 35–60% centrality range, the calculations
with a0 = 0.57, �2 = 0.207 (blue bands), as well as a0 = 0.57, �2 = 0.162

(red bands) and a0 = 0.57, �2 = 0 (pink bands) provide better descrip-
tions for the measurements of both v2{2, |Δ�| > 1.0} and v2{4}. No-
tably in the 0–10% centrality range in Fig. 1(c), the calculations for
v2{2, |Δ�| > 1.0} with a0 = 0.57, �2 = 0.162 and a0 = 0.57, �2 = 0 are ap-
proximately 5% and 20% lower, respectively, than the measured ratios
of Xe–Xe and Pb–Pb results. This discrepancy highlights the contribu-
tions from the quadrupole deformation of 129Xe [24,25,34,35,37]. In this
centrality range, the initial shape of the overlapping region is primar-
ily determined by the shape of the colliding nuclei; thus, the deformed
nuclei enhance the initial eccentricity "2 of the overlapping region, con-
sequently leading to larger v2.

As introduced in Eq. (6), v2{2} and v2{4} receive contributions from
both ⟨v2⟩ and its event-by-event fluctuations �v2 . Consequently, mean
flow and flow fluctuations can be measured separately using the combi-
nation of v2{2} and v2{4}. Fig. 2 presents the centrality dependence of
⟨v2⟩ and �v2

in Xe–Xe and Pb–Pb collisions. In panel (a), ⟨v2⟩ increases
from central to peripheral collisions for both Xe–Xe and Pb–Pb colli-
sions. The ratio between Xe–Xe and Pb–Pb ⟨v2⟩ in panel (c) exceeds unity
in 0–10% centrality, then decreases to approximately 0.9 in the midcen-
tral collisions. Overall, �v2 in Xe–Xe is larger than in Pb–Pb in the 0–60%
centrality range, attributable to the smaller system size of Xe–Xe colli-
sions [102]. The ratio between Xe-Xe and Pb-Pb �v2 in panel (d) starts at
approximately 1.5 in the most central collisions and steadily decreases
with increasing centrality percentile, converging to unity at 60% cen-

trality. For ⟨v2⟩ in Fig. 2(a) and (c), the IP-Glasma+MUSIC+UrQMD
calculations with �2 = 0.207 describe the measurements in 0–10% cen-
trality. Due to the extensive statistical samples required, other calcula-
tions are only available for centralities above 5%, which notably un-
derestimate the measured ⟨v2⟩ for the 0–20% centrality range. For �v2
shown in Fig. 2(b) and (d), most calculations describe the measurements
within the presented centrality range, except for the one with a0 = 0.57

and �2 = 0, which falls below the measurement in 0–20% centrality. A
weaker elliptic flow fluctuation �v2

is seen in central Xe–Xe collisions
when a spherical nuclear structure of 129Xe is used in the model calcula-
tions. For centrality above 20%, the calculations for �v2 with different a0
and �2 are compatible with each other within uncertainties, suggesting
that �v2 might not depend on the nuclear diffuseness and deformation
for non-central collisions.

In addition to the study of elliptic flow v2 and its event-by-event fluc-
tuations, the triangular flow v3{2} and quadrangular flow v4{2}, which
provide more precise constraints on the initial conditions [78,108], are
also examined as a function of centrality in Fig. 3. In the upper pan-
els, v3{2, |Δ�| > 0.8} is notably larger in Xe–Xe than in Pb–Pb within
the 0–35% centrality range, while the v3{2, |Δ�| > 0.8} measurements
in Xe–Xe are smaller for more peripheral collisions. The v4{2, |Δ�| > 0.8}

results are compatible within uncertainties for both Xe–Xe and Pb–Pb
collisions up to 30% centrality, after which Xe–Xe results are smaller
than those in Pb–Pb collisions. In the lower panels, accordingly, the ra-
tios between Xe–Xe and Pb–Pb v3{2, |Δ�| > 0.8} and v4{2, |Δ�| > 0.8}

decrease steadily with increasing centrality. The IP-Glasma+MU-
SIC+UrQMD calculations are lower than the v3{2, |Δ�| > 0.8} measure-
ments in Pb–Pb collisions up to 35% centrality, beyond which the
calculations overestimate the measurements. A similar pattern is ob-
served for Xe–Xe collisions, where the calculations are roughly com-
patible with the v3{2, |Δ�| > 0.8} measurements in the central colli-
sion and exceed the measured values for centrality above 20%. Mean-
while, no difference is found among the v3{2, |Δ�| > 0.8} calculations
with different �2 values. This is consistent with the expectation that
v3{2}, which is primarily driven by the linear response to the initial
triangularity "3 [65,66], may be sensitive to octupole deformation �3
but not to quadrupole deformation �2. This has also been confirmed
in the previous AMPT model studies [37]. Furthermore, for the Xe–Xe
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Fig. 2. Panels (a) and (b): Charged particle ⟨v2⟩ (left) and �v2 (right) as a function of centrality in Xe–Xe and Pb–Pb collisions at
√
s
NN

= 5.44 TeV and
√
s
NN

= 5.02 TeV
, respectively. Panels (c) and (d): Ratio between Xe–Xe and Pb–Pb ⟨v2⟩ (left) and �v2 (right). Statistical and systematical uncertainties are shown as vertical lines and
grey boxes, respectively. The measurements are compared with IP-Glasma+MUSIC+UrQMD calculations [99,100] to constrain the �2 and a0 parameters of

129Xe
nuclei. The thickness of the bands represent statistical uncertainties.

Fig. 3. Panels (a) and (b): Charged particle v3{2, |Δ�| > 0.8} (left) and v4{2, |Δ�| > 0.8} (right) as a function of centrality in Xe–Xe and Pb–Pb collisions at√
s
NN

= 5.44 TeV and
√
s
NN

= 5.02 TeV , respectively. Panels (c) and (d): Ratio between Xe–Xe and Pb–Pb v3{2, |Δ�| > 0.8} (left) and v4{2, |Δ�| > 0.8} (right). Sta-
tistical and systematical uncertainties are shown as vertical lines and grey boxes, respectively. The measurements are compared with IP-Glasma+MUSIC+UrQMD
calculations [99,100] to constrain the �2 and a0 parameters of

129Xe nuclei. The thickness of the bands represent statistical uncertainties.

/Pb–Pb ratios in Fig. 3, the calculations qualitatively capture the gen-
eral trend of the centrality dependence of the measured v3{2, |Δ�| > 0.8}

and v4{2, |Δ�| > 0.8}. However, all calculations for v3{2, |Δ�| > 0.8} ra-
tio are higher than the measurements in 10–40% centrality. A distinc-
tion is observed between calculations from a0 = 0.57 and a0 = 0.492 in
the 10–40% centrality range; the latter exhibits a slightly better agree-
ment with the measurement. Concurrently, the calculations appear to
overestimate the v4{2, |Δ�| > 0.8} ratio in central collisions. A differ-
ence between the calculations of v4{2, |Δ�| > 0.8} with a0 = 0.57 and

a0 = 0.492 is also noted in more peripheral collisions, as reported from
previous AMPT calculations [35,37]. Unfortunately, the significant un-
certainties in the measurements preclude a definitive conclusion as to
which model calculation better reproduces them.

Fig. 4 shows the centrality dependence of the v4,22 nonlinear flow
modes Xe–Xe and Pb–Pb collisions. It has been established that v4,22 ex-
hibits considerable sensitivities to nuclear deformation parameters [37],
originating from the initial "2

2
. In the upper panels of Fig. 4, it can be

seen that v4,22 increases from central to peripheral Xe–Xe and Pb–Pb
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Fig. 4. Panels (a) and (b): Charged particle v4,22 (left) and �4,22 (right) as a function of centrality in Xe–Xe and Pb–Pb collisions at
√
s
NN

= 5.44 TeV and√
s
NN

= 5.02 TeV , respectively. Panels (c) and (d): Ratio between Xe–Xe and Pb–Pb v4,22 (left) and �4,22 (right). Statistical and systematical uncertainties are
shown as vertical lines and grey boxes, respectively. The measurements are compared with IP-Glasma+MUSIC+UrQMD calculations [99,100] to constrain the �2
and a0 parameters of

129Xe nuclei. The thickness of the bands represent statistical uncertainties.

collisions. The v4,22 ratio, shown in panel (c) of Fig. 4, starts at approxi-
mately 1.5 in most central collisions and decreases toward more periph-
eral collisions. In comparison to the measurements, the IP-Glasma+MU-
SIC+UrQMD calculations describe v4,22 measurements in 0–35% cen-
trality and only marginally overestimate them in 35–60% centrality for
Pb–Pb collisions, while they quantitatively capture the v4,22 measure-
ments in Xe–Xe collisions. Regarding the ratios in Fig. 4(c), the measured
v4,22 ratios in the centrality range 0–20% are better described by the IP-
Glasma+MUSIC+UrQMD calculations with a non-zero �2 and are sig-
nificantly larger than the one with �2 = 0. This aligns with expectations,
as v4,22 is primarily affected by "2

2
in central collisions [34] where "2 is

influenced mainly by the nuclear quadrupole deformation �2. Addition-
ally, v4,22 ratio calculations using a0 = 0.57 describe the measurements
in 20–60% centrality better, whereas the one with a0 = 0.492 overesti-
mates the measured v4,22 ratio. A similar observation on the sensitivity
of v4,22 to a0 in midcentral collisions has been reported in the AMPT
studies [37], suggesting that v4,22 serves as a promising probe of the
nuclear diffuseness.

In addition to the nonlinear flow modes, which depend on the mag-
nitudes of v2 and/or v3, the symmetry plane correlation �4,22 is investi-
gated in Xe–Xe and Pb–Pb collisions. The �4,22 has been identified as car-
rying unique sensitivities to the initial conditions of heavy-ion collisions,
rendering it a valuable probe for the nuclear structure [59,61]. The
measurements of �4,22 are presented as a function of centrality in panels
(b) and (d) of Fig. 4. In panel (b), �4,22 shows an increase from central to
peripheral collisions in both Xe–Xe and Pb–Pb collisions. The �4,22 ratio
drops steeply in the most central collisions, starting from approximately
1.7 down to unity for centralities above 20%. Regarding the ratio of �4,22
presented in panel (d), the IP-Glasma+MUSIC+UrQMD calculations of-
fer a reasonable description of the measurements, except for the scenario
with �2 = 0 in the most central collisions, which assumes a spherical
129Xe shape and misses the measured �4,22 ratio. The pronounced corre-
lations between second and fourth-order symmetry planes, Ψ2 and Ψ4,
in Xe–Xe collision, are primarily ascribed to the shape of the colliding
nuclei influencing the overlap region in central collisions. A deformed
129Xe nuclear structure results in an elliptical overlapping region in cen-
tral collisions, leading to preferred orientations for the symmetry planes
rather than random fluctuations, thereby generating stronger correla-
tions between Ψ2 and Ψ4 in Xe–Xe collisions than in Pb–Pb collisions.

Overall, the IP-Glasma+MUSIC+UrQMD calculations, considering dif-
ferent a0 values, do not exhibit significant differences in �4,22, taking
into account the considerable uncertainties in the model calculations.

Furthermore, the linear flow mode vL
4
, the nonlinear flow coeffi-

cient �4,22, and NSC(3, 2) have been measured in Xe-Xe collisions at the
LHC. These measurements are compared with model calculations of IP-
Glasma+MUSIC+UrQMD, which reveal no sensitivity to the variations
in nuclear structure. The relevant results are presented in Appendix A.

To quantify the agreement between the experimental measurements
and the IP-Glasma+MUSIC+UrQMD model calculations with the dif-
ferent configurations, a �2∕Ndof for each observable was calculated as

�2∕Ndof =
1

Ndof

∑ (yi − fi)
2

�2
i

, (12)

where yi is the value of the observable experimental measurement at
centrality range i and fi is the value of the observable calculation for
the same centrality range with the corresponding configuration, �2

i
is the

quadratic sum of the statistical uncertainty �stat , systematic uncertainty
�sys, and model uncertainty �model. The number of degrees of freedom
Ndof is obtained by subtracting the number of parameters from the num-
ber of data points. Only the measured ratio (Xe–Xe /Pb–Pb ) for each
observable is considered. The �2∕Ndof values for the observables con-
sidered in this work are shown in Fig. 5. Panel (a) restricts the centrality
range to 0–20%, and panel (b) restricts the centrality range to 20–60%.
The centrality region is separated because the �2 parameter has a strong
impact on the observables in central collisions, while the a0 parameter
shows influence across the 0–60% centrality range. It can be seen that
the IP-Glasma+MUSIC+UrQMD calculations with �2 = 0.207 generally
provide a better description of the measurements of v2 related observ-
ables, as indicated by the smaller �2∕Ndof values. In the 0–20% cen-
trality range, the calculations with a0 = 0.492, �2 = 0.207 yield the small-
est �2∕Ndof for v2{2, |Δ�| > 1.0}, v2{4} and ⟨v2⟩, and result in a consis-
tent �2∕Ndof in comparison to the calculation using a0 = 0.57, �2 = 0.207

for �v2 . This shows the strong influences from �2 and a0 on those ob-
servables in central collisions. In the 20–60% centrality range, the
�2∕Ndof results for v2-related observables are similar for different �2
values, indicating that the deformation effect is weak for non-central
collisions. Meanwhile, the calculations with a0 = 0.492, �2 = 0.207 still
provide the smallest �2∕Ndof for v2{2, |Δ�| > 1.0}, v2{4} and ⟨v2⟩,
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Fig. 5. Values of �2∕Ndof between the measurements (Xe–Xe /Pb–Pb ) and the calculations (Xe–Xe /Pb–Pb ). The x-axis represents the different measured observables,
and the y-axis is shown on a logarithmic scale. Panels (a) and (b) show the results for the 0–20% and 20–60% centrality ranges, respectively.

showing the influences from a0 in midcentral collisions. In addition,
the data-to-model �2∕Ndof values are shown for the v3{2, |Δ�| > 0.8}

and v4 related observables. The IP-Glasma+MUSIC+UrQMD calcu-
lations with a0 = 0.492 and �2 = 0.207 provide better descriptions of
v3{2, |Δ�| > 0.8}, and they also perform reasonably well for �4,22, com-
pared to the calculations using different a0 or �2 parameters. In con-
trast, the calculations with �2 = 0 consistently yield relatively poor de-
scriptions, emphasising the significance of a finite quadrupole defor-
mation for 129Xe. For v4{2, |Δ�| > 0.8}, all calculations exhibit similar
�2∕Ndof values, aligning with previous discussions that v4{2, |Δ�| > 0.8}

is not sensitive to the variations in either a0 or �2. For v4,22, cal-
culations with a0 = 0.57 yield smaller �2∕Ndof values, which are
influenced by the large uncertainties in both the model and the
measurements. Overall, calculations with a0 = 0.492 and �2 = 0.207

align better with the measurements for the flow observables in
Xe–Xe collisions.

It is noteworthy that the �2∕Ndof test might not provide a precise
measure but rather qualitatively reflects the potential sensitivities of
flow observables to �2 and a0. It facilitates the initial exploration of
how various flow observables respond to different nuclear structures.
Notably, this approach was first applied in complex flow measure-
ments in Pb–Pb collisions [61], introducing novel constraints on the
tuning of the hydrodynamic framework with varying initial conditions.
Subsequently, these flow measurements were incorporated into Global
Bayesian fits, leading to the most precise constraints on Pb–Pb colli-
sions initial conditions to date [64]. Therefore, the systematic measure-
ments of complex flow observables presented in this paper are expected
to be adopted soon in Bayesian fits, potentially enabling a more reli-
able extraction of nuclear structure parameters from relativistic nuclear
collisions.

5. Summary

For the first time, measurements of complex flow observables
through multiparticle azimuthal correlations have been employed to
probe the nuclear structure in heavy-ion collisions. Systematic mea-
surements of various flow observables, including anisotropic flow coef-
ficients (vn), flow fluctuations (�v2 ), nonlinear and linear components
of flow coefficients (v4,22, v

L
4
), nonlinear coefficients (�4,22), correla-

tions between different symmetry planes (�4,22), and normalised sym-
metry cumulants have been performed in Xe–Xe and Pb–Pb collisions
at

√
s
NN

= 5.44 TeV and 5.02 TeV, respectively. Notably, several flow
observables exhibit pronounced differences in the ratio between Xe–Xe
and Pb–Pb in the most central collisions, which are anticipated from
the quadrupole deformation of the 129Xe nuclear structure. Comprehen-
sive comparisons between the experimental measurements and the IP-
Glasma+MUSIC+UrQMD calculations are presented to quantify the ef-
fects of quadrupole deformation and nuclear diffuseness. Specifically,
the calculations employing different �2 quadrupole deformation param-
eters and a0 nuclear diffuseness parameters are discussed. It has been
found that among various IP-Glasma+MUSIC+UrQMD model calcu-
lations, the one using �2 = 0.207 generally provides a better descrip-
tion of the flow measurements. Despite noticeable discrepancies be-
tween the measurements and the IP-Glasma+MUSIC+UrQMD predic-
tions, the calculations using a0 = 0.492 seem favoured by the presented
measurements. Future Bayesian analysis will allow amore robust extrac-
tion of the �2 and a0 values. The distinct sensitivities of flow observables
to �2 and a0 offer valuable insights into constraining the deformation
and diffuseness of 129Xe in its ground state. Systematic measurements of
complex flow observables using multiparticle azimuthal correlations at
the LHC are opening new avenues for investigating nuclear structure at
the energy frontier, complementing low-energy nuclear structure stud-
ies and deepening the understanding of fundamental nuclear properties.
Upcoming 16O–16O collisions at the LHC will provide novel opportuni-
ties to explore the full potential of the LHC on the nuclear structure
study probing, in particular, for the first time the �-cluster structure of
16O at the TeV energy scale [18,109–112].
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