
An Online GPU Hit Finder for the STS Detector in the CBM

Experiment

Felix Weiglhofer 1,2,∗ and Volker Lindenstruth 1,2,3

1Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
2Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt am Main, Germany
3GSI Helmholtz Centre, Darmstadt, Germany

Abstract. The Compressed Baryonic Matter (CBM) experiment at FAIR will

operate at interaction rates up to 10 MHz, generating data streams averaging

500 GB/s. This necessitates efficient online reconstruction capabilities, particu-

larly for the Silicon Tracking System (STS), which is the key detector for track

reconstruction and contributes a large fraction of the expected data volume. We

present a GPU-accelerated hit reconstruction chain for the STS that achieves a

128× speedup over the sequential CPU implementation. The implementation

features optimized data structures reducing memory footprint, parallel algo-

rithms for sorting, cluster finding, and hit reconstruction, and portability across

GPU architectures. Our custom merge sort outperforms library implementa-

tions by 10 % while using 33 % less memory. Cluster finding employs a two-

phase approach with atomic operations for thread-safe connections between sig-

nal clusters. Even before GPU acceleration, algorithmic improvements provide

a 3× speedup in single-threaded execution. Both NVIDIA and AMD GPUs

achieve comparable performance of approximately 0.12 s on a timeframe con-

taining 1000 Au+Au events. The reconstruction chain was successfully de-

ployed during the May 2024 mCBM beamtime, processing data rates up to

2.4 GB/s in real-time, demonstrating its viability for CBM’s triggerless data ac-

quisition approach.

1 Introduction

Modern high-energy physics experiments face unprecedented computational challenges due

to increasing collision rates and detector complexity. The Compressed Baryonic Matter

(CBM) experiment, currently under construction at the Facility for Antiproton and Ion Re-

search (FAIR), exemplifies these challenges. CBM aims to study dense nuclear matter

through heavy-ion collisions at interaction rates up to 10 MHz, producing data streams ex-

ceeding 500 GB/s [1][2].

Traditional triggered readout systems, which selectively record events based on hardware-

level decisions, cannot effectively handle such extreme rates. Instead, CBM employs a free-

streaming data acquisition approach where all detector data is recorded continuously and

event selection occurs entirely in software. This paradigm shift necessitates efficient real-

time processing capabilities to reconstruct particle trajectories from raw detector data.

∗e-mail: weiglhofer@fias.uni-frankfurt.de

 EPJ Web of Conferences 337, 01300 (2025) https://doi.org/10.1051/epjconf/202533701300

CHEP 2024

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative

Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

Figure 1. Rendering of the CBM experiment, with the large blue dipole magnet housing the Sili-

con Tracking System (STS) at its core, surrounded by additional detector systems. (© GSI/FAIR,

Zeitrausch)

Graphics Processing Units (GPUs) have proven effective for reconstruction tasks in high-

energy physics. The ALICE experiment pioneered large-scale GPU usage for real-time track

reconstruction during LHC Run 2, expanding this approach in Run 3 where the complete TPC

reconstruction runs on GPUs handling up to 50 kHz Pb-Pb data at rates exceeding 1 TB/s

[3][4]. Similarly, LHCb deployed the Allen GPU trigger system processing up to 40 Tbit/s of

detector data for Run 3 [5].

This paper describes the implementation of a parallel algorithm for hit reconstruction on

GPUs for the Silicon Tracking System, the central tracking detector in CBM. We discuss the

optimization of data structures to minimize memory overhead, efficient sorting strategies for

time-ordered data, and parallel approaches to cluster formation and hit reconstruction. Per-

formance measurements demonstrate speedups exceeding 100x compared to single-threaded

CPU execution, with detailed analysis of scaling behavior across different GPU architectures.

2 Background

2.1 The STS Detector

The Silicon Tracking System (STS) serves as the primary tracking detector in the CBM exper-

iment [6]. Positioned inside the dipole magnet, see Figure 1, it enables track reconstruction

and momentum determination of charged particles. The detector consists of eight stations

with double-sided silicon strip sensors arranged at a stereo angle of 7.5°. The STS utilizes

896 sensors with 1.8 × 106 readout channels and achieves spatial and temporal resolutions of

25 µm and 5 ns.

2.2 The STS Reconstruction Chain

The reconstruction chain transforms raw measurements into four-dimensional spacetime

points. Starting with digis (time-stamped charge measurements), the pipeline distributes them

 EPJ Web of Conferences 337, 01300 (2025) https://doi.org/10.1051/epjconf/202533701300

CHEP 2024

2

to corresponding module sides and sorts them by timestamp. The cluster finding algorithm

identifies groups of adjacent strips with charge deposits within a time window [7]. Clusters

are then sorted by time before hit finding, which combines time-matched clusters from both

sensor sides to reconstruct hit positions [8]. The reconstruction processes data independently

for each sensor module, enabling parallel processing on GPUs.

3 GPU-Accelerated STS Reconstruction

The GPU implementation of the STS reconstruction chain requires significant adaptations

to the existing algorithms and data structures. While the basic reconstruction steps remain

similar to the offline version, the implementation focuses on maximizing parallel execution

and minimizing memory overhead. This section describes the key optimizations and algorith-

mic changes that enable efficient GPU processing. We first discuss common optimizations

applied throughout the reconstruction chain, followed by detailed descriptions of the GPU

implementations for sorting, cluster finding, and hit reconstruction.

3.1 Common Optimizations

The implementation reduces memory overhead by redesigning data structures. Cluster ob-

jects are reduced from 112 byte to 24 byte and hit objects from 136 byte to 48 byte using

single-precision floating point values, 32-bit integer timestamps, and separating simulation

information. Specialized container classes partition data by hardware address, eliminating

redundant storage. Additional optimizations include direct computation of cluster properties

and parallelization across module sides rather than complete modules.

3.2 Sorting on GPU

The STS reconstruction chain requires sorting operations at multiple stages: first to order

digis by channel and time for cluster finding, and later to sort clusters by time to facilitate hit

reconstruction. The sorting implementation must efficiently handle data from 1792 module

sides in parallel while maintaining high GPU occupancy.

Our implementation divides the sorting work along natural partition boundaries, with

each GPU thread block processing data from a single module side independently. Within

each block, a two-phase sorting approach is employed. First, the data is divided into fixed-

size chunks that are sorted using a block-level radix sort. These sorted sequences are then

merged in parallel using the Merge Path algorithm [9]. The parallel merge occurs entirely

within the thread block, using shared memory to optimize memory access patterns.

3.3 Parallel Cluster Finding

The cluster finding algorithm identifies groups of adjacent strips that registered charge de-

posits within a configurable time window. While the offline implementation processes digis

sequentially, examining each measurement in order, this approach is not suitable for paral-

lel execution on GPUs. Instead, we implement a two-phase strategy, illustrated in Figure 2,

that enables efficient parallel processing without requiring complex synchronization between

threads.

The first phase establishes connections between digis that belong to the same cluster using

a lightweight linked list structure. Each digi maintains a 32-bit connector value that stores

both the index to the next digi in the cluster and a flag indicating whether the digi has a

 EPJ Web of Conferences 337, 01300 (2025) https://doi.org/10.1051/epjconf/202533701300

CHEP 2024

3

Figure 2. Illustration of the linked-list structure used by the parallel cluster finder, showing connections

between digis in adjacent channels. Colored regions represent charge deposits in each channel with

increasing time stamps, while arrows indicate connections established between digis that form clusters.

predecessor. The highest bit serves as the predecessor flag, while the remaining 31 bits store

the index of the next digi or zero to indicate the end of a cluster. This compact representation

allows atomic updates to the entire structure using compare-and-swap operations, ensuring

thread safety when multiple GPU threads modify connections simultaneously.

During the connection phase, each GPU thread processes a single digi, examining neigh-

boring channels for potential cluster members. Two digis are considered part of the same

cluster if they are in adjacent channels and their time difference falls within a configurable

window. The algorithm exploits the fact that digis are already sorted by channel and time, us-

ing binary search to efficiently locate the first digi within the time window in the neighboring

channel. When a match is found, the thread atomically updates the connector to establish a

forward edge to the next digi and sets the predecessor flag on the target digi.

The second phase creates the actual cluster objects. Each GPU thread that processes

a digi without a predecessor (indicating the start of a cluster) is responsible for creating

the corresponding cluster. The thread follows the chain of connections established in the

first phase, computing cluster properties like total charge, position, and timing information

directly during traversal. This approach eliminates the need to store intermediate arrays of

digi indices, reducing memory usage compared to the offline implementation to an additional

4 byte per digi.

3.4 Parallel Hit Finding

The hit finding algorithm transforms two-dimensional cluster measurements from both sensor

sides into four-dimensional spacetime points. While the offline version processes data at the

module level with one CPU thread per module, the GPU implementation instead assigns one

thread per front-side cluster, enabling full parallelization across all potential hits.

For each front-side cluster, the assigned GPU thread searches for matching clusters on

the back side of the sensor. To efficiently find potential matches, the algorithm exploits the

fact that clusters are already sorted by time. The thread performs a binary search to locate the

first back-side cluster within the configurable time window relative to its front-side cluster.

This optimization significantly reduces the number of cluster pairs that need to be evaluated

for geometric intersection, as clusters outside the time window can be quickly discarded.

The algorithm implements early exit conditions based on time differences between clus-

ters. As both cluster arrays are sorted by time, the thread can stop searching once it encoun-

ters a back-side cluster whose time difference exceeds the maximum window. This approach,

combined with the binary search for the initial matching cluster, means that each thread typ-

ically only needs to evaluate a small subset of back-side clusters.

For time-matched clusters, the algorithm calculates their geometric intersection point in

the sensor’s local coordinate system. Due to the sensor’s design, multiple intersections may

 EPJ Web of Conferences 337, 01300 (2025) https://doi.org/10.1051/epjconf/202533701300

CHEP 2024

4

Table 1. Performance comparison of individual processing steps in the STS reconstruction chain.

GPU measurements use the best performance between NVIDIA RTX 2080 Ti and AMD MI50.

Pre/Post Processing includes data distribution, collection, and host device DMA transfers for GPU.

Processing step Execution time

Off. CPU

(1t)

Off. CPU

(64t)

On. CPU

(1t)

On. CPU

(64t)
GPU

Sorting 2.22 s 0.15 s 1.13 s 0.06 s 0.009 s

Clustering 5.45 s 0.31 s 2.16 s 0.07 s 0.008 s

Hit Finding 2.01 s 0.15 s 1.15 s 0.06 s 0.010 s

Pre/Post Processing 5.67 s 5.09 s 0.48 s 0.12 s 0.092 s

Total 15.35 s 5.70 s 4.92 s 0.31 s 0.119 s

online implementation achieves 4.92 s in single-threaded execution, a 3.1× speedup before

parallelization due to optimized data structures and algorithms.

Both implementations scale with increasing thread count but exhibit different charac-

teristics. The offline implementation’s performance becomes dominated by the sequential

overhead at higher thread counts, limiting parallelization to a 3× speedup. The online imple-

mentation scales up to 32 physical cores, with performance flattening when hyperthreading

is enabled at 64 hardware threads. At maximum CPU utilization, the online implementation

achieves 0.31 s runtime, representing a 15.9× improvement over its sequential performance.

GPU execution provides substantial additional speedup. Both tested devices achieve sim-

ilar performance: 0.119 s on the NVIDIA RTX 2080 Ti and 0.123 s on the AMD MI50. This

represents a 128× speedup compared to sequential offline execution and is 2.6× faster than

the best CPU performance of the online version.

Table 1 provides a breakdown of execution times for individual processing stages. The

cluster finding stage shows the most dramatic improvement with a 681× speedup, followed

by sorting (247×) and hit finding (201×). Even pre/post processing overhead achieves a 62×

speedup through optimized data structures and parallelization of data movement operations.

These results demonstrate two key points. First, significant performance improvements

come from algorithmic changes and data structure optimizations before considering hard-

ware acceleration. Second, the STS reconstruction algorithms effectively leverage GPU par-

allelism, achieving substantial speedups while maintaining identical functionality across dif-

ferent GPU architectures.

4.3 Sorting Performance on GPU

To evaluate the performance of our custom merge sort implementation, we compared it

against CUB’s DeviceSegmentedSort [10] using both key-value pair sorting and key-only

variants. For the full STS configuration with 1792 segments, our merge sort implementa-

tion showed superior performance, completing sort operations in 93.8 ms on the RTX 2080

Ti compared to 189.1 ms for key-value pair sorting and 104.6 ms for the key-only variant.

Performance degrades with fewer active segments or unbalanced load distribution. In such

scenarios, library implementations may provide better runtime performance.

Memory requirements also differ between implementations. For n digis, our merge sort

operates with 2n memory usage, requiring only input and output buffers. In contrast, CUB’s

key-value pair sorting demands 6n memory for input, output, and temporary storage buffers,

 EPJ Web of Conferences 337, 01300 (2025) https://doi.org/10.1051/epjconf/202533701300

CHEP 2024

6

The implementation uses lightweight data structures, custom sorting algorithms, and

parallel processing techniques that demonstrate portability across GPU architectures. Both

NVIDIA RTX 2080 Ti and AMD MI50 achieved comparable performance of approximately

0.12 s per timeframe, while even without GPU acceleration, the optimized algorithms showed

a 3× speedup in single-threaded CPU execution.

The hit finder has been integrated into the CBM online framework and successfully de-

ployed during the May 2024 mCBM beamtime. During this four-day period, the system

processed data rates up to 2.4 GB/s in real-time, reconstructing approximately 24–32 million

hits per second. The successful deployment demonstrates the viability of GPU acceleration

for meeting the real-time processing requirements in CBM.

Future work includes integration with other GPU-accelerated components such as de-

coding the raw detector data and the track finder, enabling an end-to-end GPU processing

pipeline. Additionally, optimization for the full CBM detector configuration will be needed

to ensure scalability to the 10 MHz interaction rates expected during production data taking.

This work is supported by BMBF (05P21RFFC1).

References

[1] P. Senger, Probing dense QCD matter in the laboratory—The CBM experiment at FAIR,

Physica Scripta 95, 074003 (2020). 10.1088/1402-4896/ab8c14

[2] J. Cuveland, D. Emschermann, P. Gasik, D. Hutter, W. Müller, C. Sturm, A. Bercuci,

V. Friese, I. Frohlich, J. Fruhauf et al., Technical Design Report for the CBM Online

Systems – Part I DAQ and FLES Entry Stage (2022)

[3] ALICE Collaboration, Real-time data processing in the ALICE High Level Trigger at

the LHC (2019).

[4] G. Eulisse, D. Rohr, The O2 software framework and GPU usage in ALICE online

and offline reconstruction in Run 3, EPJ Web of Conf. 295, 05022 (2024). 10.1051/epj-

conf/202429505022

[5] R. Aaij, J. Albrecht, M. Belous, P. Billoir, T. Boettcher, A. Brea Rodríguez, D. vom

Bruch, D.H. Cámpora Pérez, A. Casais Vidal, D.C. Craik et al., Allen: A High-

Level Trigger on GPUs for LHCb, Computing and Software for Big Science 4 (2020).

10.1007/s41781-020-00039-7

[6] J. Heuser, W. Müller, V. Pugatch, P. Senger, C.J. Schmidt, C. Sturm, U. Frankenfeld,

eds., [GSI Report 2013-4] Technical Design Report for the CBM Silicon Tracking Sys-

tem (STS) (GSI, Darmstadt, 2013), https://repository.gsi.de/record/54798

[7] V. Friese, A cluster-finding algorithm for free-streaming data, in EPJ Web of Confer-

ences (EDP Sciences, 2019), Vol. 214, p. 01008

[8] H. Malygina, Hit reconstruction for the Silicon Tracking System of the CBM experi-

ment, Ph.D. thesis, Goethe University (2018)

[9] O. Green, S. Odeh, Y. Birk, Merge Path - A visually intuitive approach to parallel merg-

ing (2014), 1406.2628

[10] Nvida, Nvidia CUB, https://nvidia.github.io/cccl/cub/, [Accessed 06-02-

2025]

[11] CBM Collaboration, mCBM@SIS18 - A CBM full system test-setup for high-rate

nucleus-nucleus collisions at GSI / FAIR, CBM (GSI, Darmstadt, 2017), https:

//repository.gsi.de/record/220072

 EPJ Web of Conferences 337, 01300 (2025) https://doi.org/10.1051/epjconf/202533701300

CHEP 2024

8

