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Abstract.
The Compressed Baryonic Matter (CBM) is a fixed-target experiment which
will explore the QCD phase diagram through heavy-ions collisions using the
beams from the SIS100 accelerator at FAIR. Its physics program characteristics
led to a choice for a self-triggered and free-streaming data acquisition, followed
by an online full reconstruction and selection chain in software. Such a system
can operate reliably and efficiently only with a performant Experiment Control
System (ECS) to ensure the synchronization and data quality of all sub-systems.
The development of a CBM-specific Python based solution, focused only on
the Experiment Controls and on the upper layer of Detector Controls (state and
configuration propagation), was chosen after looking at existing solutions. It
is divided in three packages, from an experiment independent modular core to
user interfaces, in order to allow maximal quality checks of the core functions.
This article presents the design choices for this ECS, the technical core pack-
age, the CBM ECS implementation package and the demonstrator GUI package
based on it. All three packages are now available in demonstrator versions, with
test coverage and typing coverage both above 90% for the core package. They
will be deployed for validation in the CBM demonstrator, mini-CBM (mCBM).

1 Introduction

The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the QCD phase di-
agram at high net-baryon densities through fixed-target heavy-ion collisions, using the beams
provided by the SIS100 synchrotron in the energy range of 4.5-11 AGeV/c (fully stripped
gold ions) [1]. The CBM physics program includes the measurement of rare probes with
complex signatures, for which high interaction rates and a strong selection are needed to
achieve the necessary statistics with reasonable storage needs. These requirements led to the
technical decision for a self-triggered and free-streaming data acquisition, followed by online
full reconstruction and selection chain in software. The experimental setup will consist of
seven major detector systems, combined in various ways to target different physics (hadrons,
di-electrons, di-muons). The ∼3 million channels lead to an expected average data flow of
400 GB/s and peaks up to 600 GB/s [2]. By processing date only in software, the latency
constraints are replaced by computing resource and software efficiency constraints.

The software stack on the data path will be composed of two levels: a first layer called
FLES assembling and distributing so-called timeslices, fully contained data blocks with all
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experiment raw data for a pre-selected period of time, and a second layer processing them up
to event building and selection [2]. This is reflected in the computing hardware, with a first
“entry” computing farm specific to CBM where the first layer will operate, connected by a
set of optical fibers to the FAIR computing center, where a significant number of nodes will
be reserved for CBM online processing during beamtime.

The software stack in the control path is the topic of the Experiment and Detector Controls
(EDC) computing project within the CBM software organization. This project is less linear
and monolithic than the data path, as it encompasses both the software elements controlling
the detectors environment and supplies (typ. called Detectors Control Systems, DCS or slow
controls), the software layers coordinating the accesses to the readout chain controls to avoid
interfering with the data path, the central elements propagating high level commands and
deriving states (typ. called Experiment Control System or ECS) and the auxiliary systems
such as parameters storage or monitoring data storage, as well as all their interfaces.

The miniCBM (mCBM) experiment is a precursor setup for CBM, installed on a beamline
of the existing SIS18 accelerator at GSI and meant to test and validate both the hardware and
software of CBM. The setup is composed of demonstrator and/or pre-production elements
of each major CBM detector system, with between 1 to 5 percent of the final channel count
depending on the detector. A similarly scaled down version of the entry (DAQ) computing
farm is available in a container close to the cave and partitions on the existing GSI batch-
computing farm are used to emulate the future FAIR computing cluster. The already recorded
and approved beamtime periods allow for a complete integration test up to attempts at online
physics selection on the produced data. This is therefore where all elements of the EDC
project will have to be validated before deployment in the CBM final setup.

2 CBM Experiment Control System

The CBM ECS, as the central coordination element in the control path, will have as main
mission to ensure the reliability and efficiency of the experiment through the automatization
of its configuration. This results in the following detailed missions: the determination and
propagation of the experimental setup state (and therefore also its components states), the
coordination of the flow of high and intermediate level commands, the propagation and res-
olution of system configurations as tags and sub-tags, the archiving of all changes to state
and configuration. The first one will need a set of connected state machines, with the pos-
sibility for experts of any central (shared) system or detector to finely describe and control
their specific hardware and software state, while still allowing to present a unified and sim-
plified state to the non-experts operating the experiment during beamtime shifts. The second
one is needed to ensure that commands from various user interfaces are properly propagated
to specific targets and expanded without interfering between themselves or with automatic
ones linked to the state machines. The third one is needed to avoid propagating full sets of
parameter values within the software stack until the place where they are needed is reached,
while allowing a human friendly, descriptive and flexible generation of the full setup config-
uration. The last one allows to remove any ambiguity about the run input parameters during
data analysis, be it online, near-line or offline.

Existing frameworks were investigated at first to see if they could be taken as base, but
they were either too costly, bound to specific operating systems or too large for CBM needs,
with features already covered by other solutions in CBM. It was therefore decided to imple-
ment a CBM specific framework, focused on the ECS only.

The initial version of the ECS is fully developed in Python, while keeping open the option
to convert part or all of it to a more performant language latter (e.g. C++). The ECS deployed
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when CBM enters commissioning should be scalable from laboratory setups of individual de-
tector systems to the full setup in the CBM cave. It should provide the flexibility to add and
remove detector systems in an active state (outside of recording) to allow recovery of prob-
lematic detectors with minimal downtime. For the same reason, it should allow the flexibility
to have parallel groups of detectors systems (“partitions”) operating in an active or recording
state, e.g. a main physics one and a commissioning or recovery one. Finally the ECS pack-
age(s) should possess a high level of code quality (QA), in order to maximize the recording
efficiency and minimize doubts about it in case of errors or unexpected observations.

The current ECS prototype is made of three packages: a core package with base classes
for state, command and configuration management, an implementation package with derived
classes for all levels of the ECS and a Graphical User Interface (GUI) package.This allows
to separate common parts of the code from application specific ones, with for example at
some point one implementation for mCBM and one for full CBM, both relying on the same
core. Different levels of QA are then possible, which can be verified both locally and through
Continuous Integration (CI) when pushing changes to the GIT repository of each package.
The following QA levels where targeted and achieved:

• All: clean lint checked with the flakeheaven tool [3]
• Core: > 90% covered with the pytest tool [4], > 90% typed with check by the mypy tool [5]
• Implementation: > 50-70% tested depending on class, > 90% typed
• GUI (QT [6]): no CI test, > 50% typed

The separation between the implementation package and the GUI package allows a flexibility
in the choice of GUI framework(s), with eventually the possibility to have different GUIs
connected to the same ECS instance. The separation between the core and implementation
packages allows future upgrades of the core by expert software developers in a transparent
manner for the applied package developed by detector experts and/or physicists. This could
be for example a conversion of most of the core to C++ for performance reasons or updates
of the external packages dependencies.

3 Core package

3.1 Design choices

A few technical specifications are defined beyond the usage of Python: ZeroMQ [7] (ZMQ)
is to be used for all inter-process communication layers, and the code for commands manage-
ment in ECS agents (emissions, reception, processing) should be separated from the one for
state management (state machine(s), updates emission, reception and filtering) and the one
for configuration management (tag request and resolution). The last technical specification is
that the ECS is organized in multiple layers of processes called “Agents”, each representing
a system or group of systems, which form a so-called ECS topology through their intercon-
nections. This provides flexibility in where each agent is deployed, ranging from having all
ECS elements running on a single, dedicated ECS node to having a dedicated node for each
ECS element. All other design choices are functional specifications.

On the command interface side, an agent executes only one command at a time (sequential
execution). It always waits for a reply or timeout before emitting another command toward
other agents, meaning that only one command is emitted per agent at a time. These two spec-
ifications aim at reducing instabilities or race-conditions in the state determination. A single
agent may however still receive multiple commands from different emitters at close-by time.
To address this, received commands are buffered and processed per emitter and command
priority and per time of reception order. Finally, both commands and replies are routed from
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source to destination to avoid the need for a-priori knowledge of the ECS topology when
starting a given agent (see also Sec. 3.3).

For the state interface, state updates are emitted whenever the agent state changes, but can
also be requested through a command. Each update is then broadcast to all connected agents,
which can either make use of it or filter it out upon reception. The agent full state is composed
of a pair of a “Global State” and a “Local State”. The set of “Global States” is common to
all agents and they are used to trigger cascading state transitions within the ECS topology.
The “Local States” are specific to each agent and provide some degree of granularity within
a given “Global State”, aiming to reduce eventual configuration cycle or recovery time while
hiding this complexity from the higher levels. A transition table is mapping in each agent
two full States (source and target) to a function handle. It is dynamic as it can be modified at
runtime through commands to add and remove transitions, as long as the agent is in the startup
state (called “Uninitialized” in Sec. 3.4). Two auxiliary states are used to characterize the
recording mode, while not being involved in the main state determination: a “Configuration
state” and a “Configuration Stability state” (see also Sec. 3.4).

The Configuration is managed with so-called “Tags”, which are specific to a given agent
and should be human readable, unique identifiers for a given set of parameter values. Only
tags are propagated and resolved through the ECS topology, up to the point where the actual
parameters are needed. The tag resolution happens through a request-reply pattern with a
configuration server, the request being a pair of an agent identifier and a tag.

Each of these three interfaces uses its own Python threads to optimize the response time.
The last set of specifications concerns the structure of the ECS topology and the relation

between “Agent” and so-called “Subagent”. An agent state is defined by default as the lowest
common state of its subagents, with this rule meant to be expanded or replaced by each
system developer when implementing the derived agent class for their own system. Agents
track their subagents availability through special “ping” commands, which are periodically
emitted if no communication (command or reply) was received from it for a selected period
of time. Aside from an as-of-yet undefined parameter interface allowing to get the parameter
values for a given configuration tag (to be used within the agent), the configuration tag of
a given agent can be resolved to a list of tags for each of its attached subagents. Finally
there is always a “top” agent defined as the default master in each topology, in order to avoid
“orphan” agents which could not be controlled anymore.

3.2 Package structure

The implementation of the core is organized in four levels of inheritance, as represented in
Fig. 1. The first level is a base class owning an instance of a logging interface class, an
instance of a ZMQ context to be used by all ZMQ sockets in the derived classes, and generic
flags and context variables which are are common to the three core branches (e.g. a context
object representing an agent master information). The next level comprises three independent
classes, all inheriting from the foundation class, which implement respectively the command
interface of an agent (Command Core Agent), the state machine and state interface of an agent
(State Core Agent) and the configuration tag interface (Config Core Agent). The third level is
two derived class of the Command Core. The first one adds base commands providing testing,
monitoring and agents relations (master-subagent) commands. The second one inherits from
both the Command Core and the State Core and interfaces new commands to the existing
methods of the State Core. The last level is a single class inheriting from both the Base
Command Agent, the State Command Agent and the Configuration Core Agent. It therefore
provides the three core functionalities in a single class and is meant to be the base class of the
agents in all layers of the CBM ECS.
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Figure 1. Packages and
classes relations. See
Section 3 for the core
details, 4 for the mECS
and 5 for the GUIs

Aside from this core, three single file executables provide central services, described in
the next subsection, for each of the functionalities.

3.3 Central services

The three central services mirror the organization of the core Agent classes, with one for the
command interface, one for the state interface and one for the configuration tag interface.
Each service is using ZMQ for communication and is accessed by the Agent only using the
methods from the corresponding “Core Agent” classes, as described in Fig 2.

Figure 2. Central services interfaces
with an ECS Core Agent instance

The Command Router is based on three “Router” ZMQ sockets and will asynchronously
route received command to their target agents and received replies to the command emitter.
This avoids needing a discovery mechanism for the command interface, as the only network
information needed at startup by an agent is the address of the router and the ports of the three
sockets. This feature enhances the capability to expand the ECS topology by adding agents
on-the-fly. It also makes the ECS topology more robust against cascading agent failures, as
each agent is directly connected only to the router which has limited failure modes.
The State Hub is based on one “PULL” and one “PUB” ZMQ socket for input and output,
respectively. Each state update received on the input is broadcast to all agents connected to
the output. Similarly to the command router, by avoiding direct connections between agents,
it removes the need for knowing the complete agents network at startup and improves both
the expansion flexibility and the robustness of the system. It also improves the reliability
in case of bursts of state updates, as each update is buffered and published in the order it is
received by the hub. The broadcast feature is needed to allow monitoring agents (e.g. GUIs)
to operate in parallel to the more hierarchical control topology of agents.
The Configuration Server has the simplest agent-facing interface, as it is mainly using a
single “REP” ZMQ socket. It may load on startup the available configurations for a variety of
agents either from a JSON file (implemented) or from a database (still to be defined). Agents
can then request either the list of agents for which at least one tag is known, the list of tags
for a given agent or the content of a given agent-tag pair. The server also has an optional
ZMQ “REP” socket for sending edition commands, to which agents may connect if needed.
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Currently available commands are the addition and removal of tags as well as the dumping
of the current known configurations to a new JSON file.

3.4 Default states

The state sequence provided by default in the core package is shown in Fig 3. The Uninitial-
ized state is the initial state, where editing the transition table is still allowed, and no guar-
antee is provided regarding the current state of the system represented by the agent. During
the transition to “Initialized”, the agent should ensure that all required resources are available
and establish all required connections to hardware or software elements. In the “Configuring”
state, the system controlled by the agent is prepared up to a point where it is either generating
(detectors), transporting (FLES), processing (online farm) or supporting (supply systems) a
data flow. This could be seen as a transition but is made equivalent to a state due to its po-
tentially macroscopic duration and eventual internal “Local” states (see end of this section).
The “Active” state is the one of a running system, ready for full operation of the experimental
setup. An additional “Recording” state is used for the two systems were it is relevant: FLES
(raw data flow) and online processing (processed and selected data flow). The “Error” state
possesses a sub-state linking to the original state, allowing either recovery to it or cascading
to a lower error state, down to the level where a system is back to “Uninitialized”.

Figure 3. Default global
states and transitions

As mentioned previously the state machine is implemented through a transition table
which can be edited when in the “Uninitialized” state, which is the only one which cannot be
removed. There is however for now no check for dead-ends or “final” states.

Two additional states are used to determine the expected data quality when entering and
exiting the “Recording” state. The “Configuration state” represents how the current config-
uration and parameters relate to the ones linked to the currently set configuration tag (e.g.
“clean tag”, “user edited”, ...). The “Stability state” represents how strict the ranges in which
automated processes are allowed to tune the current parameters are, which for example could
be a large window during detector commissioning and a smaller one during standard opera-
tion. This feature should allow a classification of recording runs on a scale from direct usage
to cautious analysis. Table 1 shows an example with two values for each state, leading to four
grades for the runs (eight if state at beginning and end of run taken into account).

By default no local states are defined and all agents full state are defined as the pair
“Global State, undefined”. Each agent can however add its own local states, for example
expanding the “Configuring” state into multiple sub-steps corresponding to the various hard-
ware levels in the readout chain (data aggregator, opto-converter, front-end, ...) in order to
perform only necessary work when reconfiguring from the “Active” state.

Configuration State
Manual Clean

Stability Unstable Technical Unstable
State Stable Dirty Production

Table 1. Example of auxiliary states values and
derived recording states

3.5 Test topology

Each element in the core package is tested using variations of the test topology shown in
Fig. 4. For example tests of the State Core Agent are done with a single instance of the
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class and an instance of the Hub, while tests of the Command Core Agent are done using an
instance of the Command Router and between one and three layers of instances of the class.
The final validation test of the package in the CI, which is required for approval of any merge
request, is done with the full topology and instances of the ECS Core Agent class.

Figure 4. Agents and
services topology for testing

4 CBM ECS prototype implementation package
The minimal topology for a running ECS comprises the following agents, each being an
instance of a class derived from EcsCoreAgent: one Experiment Control Agent (ECA), as
many Central System Control Agents (CSCA) as needed, one Partition Control Agent (PCA),
one System Control Agent (SCA), one partition CSCA (pCSCA) for each SCA. The number
of SCAs is dynamic and defined by the detectors present and the topology. Each SCA can
participate in only one partition. The number of PCAs is dynamic. The number of pCSCA is
dynamic and, as each represent the share of a given CSCA resource assigned to a PCA, equal
to the number of PCA times the number of CSCA.

The corresponding derived classes provide the implementation of the state transitions
for each of these agents and are gathered in the prototype implementation package, called
for now “mECS implementation” (mECS standing for “mCBM ECS”). For now only generic
versions of the CSCA, pCSCA and SCA are available (base classes), as shown in the package
class relations in Fig 1. Each of the four central systems are then using instances of the plain
CSCA and each of the seven detector systems are using instances of the plain SCA.

As an example, Fig. 5 shows a two partitions topology with a single central system and
one detector system per partition.

Figure 5. Example of minimal two
partitions topology

In a second phase derived classes of the SCA will be introduced for each of the detectors
and central systems present in mCBM, allowing to build a topology dedicated to the control
of this setup. For most of mCBM usage, a single partition will be used given the reduced
size of the setup. The experience gained with this topology will be used to create a second
generation of derived classes, dedicated to the systems deployed in the main CBM setup.
This CBM topology will be used with various partitions to support the installation phase, the
commissioning phase and the first data taking with beam.

5 Demonstrator/Emulator GUI package
The last package needed to validate the prototype is a set of GUIs with two main usages: as
a demonstrator where all interactions between agents can be tested in a wider range of states
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and time sequences, and as an emulator where the connection to the actual systems (state
transition execution) is replaced by some user interactions. In the first case all state transitions
in the CSCAs and SCAs are replaced by simple few seconds sleeps (automatic transitions),
while in the second case pop-ups should be presented to the user to decide between ignoring
the transition request, failing it (error state) or accepting it.

The GUIs are implemented using the “QT6” library with the “Pyside6” Python bindings
and are all derived from the ECS Core Agent class, but with an empty state table. One GUI
is prepared to control the ECA, all four central systems and the eventual partitions, see Fig 6
left. It allows to validate the effect of adding or removing systems in a partition in various
states, the proper listing, choice and application of configuration tags from the top level to the
lowest one and some dependencies between states of some systems and the actions available
in others (e.g. no partition creation while the central systems are not “Active”). The second
GUI handles a single SCA and is meant as the interface presented to the detector system
shifters when operating mCBM, see Fig 6 right. It is the place where the emulator and
demonstrator modes are implemented. The selection of a given mode is done by a startup
flag of the GUI, which is propagated to the underlying agent. Both GUIs can be disconnected
from the agents running in background processes and reconnected to them, including when
running on different nodes. The relation between these two GUIs and the implementation
classes can be seen in Fig 1.

Figure 6. Screenshots of the two GUIs: left for the central elements, right the SCA

As all detector systems will not have their SCA implemented at the same time, the mCBM
ECS will operate in a mixed mode for beamtimes in the coming years, with some detectors
having full-feature automatized agents and others the user pop-up placeholder. The deadline
for each detector SCA will be their installation and commissioning in the CBM cave.

6 Conclusion

A framework prototype for the CBM ECS is implemented and available in the CBM git
repository [8] as three packages depending on each other. The “ecs-core” package provides
the base classes for the three main components of an ECS, which are a command interface,
a state machine and state interface and a configuration interface. These three components
are combined in a class called “EcsCoreAgent” which should be the base of all elements in
the CBM ECS. This package is following strict QA goals to minimize uncertainties when
including it as dependency, with 92% testing coverage. One of those tests ensures that the
command core can emit, receive and process at least 100 pings (minimal execution) per sec-
ond between two agents. An “implementation” package oriented toward an ECS for mCBM
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is built upon it and provides default classes for the four types of agents composing a CBM
ECS: Experiment Control Agent, Partition Control Agent and System Control Agent for both
central and detector systems. The last package provides GUIs built using QT6 and allowing
both to check the agents usage flow (demonstrator) and to help with the operation of the next
mCBM beamtime campaign (emulator).

The next step for the validation of the prototype will be a first deployment for the mCBM
2025 spring campaign, with only a few central systems implementing their state transitions.
It will be followed by the integration of all detector systems in 2025 and 2026 through a grad-
ual implementation of their SCAs, with mCBM used as test-bench. The first stable release
version for CBM is expected at latest in 2027 for the installation and commissioning phase.
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