
Modular Experiment Control System packages for the CBM

experiment

Pierre-Alain Loizeau1,∗

1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany

Abstract.

The Compressed Baryonic Matter (CBM) is a fixed-target experiment which

will explore the QCD phase diagram through heavy-ions collisions using the

beams from the SIS100 accelerator at FAIR. Its physics program characteristics

led to a choice for a self-triggered and free-streaming data acquisition, followed

by an online full reconstruction and selection chain in software. Such a system

can operate reliably and efficiently only with a performant Experiment Control

System (ECS) to ensure the synchronization and data quality of all sub-systems.

The development of a CBM-specific Python based solution, focused only on

the Experiment Controls and on the upper layer of Detector Controls (state and

configuration propagation), was chosen after looking at existing solutions. It

is divided in three packages, from an experiment independent modular core to

user interfaces, in order to allow maximal quality checks of the core functions.

This article presents the design choices for this ECS, the technical core pack-

age, the CBM ECS implementation package and the demonstrator GUI package

based on it. All three packages are now available in demonstrator versions, with

test coverage and typing coverage both above 90% for the core package. They

will be deployed for validation in the CBM demonstrator, mini-CBM (mCBM).

1 Introduction

The Compressed Baryonic Matter (CBM) experiment at FAIR will explore the QCD phase di-

agram at high net-baryon densities through fixed-target heavy-ion collisions, using the beams

provided by the SIS100 synchrotron in the energy range of 4.5-11 AGeV/c (fully stripped

gold ions) [1]. The CBM physics program includes the measurement of rare probes with

complex signatures, for which high interaction rates and a strong selection are needed to

achieve the necessary statistics with reasonable storage needs. These requirements led to the

technical decision for a self-triggered and free-streaming data acquisition, followed by online

full reconstruction and selection chain in software. The experimental setup will consist of

seven major detector systems, combined in various ways to target different physics (hadrons,

di-electrons, di-muons). The ∼3 million channels lead to an expected average data flow of

400 GB/s and peaks up to 600 GB/s [2]. By processing date only in software, the latency

constraints are replaced by computing resource and software efficiency constraints.

The software stack on the data path will be composed of two levels: a first layer called

FLES assembling and distributing so-called timeslices, fully contained data blocks with all

∗e-mail: p.-a.loizeau@gsi.de

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative

Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

experiment raw data for a pre-selected period of time, and a second layer processing them up

to event building and selection [2]. This is reflected in the computing hardware, with a first

“entry” computing farm specific to CBM where the first layer will operate, connected by a

set of optical fibers to the FAIR computing center, where a significant number of nodes will

be reserved for CBM online processing during beamtime.

The software stack in the control path is the topic of the Experiment and Detector Controls

(EDC) computing project within the CBM software organization. This project is less linear

and monolithic than the data path, as it encompasses both the software elements controlling

the detectors environment and supplies (typ. called Detectors Control Systems, DCS or slow

controls), the software layers coordinating the accesses to the readout chain controls to avoid

interfering with the data path, the central elements propagating high level commands and

deriving states (typ. called Experiment Control System or ECS) and the auxiliary systems

such as parameters storage or monitoring data storage, as well as all their interfaces.

The miniCBM (mCBM) experiment is a precursor setup for CBM, installed on a beamline

of the existing SIS18 accelerator at GSI and meant to test and validate both the hardware and

software of CBM. The setup is composed of demonstrator and/or pre-production elements

of each major CBM detector system, with between 1 to 5 percent of the final channel count

depending on the detector. A similarly scaled down version of the entry (DAQ) computing

farm is available in a container close to the cave and partitions on the existing GSI batch-

computing farm are used to emulate the future FAIR computing cluster. The already recorded

and approved beamtime periods allow for a complete integration test up to attempts at online

physics selection on the produced data. This is therefore where all elements of the EDC

project will have to be validated before deployment in the CBM final setup.

2 CBM Experiment Control System

The CBM ECS, as the central coordination element in the control path, will have as main

mission to ensure the reliability and efficiency of the experiment through the automatization

of its configuration. This results in the following detailed missions: the determination and

propagation of the experimental setup state (and therefore also its components states), the

coordination of the flow of high and intermediate level commands, the propagation and res-

olution of system configurations as tags and sub-tags, the archiving of all changes to state

and configuration. The first one will need a set of connected state machines, with the pos-

sibility for experts of any central (shared) system or detector to finely describe and control

their specific hardware and software state, while still allowing to present a unified and sim-

plified state to the non-experts operating the experiment during beamtime shifts. The second

one is needed to ensure that commands from various user interfaces are properly propagated

to specific targets and expanded without interfering between themselves or with automatic

ones linked to the state machines. The third one is needed to avoid propagating full sets of

parameter values within the software stack until the place where they are needed is reached,

while allowing a human friendly, descriptive and flexible generation of the full setup config-

uration. The last one allows to remove any ambiguity about the run input parameters during

data analysis, be it online, near-line or offline.

Existing frameworks were investigated at first to see if they could be taken as base, but

they were either too costly, bound to specific operating systems or too large for CBM needs,

with features already covered by other solutions in CBM. It was therefore decided to imple-

ment a CBM specific framework, focused on the ECS only.

The initial version of the ECS is fully developed in Python, while keeping open the option

to convert part or all of it to a more performant language latter (e.g. C++). The ECS deployed

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

2

when CBM enters commissioning should be scalable from laboratory setups of individual de-

tector systems to the full setup in the CBM cave. It should provide the flexibility to add and

remove detector systems in an active state (outside of recording) to allow recovery of prob-

lematic detectors with minimal downtime. For the same reason, it should allow the flexibility

to have parallel groups of detectors systems (“partitions”) operating in an active or recording

state, e.g. a main physics one and a commissioning or recovery one. Finally the ECS pack-

age(s) should possess a high level of code quality (QA), in order to maximize the recording

efficiency and minimize doubts about it in case of errors or unexpected observations.

The current ECS prototype is made of three packages: a core package with base classes

for state, command and configuration management, an implementation package with derived

classes for all levels of the ECS and a Graphical User Interface (GUI) package.This allows

to separate common parts of the code from application specific ones, with for example at

some point one implementation for mCBM and one for full CBM, both relying on the same

core. Different levels of QA are then possible, which can be verified both locally and through

Continuous Integration (CI) when pushing changes to the GIT repository of each package.

The following QA levels where targeted and achieved:

• All: clean lint checked with the flakeheaven tool [3]

• Core: > 90% covered with the pytest tool [4], > 90% typed with check by the mypy tool [5]

• Implementation: > 50-70% tested depending on class, > 90% typed

• GUI (QT [6]): no CI test, > 50% typed

The separation between the implementation package and the GUI package allows a flexibility

in the choice of GUI framework(s), with eventually the possibility to have different GUIs

connected to the same ECS instance. The separation between the core and implementation

packages allows future upgrades of the core by expert software developers in a transparent

manner for the applied package developed by detector experts and/or physicists. This could

be for example a conversion of most of the core to C++ for performance reasons or updates

of the external packages dependencies.

3 Core package

3.1 Design choices

A few technical specifications are defined beyond the usage of Python: ZeroMQ [7] (ZMQ)

is to be used for all inter-process communication layers, and the code for commands manage-

ment in ECS agents (emissions, reception, processing) should be separated from the one for

state management (state machine(s), updates emission, reception and filtering) and the one

for configuration management (tag request and resolution). The last technical specification is

that the ECS is organized in multiple layers of processes called “Agents”, each representing

a system or group of systems, which form a so-called ECS topology through their intercon-

nections. This provides flexibility in where each agent is deployed, ranging from having all

ECS elements running on a single, dedicated ECS node to having a dedicated node for each

ECS element. All other design choices are functional specifications.

On the command interface side, an agent executes only one command at a time (sequential

execution). It always waits for a reply or timeout before emitting another command toward

other agents, meaning that only one command is emitted per agent at a time. These two spec-

ifications aim at reducing instabilities or race-conditions in the state determination. A single

agent may however still receive multiple commands from different emitters at close-by time.

To address this, received commands are buffered and processed per emitter and command

priority and per time of reception order. Finally, both commands and replies are routed from

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

3

source to destination to avoid the need for a-priori knowledge of the ECS topology when

starting a given agent (see also Sec. 3.3).

For the state interface, state updates are emitted whenever the agent state changes, but can

also be requested through a command. Each update is then broadcast to all connected agents,

which can either make use of it or filter it out upon reception. The agent full state is composed

of a pair of a “Global State” and a “Local State”. The set of “Global States” is common to

all agents and they are used to trigger cascading state transitions within the ECS topology.

The “Local States” are specific to each agent and provide some degree of granularity within

a given “Global State”, aiming to reduce eventual configuration cycle or recovery time while

hiding this complexity from the higher levels. A transition table is mapping in each agent

two full States (source and target) to a function handle. It is dynamic as it can be modified at

runtime through commands to add and remove transitions, as long as the agent is in the startup

state (called “Uninitialized” in Sec. 3.4). Two auxiliary states are used to characterize the

recording mode, while not being involved in the main state determination: a “Configuration

state” and a “Configuration Stability state” (see also Sec. 3.4).

The Configuration is managed with so-called “Tags”, which are specific to a given agent

and should be human readable, unique identifiers for a given set of parameter values. Only

tags are propagated and resolved through the ECS topology, up to the point where the actual

parameters are needed. The tag resolution happens through a request-reply pattern with a

configuration server, the request being a pair of an agent identifier and a tag.

Each of these three interfaces uses its own Python threads to optimize the response time.

The last set of specifications concerns the structure of the ECS topology and the relation

between “Agent” and so-called “Subagent”. An agent state is defined by default as the lowest

common state of its subagents, with this rule meant to be expanded or replaced by each

system developer when implementing the derived agent class for their own system. Agents

track their subagents availability through special “ping” commands, which are periodically

emitted if no communication (command or reply) was received from it for a selected period

of time. Aside from an as-of-yet undefined parameter interface allowing to get the parameter

values for a given configuration tag (to be used within the agent), the configuration tag of

a given agent can be resolved to a list of tags for each of its attached subagents. Finally

there is always a “top” agent defined as the default master in each topology, in order to avoid

“orphan” agents which could not be controlled anymore.

3.2 Package structure

The implementation of the core is organized in four levels of inheritance, as represented in

Fig. 1. The first level is a base class owning an instance of a logging interface class, an

instance of a ZMQ context to be used by all ZMQ sockets in the derived classes, and generic

flags and context variables which are are common to the three core branches (e.g. a context

object representing an agent master information). The next level comprises three independent

classes, all inheriting from the foundation class, which implement respectively the command

interface of an agent (Command Core Agent), the state machine and state interface of an agent

(State Core Agent) and the configuration tag interface (Config Core Agent). The third level is

two derived class of the Command Core. The first one adds base commands providing testing,

monitoring and agents relations (master-subagent) commands. The second one inherits from

both the Command Core and the State Core and interfaces new commands to the existing

methods of the State Core. The last level is a single class inheriting from both the Base

Command Agent, the State Command Agent and the Configuration Core Agent. It therefore

provides the three core functionalities in a single class and is meant to be the base class of the

agents in all layers of the CBM ECS.

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

4

Figure 1. Packages and

classes relations. See

Section 3 for the core

details, 4 for the mECS

and 5 for the GUIs

Aside from this core, three single file executables provide central services, described in

the next subsection, for each of the functionalities.

3.3 Central services

The three central services mirror the organization of the core Agent classes, with one for the

command interface, one for the state interface and one for the configuration tag interface.

Each service is using ZMQ for communication and is accessed by the Agent only using the

methods from the corresponding “Core Agent” classes, as described in Fig 2.

Figure 2. Central services interfaces

with an ECS Core Agent instance

The Command Router is based on three “Router” ZMQ sockets and will asynchronously

route received command to their target agents and received replies to the command emitter.

This avoids needing a discovery mechanism for the command interface, as the only network

information needed at startup by an agent is the address of the router and the ports of the three

sockets. This feature enhances the capability to expand the ECS topology by adding agents

on-the-fly. It also makes the ECS topology more robust against cascading agent failures, as

each agent is directly connected only to the router which has limited failure modes.

The State Hub is based on one “PULL” and one “PUB” ZMQ socket for input and output,

respectively. Each state update received on the input is broadcast to all agents connected to

the output. Similarly to the command router, by avoiding direct connections between agents,

it removes the need for knowing the complete agents network at startup and improves both

the expansion flexibility and the robustness of the system. It also improves the reliability

in case of bursts of state updates, as each update is buffered and published in the order it is

received by the hub. The broadcast feature is needed to allow monitoring agents (e.g. GUIs)

to operate in parallel to the more hierarchical control topology of agents.

The Configuration Server has the simplest agent-facing interface, as it is mainly using a

single “REP” ZMQ socket. It may load on startup the available configurations for a variety of

agents either from a JSON file (implemented) or from a database (still to be defined). Agents

can then request either the list of agents for which at least one tag is known, the list of tags

for a given agent or the content of a given agent-tag pair. The server also has an optional

ZMQ “REP” socket for sending edition commands, to which agents may connect if needed.

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

5

Currently available commands are the addition and removal of tags as well as the dumping

of the current known configurations to a new JSON file.

3.4 Default states

The state sequence provided by default in the core package is shown in Fig 3. The Uninitial-

ized state is the initial state, where editing the transition table is still allowed, and no guar-

antee is provided regarding the current state of the system represented by the agent. During

the transition to “Initialized”, the agent should ensure that all required resources are available

and establish all required connections to hardware or software elements. In the “Configuring”

state, the system controlled by the agent is prepared up to a point where it is either generating

(detectors), transporting (FLES), processing (online farm) or supporting (supply systems) a

data flow. This could be seen as a transition but is made equivalent to a state due to its po-

tentially macroscopic duration and eventual internal “Local” states (see end of this section).

The “Active” state is the one of a running system, ready for full operation of the experimental

setup. An additional “Recording” state is used for the two systems were it is relevant: FLES

(raw data flow) and online processing (processed and selected data flow). The “Error” state

possesses a sub-state linking to the original state, allowing either recovery to it or cascading

to a lower error state, down to the level where a system is back to “Uninitialized”.

Figure 3. Default global

states and transitions

As mentioned previously the state machine is implemented through a transition table

which can be edited when in the “Uninitialized” state, which is the only one which cannot be

removed. There is however for now no check for dead-ends or “final” states.

Two additional states are used to determine the expected data quality when entering and

exiting the “Recording” state. The “Configuration state” represents how the current config-

uration and parameters relate to the ones linked to the currently set configuration tag (e.g.

“clean tag”, “user edited”, ...). The “Stability state” represents how strict the ranges in which

automated processes are allowed to tune the current parameters are, which for example could

be a large window during detector commissioning and a smaller one during standard opera-

tion. This feature should allow a classification of recording runs on a scale from direct usage

to cautious analysis. Table 1 shows an example with two values for each state, leading to four

grades for the runs (eight if state at beginning and end of run taken into account).

By default no local states are defined and all agents full state are defined as the pair

“Global State, undefined”. Each agent can however add its own local states, for example

expanding the “Configuring” state into multiple sub-steps corresponding to the various hard-

ware levels in the readout chain (data aggregator, opto-converter, front-end, ...) in order to

perform only necessary work when reconfiguring from the “Active” state.

Configuration State

Manual Clean

Stability Unstable Technical Unstable

State Stable Dirty Production

Table 1. Example of auxiliary states values and

derived recording states

3.5 Test topology

Each element in the core package is tested using variations of the test topology shown in

Fig. 4. For example tests of the State Core Agent are done with a single instance of the

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

6

class and an instance of the Hub, while tests of the Command Core Agent are done using an

instance of the Command Router and between one and three layers of instances of the class.

The final validation test of the package in the CI, which is required for approval of any merge

request, is done with the full topology and instances of the ECS Core Agent class.

Figure 4. Agents and

services topology for testing

4 CBM ECS prototype implementation package

The minimal topology for a running ECS comprises the following agents, each being an

instance of a class derived from EcsCoreAgent: one Experiment Control Agent (ECA), as

many Central System Control Agents (CSCA) as needed, one Partition Control Agent (PCA),

one System Control Agent (SCA), one partition CSCA (pCSCA) for each SCA. The number

of SCAs is dynamic and defined by the detectors present and the topology. Each SCA can

participate in only one partition. The number of PCAs is dynamic. The number of pCSCA is

dynamic and, as each represent the share of a given CSCA resource assigned to a PCA, equal

to the number of PCA times the number of CSCA.

The corresponding derived classes provide the implementation of the state transitions

for each of these agents and are gathered in the prototype implementation package, called

for now “mECS implementation” (mECS standing for “mCBM ECS”). For now only generic

versions of the CSCA, pCSCA and SCA are available (base classes), as shown in the package

class relations in Fig 1. Each of the four central systems are then using instances of the plain

CSCA and each of the seven detector systems are using instances of the plain SCA.

As an example, Fig. 5 shows a two partitions topology with a single central system and

one detector system per partition.

Figure 5. Example of minimal two

partitions topology

In a second phase derived classes of the SCA will be introduced for each of the detectors

and central systems present in mCBM, allowing to build a topology dedicated to the control

of this setup. For most of mCBM usage, a single partition will be used given the reduced

size of the setup. The experience gained with this topology will be used to create a second

generation of derived classes, dedicated to the systems deployed in the main CBM setup.

This CBM topology will be used with various partitions to support the installation phase, the

commissioning phase and the first data taking with beam.

5 Demonstrator/Emulator GUI package

The last package needed to validate the prototype is a set of GUIs with two main usages: as

a demonstrator where all interactions between agents can be tested in a wider range of states

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

7

is built upon it and provides default classes for the four types of agents composing a CBM

ECS: Experiment Control Agent, Partition Control Agent and System Control Agent for both

central and detector systems. The last package provides GUIs built using QT6 and allowing

both to check the agents usage flow (demonstrator) and to help with the operation of the next

mCBM beamtime campaign (emulator).

The next step for the validation of the prototype will be a first deployment for the mCBM

2025 spring campaign, with only a few central systems implementing their state transitions.

It will be followed by the integration of all detector systems in 2025 and 2026 through a grad-

ual implementation of their SCAs, with mCBM used as test-bench. The first stable release

version for CBM is expected at latest in 2027 for the installation and commissioning phase.

References

[1] T. Ablyazimov, A. Abuhoza, R.P. Adak et al., Challenges in QCD matter physics – The

scientific programme of the Compressed Baryonic Matter experiment at FAIR, Eur. Phys.

J. A 53, 60 (2017). 10.1140/epja/i2017-12248-y

[2] J. de Cuveland, D. Emschermann, V. Friese, I. Fröhlich, P. Gasik, D. Hutter, W. Müller,

C. Sturm (CBM Collaboration), Technical Design Report for the CBM Online Systems –

Part I, DAQ and FLES Entry Stage, CBM Technical Design Report (GSI Helmholtzzen-

trum für Schwerionenforschung GmbH, Darmstadt, 2023), https://doi.org/10.

15120/GSI-2023-00739

[3] flakheaven in pypi, https://pypi.org/project/flakeheaven/ (2024), accessed:

2025-04-29

[4] Pytest in pypi, https://git.cbm.gsi.de/ecs (2024), accessed: 2025-04-29

[5] mypy in pypi, https://pypi.org/project/mypy/ (2024), accessed: 2025-04-29

[6] Pyside6, qt6 bindings in pypi, https://pypi.org/project/PySide6/ (2024), ac-

cessed: 2025-04-29

[7] Zeromq bindings in pypi, https://pypi.org/project/pyzmq/ (2024), accessed:

2025-04-29

[8] CBM, ECS group in the CBM Gitlab repository, https://git.cbm.gsi.de/ecs

(2024), accessed: 2025-04-29

 EPJ Web of Conferences 337, 01273 (2025) https://doi.org/10.1051/epjconf/202533701273

CHEP 2024

9

