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Abstract
Non-linear effects in particle accelerators have historically

been treated as harmful influences that necessitate various
mitigation schemes. Therefore, the simulation tools avail-
able are largely focused on identifying and correcting res-
onances. However, recent advances proved that non-linear
beam dynamics enables new techniques for manipulating
particle beams and can characterise diffusion and chaos in
particle accelerators. The simulation tools currently avail-
able for these purposes are difficult to integrate across differ-
ent frameworks. This paper presents Xnlbd, a new Python
package extending the Xsuite simulation framework, which
aims to provide a unified set of tools for analysing non-linear
beam dynamics phenomena. It allows the visualisation of
highly non-linear phase spaces, the efficient finding of both
stable and unstable fixed points and separatrices, the calcu-
lation of resonance driving terms and normal forms, and
the computation of dynamic indicators for the detection of
chaotic motion.

INTRODUCTION
In recent times, the study of non-linear beam dynam-

ics has unveiled the potential associated with the intricate
phase-space structures resulting from non-linear phenomena.
These structures encompass both stable and unstable fixed
points created by non-linear resonances, as well as separa-
trices that link these unstable fixed points. The separatrices
form phase-space regions where processes such as adiabatic
trapping and transport occur through slow variation of ac-
celerator parameters. These principles are fundamental to
the CERN PS Multi-Turn Extraction (MTE) [1–3] and var-
ious proposed non-linear beam manipulations [4–7]. The
determination of the regular or chaotic character of an orbit
is yet another important indicator of beam dynamics.

Implementing these concepts requires the use of modern
computational tools. CERN has embarked on significant
efforts to develop Xsuite, a new Python-based simulation
framework tailored for accelerator physics [8]. This initiative
now includes the creation of a specialised package, called
Xnlbd, to further support applications in non-linear beam
dynamics.
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COMPUTATION OF FIXED POINTS AND
SEPARATRICES

The computation of fixed points of non-linear mappings
is a condition sine qua non for analysing and studying non-
linear beam dynamics. It is worth mentioning that in 1883
and 1884 Poincaré, in his work on the three-body problem,
proposed without proof an important theorem for the ex-
istence of fixed points of continuous mappings from an 𝑁
dimensional cube (parallelotope) into ℝ𝑁. Poincaré’s the-
orem was proved by Miranda in 1940 [9], and is called the
Bolzano-Poincaré-Miranda theorem or Poincaré-Miranda
theorem. In 1989, a short proof and a generalisation of this
theorem was given by invoking the principle of homotopic
invariance of topological degree [10]. In 2020, in the context
of the existence of unstable periodic solutions of dynami-
cal systems, the theorem was named the Miranda-Vrahatis
theorem [11].

A point 𝑥 is a fixed point of order 𝑞 if the vector function
𝑓(𝑥) = 𝑀𝑞(𝑥)−𝑥 vanishes, where 𝑀𝑞(𝑥) is the one-turn map
applied 𝑞 times to 𝑥. 𝑀(𝑥) is obtained by numerical tracking.
Fixed points are classified as elliptic (stable), hyperbolic
(unstable), or parabolic according to the eigenvalues of the
Jacobian matrix. Applying traditional iterative root-finding
algorithms (e.g. Newton’s method) can work for stable fixed
points. However, they generically fail for unstable fixed
points. The algorithm in Xnlbd adopted the approach of [12],
described in detail in [13, 14].

The core idea is to apply bisection to refine an initial guess
of the fixed-point position using topological degree theory.
This approach relies only on the sign of the components of
𝑓(𝑥), and is thus unaffected by the growing function values
in the vicinity of unstable fixed points. In the 1D case, given
two initial guesses 𝑥1 and 𝑥2, a fixed point 𝑥fp ∈ (𝑥1, 𝑥2)
exist if sgn(𝑓 (𝑥1)) sgn(𝑓 (𝑥2)) < 0, where sgn is the signum
function. If fulfilled, one can apply bisection to converge to
the fixed point.

Extension to higher dimensions is straightforward, e.g.
in 2D, 𝑓(𝑥) has two components, leading to four possible
overall sign configurations, (++), (+−), (−+), (−−), while
in 𝑁 dimensions we have 2𝑁 possible sign configurations.
An 𝑁-polyhedron with 2𝑁 vertices, each with a different sign
configuration such that along each edge only one compo-
nent of 𝑓(𝑥) changes sign is a characteristic 𝑁-polyhedron.
Starting from a characteristic 𝑁-polyhedron, bisection along
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all edges can be performed, leaving the resulting reduced
𝑁-polyhedron characteristic. This characteristic bisection
can then be repeated until the fixed point, estimated as the
midpoint of the longest diagonal of the characteristic 𝑁-
polyhedron, reaches the desired accuracy. The concepts
of a characteristic 𝑁-polyhedron and characteristic bisec-
tion have been introduced in [15] and have been effectively
applied in a wide range of problems including non-linear
dynamics.

Figure 1: Horizontal phase space of the Hénon map close
to a fifth-order resonance coloured according to the sign of
𝑓(𝑥). The map’s orbits are also overlaid. Stable and unstable
fixed points are shown in teal and pink, respectively, along
with the dashed rectangles used as initial polygons for the
fixed-point search.

To illustrate the Xnlbd implementation, it is useful to
assign colours to the possible sign configurations and colour
the phase space accordingly, as illustrated in Fig. 1, for a
2D example using the Hénon map close to a fifth-order
resonance. Obviously, the fixed points are located at the
intersections of all colours. The algorithm in Xnlbd takes the
following steps to construct the characteristic 𝑁-polyhedron:

1. A rough estimate of the fixed point is found in the user-
provided 𝑁-polyhedron by searching for the intersection
of all 2𝑁 colours on a user-defined grid. If multiple
intersections are present, only one is selected at random.

2. 10𝑁 points are randomly uniformly sampled on the sur-
face of an 𝑁-dimensional hypersphere centred around
the rough fixed point estimate. The radius is chosen to
be of the same order of magnitude as the grid step to
ensure a single intersection in the hypersphere.

3. The colour of each of these 10𝑁 points is evaluated, and
2𝑁 points of distinct colour are selected as vertices of
the characteristic 𝑁-polyhedron in the proper order.

Note that the sequence of appearance of the colours de-
termines the stability of a fixed point, which can be used for
the localisation and computation of fixed points of a specific
stability type. Figure 1 shows an example of the described
algorithm. Xnlbd can compute fixed points in 2, 4, or 6
dimensions of any line object constructed by Xsuite.

To design beam manipulations based on non-linear beam
dynamics, it is often necessary to find the separatrix delimit-
ing regions of phase space. In Xnlbd an approximation of

the separatrix is obtained by tracking initial conditions close
to an unstable fixed point. Xnlbd returns the approximate
separatrix of each identified region of the phase space, as
well as their area 𝐴. The separatrix can be obtained for ar-
bitrary resonance order and even for islands generated by a
time-dependent exciter, as illustrated in Fig. 2.

Figure 2: Fixed points and approximate separatrices in hori-
zontal phase space obtained with Xnlbd at the SPS betatron
collimator for non-zero momentum offset close to the third-
order resonance (left), and at LHC IP1 in the presence of a
vertical AC dipole (right).

BIRKHOFF NORMAL FORMS
For the computation of the Birkhoff normal form, the 4D

one-turn map of the lattice is first computed. Xnlbd contains
polynomial-form implementations of the beam elements
most frequently used in Xsuite (work to implement the
remaining elements is ongoing), as well as a Hénon map
element unique to Xnlbd. The one-turn map of the desired
polynomial order is evaluated by efficiently computing the
composition of the maps of the ring lattice.

The normal form calculation is performed via a Python
implementation of ARES [16], which solves the equation

Φ ∘ 𝑈 = 𝐹 ∘ Φ, (1)

where 𝑈 is the normal form, Φ is the conjugating function
(tangent to the identity), and 𝐹 is the one-turn map, which
is assumed to have an elliptic fixed point at the origin. Us-
ing complex normalised Courant-Snyder coordinates 𝑧, the
linear part can be diagonalised and the map reads

𝐹(𝑧) = Λ𝜔𝑧 + ∑
𝑛⩾2

[𝐹(𝑧)]𝑛 . (2)

Here, Λ𝜔 = (𝑒𝑖𝜔1, 𝑒−𝑖𝜔1, 𝑒𝑖𝜔2, 𝑒−𝑖𝜔2) is the diagonal ma-
trix of eigenvalues and [⋅]𝑛 represents the 𝑛th-order ho-
mogenous polynomial component of 𝐹. Eq. (1) can be
solved using an order-by-order approach, truncating at a
chosen order. 𝑈 and Φ are represented as Lie transfor-
mations 𝑈(𝜁) = Λ𝜔𝑒𝐷𝐴𝜁 and Φ(𝜁) = 𝑒𝐷𝐺𝜁, where 𝜁
is the vector in the normal-form coordinates and the ac-
tion of the operator 𝐷𝑋 is defined by Poisson bracket, i.e.
𝐷𝑋𝑌(𝜁) = {𝑌, 𝑋}. The Lie transformation 𝑒𝐷𝑋𝑌 is obtained
by a recursive algorithm. This representation allows calcu-
lating the compositions in Eq. (1) as 𝐹(Φ(𝜁)) = 𝑒𝐷𝐺𝐹(𝜁)
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and Φ(𝑈(𝜁)) = 𝑒𝐷𝐴Φ(Λ𝜔𝜁). The mathematical details for
determining the solution of Eq. (1) can be found in [17]

To extract important information about particle dynamics,
the interpolating Hamiltonian is also computed [17]. Its flow
interpolates the orbits of 𝑈 at integer times. The amplitude-
detuning terms and resonance-driving terms can then be
extracted from the interpolating Hamiltonian.

The algorithm allows computing the normal forms in non-
resonant, exactly resonant, and quasi-resonant cases, for
single and double resonances. Figure 3 shows examples of
orbits of the quasi-resonant (top) and non-resonant (bottom)
Hénon map in physical (left), transformed into normalised
Courant-Snyder (centre) and normal-form (right) coordi-
nates. The Hamiltonian contours in normal-form coordi-
nates are also overlaid with coloured, dashed lines.

Figure 3: Hénon map orbits in physical space, Courant-
Snyder normalised coordinates and normal-form coordinates
(left to right). Quasi-resonant (top) and non-resonant (bot-
tom) cases are shown. The contours of the interpolating
Hamiltonian returned by Xnlbd are also plotted on the right-
most panels with coloured, dashed lines.

CHAOS INDICATORS
Chaos indicators are widely studied in various fields of

science including non-linear dynamics [18–23]. In acceler-
ator physics, Frequency Map Analysis (FMA) [24,25] has
gained traction in this domain (see, e.g. [26–28]), while Fast
Lyapunov Indicators (FLI) [20] and their improved versions,
such as the Birkhoff-weighted FLI (FLIWB) [29], remain
underused in accelerator lattice optimisation studies.

The Xnlbd package includes a suite of chaos indica-
tors: FLI with and without Birkhoff weights, Reverse Error
Method (REM) [19], FMA, and the Generalized Alignment
Index (GALI) [30]. FMA is evaluated using the average
phase advance method with Birkhoff weights [29, 31], of-
fering a memory-efficient alternative to FFT-based methods
and allowing real-time computations without excessive data
storage on GPU devices. Unlike previous studies that focus
on theoretical comparisons of indicators [22] (applied to
the Hénon map) or the application to a realistic accelerator
lattice [23], this study aims at their efficient implementation
and integration in Python-based, GPU-accelerated work-
flows of the Xsuite framework. A key component is the
GPU-based shadow-particle method, built directly on top
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Figure 4: Example of a stability plot (top-left, 𝑇s being the
stability time of an initial condition) together with the chaos
indicators evaluated at 106 turns on an HL-LHC lattice.

of Xobjects [32], which efficiently computes FLI, FLIWB,
and GALI by tracking and renormalising the separation be-
tween nearby trajectories across phase space. By seamlessly
integrating with the actively evolving Xsuite framework,
which increasingly incorporates features from established
tools such as MAD-X, Xnlbd enables the practical use of
chaos indicators in modern accelerator optimisation work-
flows. An example application to a High Luminosity LHC
lattice is shown in Fig. 4, illustrating how Xnlbd enables
chaos diagnostics for accelerator design studies.

CONCLUSIONS AND OUTLOOK
The package Xnlbd (https://github.com/xsuite/

xnlbd/) incorporates a variety of advanced techniques from
dynamical system theory. These functionalities are expected
to be crucial in advancing the non-linear beam manipulations
currently under investigation at CERN.
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