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Abstract 

Exploring the ocean’s vast, water-related environment, covering over 70% of Earth’s 
surface, remains a formidable challenge due to photon starvation, high-pressure 
extremes, and complex light-scattering effects below the photic zone. Optical imaging 
technologies have emerged as transformative tools for full ocean depth exploration, 
overcoming limitations of traditional acoustic methods through high-resolution, 
spectrally rich, and temporally precise observations. This review systematically surveys 
the physical principles, engineering constraints, and state-of-the-art developments 
in optical imaging from surface waters to the Mariana Trench. We analyze the role 
of blue-green pulsed lasers in improving imaging quality. We highlight key factors 
affecting light propagation in seawater. Advanced imaging modalities such 
as polarized imaging, range-gated imaging, single-photon imaging, streak camera 
techniques, and ghost imaging (GI) are examined for their capabilities to enhance 
visibility, resolution, and resilience in turbid, light-limited conditions. Furthermore, 
we introduce the progress achieved by deep-sea submersibles and their high-
performance camera payloads is highlighted, alongside the burgeoning integration 
of artificial-intelligence-driven image enhancement and restoration frameworks. 
Collectively, these interdisciplinary innovations chart a new path for unlocking deep-
sea frontiers, enabling ecological monitoring, resource mapping, and autonomous 
guidance in earth’s most inaccessible water-related realms.

Keywords:  Optical imaging, Water-related imaging, Imaging technology, Image 
processing

Introduction
Water-related environments span a diverse range of natural systems, including clouds, 
rain, fog, snow, rivers, lakes, and oceans. Among these, the ocean stands as Earth’s larg-
est and most consequential water-related domain, covering approximately 71% of the 
planet’s surface and containing 97% of its water [1, 2]. Vertical stratification divides the 
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ocean into the photic zone (0 to 200  m), where sunlight enables photosynthesis, the 
mesopelagic or “twilight” zone (200 to 1,000 m) characterized by diminishing light, and 
the abyssopelagic and hadal zones (> 6,000 m) [3], including trenches like the Mariana 
Trench at depths near 11,000 m [4, 5]. Ocean biodiversity underpins complex trophic 
networks, supporting fisheries, nutrient cycling, and essential ecosystem services. More-
over, the deep-sea harbors significant untapped resources, hydrocarbon energy reserves, 
polymetallic nodules rich in rare minerals, and marine natural products with promising 
bioactive and pharmaceutical properties. Marine exploration has historically catalyzed 
major scientific discoveries, from elucidating plate tectonics to identifying extremo-
philes in hydrothermal vent ecosystems, while also underpinning critical economic sec-
tors such as fisheries, maritime trade, and energy infrastructure. However, despite its 
global significance, over 95% of the ocean’s volume remains unexplored, constituting a 
“scientific terra incognita” due to extreme pressures, ultra-low illumination darkness, 
and light-attenuation caused by absorption and scattering [6]. Substantial knowledge 
gaps persist, particularly regarding deep-sea biodiversity, benthic ecosystem dynamics, 
and the impacts of climate change and anthropogenic activities such as deep-sea mining. 
Addressing these challenges necessitates transformative technologies capable of probing 
ultra-low illumination environments while ensuring sustainable stewardship of marine 
ecosystems [7, 8].

Optical imaging has emerged as a paradigm-shifting approach for deep-sea 
exploration, overcoming limitations inherent to traditional acoustic methods like sonar. 
While sonar excels in long-range bathymetry, its spatial resolution constraints and 
inability to resolve fine visual or spectral details hinder biological and geological analyses 
[9, 10]. In contrast, optical systems enable high-resolution visualization, real-time 
spectral characterization, and dynamic process monitoring across marine environments. 
In addition, unlike terrestrial imaging, photons propagating through seawater encounter 
a combination of coupled degradations. First, wavelength-selective attenuation rapidly 
diminishes the red spectrum, with more than 90% of red light absorbed within the 
first 5  m, leaving only a narrow blue-green transmission window (≈ 450 to 550  nm) 
and causing pronounced color-channel imbalance. Second, suspended particulates 
induce strong backscattering, which severely reduces scene contrast and often saturates 
imaging sensors; this effect intensifies nonlinearly with both turbidity and imaging 
distance. Third, the rapid attenuation of natural light with depth gives rise to highly non-
uniform illumination, manifested as surface caustics, volumetric shadows, and refractive 
distortions, thereby violating the Lambertian assumptions underlying most conventional 
vision algorithms. As shown in Fig. 1, modern methodologies span shallow to full ocean 
depth (FOD) applications: airborne and shipborne LiDAR exploit blue-green lasers for 
coastal bathymetry; polarization imaging suppresses scattering artifacts; and structured-
light systems paired with computational algorithms enhance 3D reconstruction in 
turbid waters [11, 12]. Furthermore, submersible-mounted optical systems, such as 
those deployed on China’s Fendouzhe (capable of reaching 11,000 m), are bridging the 
observational gap between surface and abyssal ecosystems, thereby advancing resource 
mapping, habitat assessment, and hydrodynamic research.

Nevertheless, water-related optical imaging confronts three fundamental constraints: 
wavelength-dependent absorption, scattering, and high-pressure extremes. Water strongly 
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absorbs red and infrared wavelengths, limiting effective penetration to blue-green spec-
tra, which are preferentially utilized in systems like LiDAR and cameras [13, 14]. In the 
epipelagic zone (0 to 200 m), abundant sunlight enables passive RGB imaging but intro-
duces strong color-channel imbalance and surface caustics that confound white-balance 
algorithms. Mesopelagic missions (200 to 1,000  m) must counteract the rapid exponen-
tial decay of natural light, compelling active illumination that in turn suffers from severe 
backscatter and power-limited laser safety margins. High-pressure environments, espe-
cially at depths exceeding 6,000 m, necessitate robust engineering innovations. Abyssal and 
hadal operations (> 6,000 m) confront near-total darkness, 110 MPa hydrostatic pressure 
that deforms optical windows and induces birefringence, and temperature-induced drift 
in sensor calibration. One critical solution involves pressure-resistant enclosures, which 
protect deep-sea imaging systems from extreme compressive forces. Scattering, caused 

Fig. 1  Extreme-depth water-related optical imaging
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by suspended particulates and turbulence, degrades image contrast and operational range 
[15]. To address this, advanced techniques have been developed to suppress scattering 
across multiple physical dimensions. Polarization imaging exploits differential polarization 
states to filter backscattered light [16]. Range-gated imaging temporally isolates photons 
reflected from targets using pulsed lasers and synchronized detectors. Single-photon imag-
ing enhances sensitivity in ultra-low illumination conditions by detecting individual pho-
tons. Streak camera imaging achieves ultrafast temporal resolution to disentangle scattered 
and direct light paths. Ghost imaging (GI) reconstructs targets by utilizing second-order 
statistical correlations of optical fields and computational algorithms, enabling noise-resil-
ient intensity correlation measurements [17–19]. By integrating spatial, temporal, spec-
tral, and polarization domains, these multidimensional strategies significantly extend the 
operational capabilities of optical imaging systems under extreme-depth water-related 
conditions. From an application viewpoint, long-range airborne lidar bathymetry battles 
wave-induced refraction and solar background within the Fraunhofer H-β absorption line, 
whereas AUV docking demands centimeter-level pose accuracy under dynamic turbidity 
and refractive-index fluctuations. Benthic habitat mapping further requires hyperspectral 
fidelity across 400–900  nm while suppressing fluorescence contamination from marine 
snow. Collectively, these depth- and mission-specific hurdles necessitate modality-tailored 
solutions rather than generic image-processing pipelines.

This paper systematically reviews the foundational principles, inherent challenges, and 
state-of-the-art advancements in water-related optical imaging from epipelagic zone to 
Mariana Trench. First, we elucidate the physical foundations of light propagation in water-
related environment, emphasizing wavelength-dependent absorption, forward/backward 
scattering mechanisms, and pressure-resistant designs. Next, we explore imaging meth-
odologies spanning the epipelagic to hadal zones, including laser-based imaging systems, 
deep-sea submersibles and artificial intelligence (AI) driven computational imaging tech-
niques. Finally, we highlight emerging AI-based solutions for image enhancement and 
restoration, and discuss key applications in resource exploration, ecological monitoring, 
and autonomous underwater navigation. This review provides a comprehensive review of 
water-related imaging methodologies for ultra-low-illumination environments and outlines 
promising research directions. By integrating optical physics, systems engineering, and 
computational imaging, it delineates a technology roadmap for robust sensing in ultra-low 
illumination conditions and for enabling access to the ocean’s deepest frontiers.

Principle of the water‑related optical imaging
Basic principle

Optical imaging in water-related environments relies on the propagation and interaction of 
light with water and its constituents. The medium is characterized by its inherent optical 
properties (IOPs). The beam attenuation coefficient c(λ) represents the total loss of flux due 
to both absorption a(λ) and scattering b(λ), when Raman and fluorescence are negligible.

(1)c(�) = a(�)+ b(�)
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It is operationally defined using a collimated beam and a detector with infinitesimal 
angular acceptance as the exponential loss constant for on-axis flux, i.e., the distance 
over which the beam falls to 1/e of its initial value. Residual on-axis radiance thus 
decays nearly exponentially with range. Radiance reflected from an object undergoes the 
same extinction on the outbound and return paths, so the photon flux from reflective 
surfaces can be far lower than the volumetric signal returned by scattering, depending 
on range, the angular distribution of scattering relative to absorption, and the target’s 
reflectance. The volume-scattering function (VSF) describes the angular redistribution 
of photons, and the single-scattering albedo ω0(λ) = b/c quantifies the fraction of 
extinction due to scattering [9, 10]. Along a line of sight at range z, the direct (ballistic) 
radiance is attenuated by the Beer-Lambert transmittance, while the camera also records 
backscatter. Image contrast is further reduced by backscattered light integrated over the 
illuminated volume, which appears as a noncoherent background that adds to, and can 
overwhelm, scene radiance, especially at long integration times. In addition, forward 
scattering spreads light from each object point into a neighborhood, producing blur 
described by a characteristic point-spread function (PSF), which degrades spatial detail 
at increasing optical depth. Together, the recorded intensity combines attenuated object 
radiance, backscatter, and scatter-induced blur. This departs from the near-linear, weak-
scatter regime typical of atmospheric imaging [20]. In addition, wavelength selectivity 
is strong in the water-related environments. The absorption increases sharply outside 
the blue-green window, and molecular/particulate scattering decreases with wavelength 
approximately as a Rayleigh or Mie-like power law (Fig. 2). Moreover, at interfaces, Snell 
refraction and Fresnel reflection modify ray paths and throughput. The refractive-index 
mismatch at the air-glass-water stack introduces spherical/chromatic aberrations unless 
corrected with index-matched domes or adaptive optics.

In conventional water-related optical imaging, contrast loss is the primary limitation, 
and the ballistic irradiance decays exponentially with range under the Beer-Lambert law. 
In the absence of scattering, the illuminance at 7 attenuation lengths (ALs) is reduced 
by roughly 10−5 relative to that at 1 AL, which creates a severe photon deficit. Low-
light detectors such as streak cameras and ICCDs can therefore be valuable, yet usable 
information ultimately depends on the system signal-to-noise ratio (SNR). Against this 
backdrop, two complementary paradigms are employed to manage propagation losses 
and backscatter, active and passive imaging. The active imaging that uses controlled 
illumination, such as lasers, LEDs, or structured light, to probe a scene and record the 
returned signal with a time, polarization, phase, or intensity reference. Because the 
source is known and synchronized with the sensor, the system can gate in time, mod-
ulate patterns, or measure time-of-flight to extract depth, suppress backscatter, or 
estimate material properties [21]. The passive imaging that relies solely on ambient illu-
mination to form images, without emitting its own probe light. The sensor records scene 
radiance and any derived quantities (e.g., color, polarization, spectrum), with image for-
mation governed by the environment’s lighting and the medium’s transport properties 
(e.g., conventional, polarimetric, or spectral cameras) [22].
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Challenges of water‑related optical imaging

Optical propagation challenges

(1)	 Brief introduction

	 As light propagates underwater it is attenuated and redirected by wavelength-
dependent absorption and scattering from water molecules and suspended con-
stituents such as sand, plankton, and dissolved organics, yielding range-dependent 
spectral and radiometric changes. Selective absorption suppresses long wavelengths 
first, so blue-green bands dominate with depth. In clear ocean water blue penetrates 
farthest, whereas in turbid or biologically productive waters green can prevail. The 
recorded signal combines ballistic returns from the target with forward-scattered 
light that broadens the point-spread function and backscattered path-radiance 
that veils contrast. Flow-driven particle fields and microstructure further per-
turb ray trajectories, altering intensity, spectrum, and polarization. These coupled 
effects remain a central challenge for modeling and recovering optical information 
in water-related environments. We attempt to summarize the challenges faced in 

Fig. 2  Absorption and scattering in ocean
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underwater optical imaging and propose the current main research directions, as 
shown in Fig. 3.

(2)	 Absorption
	 Water selectively absorbs light depending on wavelength, governed by the ​​Beer-

Lambert Law​​ [23]:
	

	 where I(z) is the irradiance at range z, I0 is the initial irradiance, and a(λ) is the total 
absorption coefficient. This coefficient combines contributions from pure water 
(aw), chlorophyll (achl), dissolved organic matter (aCDOM), and suspended particles 
(aNAP):

	

	 where, Cchl, CCDOM, and CNAP are concentrations, and a∗ denotes specific absorption 
coefficients. aw(λ) denotes pure water absorption, achl(λ) represents chlorophyll-a 
and accessory pigments, aCDOM(λ) a quantifies colored dissolved organic mat-
ter, aNAP(λ) accounts for non-algal particles, and aMAA(λ) captures UV-absorbing 
mycosporine-like amino acids in coastal organisms. Pure water exhibits a well-
characterized absorption minimum at 420 nm (aw = 0.0064 m−1) and maximum at 
740 nm (aw = 2.8 m−1) due to O–H bond vibrational overtones. Chlorophyll-a dis-
plays twin absorption peaks at 443 nm (σ = 12 nm) and 675 nm (σ = 8 nm). There-
fore, blue-green wavelengths (470 to 580 nm) exhibit minimal attenuation, making 
them optimal for water-related optical imaging [24].

(3)	 Scattering

(2)I(z) = I0e
−a(�)z

(3)
a(�) = aw(�)+ Cchl · a ·chl (�)+ CCDOM · a ·CDOM (�)+ CNAP · a ·NAP (�)

Fig. 3  Challenges of water-related optical imaging
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	 The propagation of light in oceanic environments is governed by complex interac-
tions between electromagnetic radiation and the constituents of seawater. As light 
traverses through water, it undergoes various processes including absorption and 
scattering, which fundamentally limit the performance of water-related optical 
sensing and imaging systems. Thus, since the early days of water-related optical 
imaging, the challenges posed by light scattering in seawater have been a central 
focus of research [25].

a.	 Scattering Coefficient

	 Forward scattering refers to the deflection of light at small angles as it propa-
gates through water, causing blurring in the image. This occurs because light 
that should have traveled directly from the object to the camera sensor gets scat-
tered and arrives slightly off-target, diminishing the sharpness of the captured 
scene. It blurs the image and photons arrive at slightly shifted angles. Backscat-
tering, on the other hand, occurs when light is scattered by particles in the water 
and redirected toward the camera. Backscatter adds noise and lowers contrast, 
especially in turbid water. As a result, most water-related imaging techniques 
are designed to mitigate the negative impacts of backscattering. The intensity of 
backscattered light is influenced by several factors, including the scattering coef-
ficient, the absorption coefficient, and the distance between the object and the 
camera. Quantitatively, backscatter can be modeled by integrating b(λ) along the 
path. The scattering coefficient b(λ) represents the fraction of incident light that 
is scattered in all directions per unit distance [26]:

	

	 where, bw(λ) is the scattering by pure water, predominantly Rayleigh scattering. 
bp(λ) is the scattering by particles, predominantly Mie scattering.

	 The VSF, denoted by (θ,λ), describes the angular distribution of scattered light at 
wavelength λ and scattering angle θ:

	

	 where, d2I(θ,λ) is the scattered intensity in direction θ. E0(λ) is the incident irra-
diance. dV is the volume element.

	 The scattering coefficient is related to the VSF through integration over all solid 
angles:

(4)b(�) = bw(�)+ bp(�)

(5)β(θ , �) =
d2I(θ , �)

E0(�)dV
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	 The scattering coefficient b(λ) and its integral relation to the β(θ,λ) provide the 
quantitative foundation for understanding water-related image degradation.

b.	 Rayleigh scattering
	 Rayleigh scattering occurs when the scattering particles are much smaller than 

the wavelength of light (d ≪ λ). In oceanic environments, this primarily applies 
to water molecules and very small colloidal particles. In pure seawater, scatter-
ing is primarily governed by Rayleigh scattering, where the scattering intensity 
is inversely proportional to the fourth power of the wavelength. The molecular 
scattering coefficient for pure seawater can be expressed as [27]:

	

	 where, bw(λ) is the molecular (Rayleigh) scattering coefficient of pure seawater 
at wavelength λ, typically in units of m⁻1. λ is the target wavelength at which 
you want to evaluate the scattering coefficient. λ0 is the reference wavelength, 
at which the scattering coefficient bw(λ0) is known or empirically measured. n 
is the spectral exponent, which reflects the wavelength dependence of Rayleigh 
scattering. For pure seawater, empirical values typically use n ≈ 4.32, slightly 
higher than the theoretical Rayleigh exponent of 4, to better match measure-
ments.

	 As a result, the scattering coefficient decreases with increasing wavelength, 
making longer wavelengths less prone to scattering, as shown in Fig.  4. The 
Rayleigh-like power law is b(λ) = b0(λ0/λ)α, where b0 = 0.003  m−1, λ0 = 550 nm, 
α = 4.32. In the blue-green spectral range, specifically from 450 to 570 nm, both 
the absorption and scattering coefficients of seawater are relatively low, which 
makes this range the optimal transmission window for light in oceanic environ-
ments. This spectral region’s favorable characteristics are one of the key reasons 
why the 532  nm wavelength laser is widely adopted in water-related optical 
applications, offering a balance between minimal scattering and sufficient light 
penetration for effective imaging.

c.	 Mie scattering
	 Mie scattering applies to particles with sizes comparable to or larger than the 

wavelength of light. In oceanic environments, this includes suspended sedi-
ments, phytoplankton, and other particulate matter. The Mie theory provides an 
exact solution to Maxwell’s equations for scattering by spherical particles. The 
scattered field is expressed as an infinite series [28].

	

(6)b(�) = 2π
π

0

β(θ , �)sinθdθ

(7)bw(�) = bw(�0) ·
(

�0

�

)n
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	 where, E₀ is the amplitude of the incident field. k is the wavenumber. r is the 
distance from the particle. aₙ and bₙ are the Mie coefficients. πₙ and τₙ are func-
tions related to Legendre polynomials.

	 The Mie coefficients are given by:
	

	

	 where, m the complex refractive index ratio. x = 2πr/λ is the size parameter, r is 
the particle radius). ψₙ and ξₙ are Riccati-Bessel functions. The efficiency factors 
for scattering Qs and extinction Qe are calculated as:

	

	

(8)Es = E0
eikr

−ikr

∑∞

1

2n+ 1

n(n+ 1)
[anπn(cosθ)+ bnτn(cosθ)]

(9)an =
m�n(mx)[x�n(x)]−�n(x)[mx�n(mx)]

mξn(mx)[xξn(x)]− ξn(x)[mxξn(mx)]

(10)bn =
�n(mx)[x�n(x)]−m�n(x)[mx�n(mx)]

ξn(mx)[xξn(x)]−mξn(x)[mxξn(mx)]

(11)Qs =
2

x2

∑∞

n=1
(2n+ 1)

(

|an|2 + |bn|2
)

Fig. 4  The molecular scattering coefficient for pure seawater decreases sharply with increasing wavelength 
from 380 to 780 nm, following the Rayleigh-like power law
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	 Equation (10) and (11) shows the wavelength dependence of the scattering effi-
ciency Qs for a single, non-absorbing. Mie theory delivers an exact, yet computa-
tionally efficient, framework for predicting the scattering and absorption of light 
by spheres of arbitrary size and refractive index. In ocean optics, it underpins 
forward models that link measured bulk optical properties to the microphysics 
of suspended particulate assemblages. By pairing observed particle‑size distri-
butions and complex indices of refraction with the Mie equations, researchers 
can reproduce measured scattering phase functions and radiative‑transfer coef-
ficients. This, in turn, improves the retrieval of suspended‑sediment or phyto-
plankton concentrations from remote‑sensing reflectance.

	 A rigorous mathematical description of underwater optics via the inherent opti-
cal properties. Together with the volume-scattering function, underpins the per-
formance limits and design choices of water-related imaging systems. The rela-
tive contributions of absorption and scattering depend on the composition and 
concentration of suspended particles and dissolved constituents, vary strongly 
with wavelength, and exhibit systematic geographic patterns. In the open ocean, 
transmission peaks in the blue-green window, with typical ALs of ~ 20  m, 
whereas in coastal waters elevated particulate and dissolved organic matter 
shorten ALs to ~ 3 to 5 m and shift the transmission maximum toward yellow 
[29]. Enabled by advances in optical hardware, computation, and signal process-
ing, modern systems increasingly exploit these properties to operate effectively 
in more challenging regimes [30].

(4)	 Polarization
	 Polarization, one of light’s fundamental attributes, encodes the orientation statistics 

of the transverse field and provides discriminative cues beyond intensity and color, 
enabling target detection under low SNR, cluttered backgrounds, strong scattering, 
and dim illumination. A monochromatic field propagating along the z-axis can be 
written as two orthogonal components [31]

	

	

	 Here, Ex and Ey are the complex electric-field components along the sensor’s x and y 
axes. Ax and Ay are their real, non-negative amplitudes. ω = 2πf is the angular fre-
quency for optical frequency f. k = 2πn(λ)/λvac is the wavenumber in a medium of 
refractive index n(λ) at vacuum wavelength λvac. φx and φy are constant phases.

	 The Stokes vector S = [I,Q,U,V]T captures the measurable polarization state. I is 
total intensity, ⟨∣Ex∣2 + ∣Ey∣2⟩. Q contrasts horizontal vs. vertical linear states, 
⟨∣Ex∣2 − ∣Ey∣2⟩. U contrasts + 45° vs. − 45° linear states, ⟨2Re(ExEy*)⟩. V measures 
right- vs. left-circular content, ⟨2Im(ExEy*)⟩. Angle brackets ⟨⋅⟩ denote a time aver-

(12)Qe =
2

x2

∑∞

n=1
(2n+ 1)R(an + bn)

(13)Ex(t) = Axe
i(ωt−kz+φx)

(14)Ey(t) = Aye
i(ωt−kz+φy)
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age over many optical cycles. From S, the degree of linear polarization and degree 
of polarization are

	

	 with DoP ∈ [0,1] indicating the polarized fraction of the field. Within the medium, 
multiple scattering drives depolarization, often captured by an empirical polariza-
tion memory model.

	

	 where z is optical path length, θ denotes viewing/scattering geometry, DoP0 is the 
source or target polarization at z = 0, and ℓpol(λ,θ) is an effective polarization-mem-
ory length set by the medium’s single-scattering albedo and phase function. Typi-
cally, ℓpol​ is longer in forward-looking configurations than in backscatter, so polari-
zation decays more slowly along near-forward paths. Air-glass-water interfaces 
and pressure windows further mix polarization via diattenuation and birefringence 
(angle and stress-dependent), introducing instrument and geometry biases that 
vary with depth and incidence angle [32].

	 These depolarization processes have concrete imaging consequences. Reduced DoP 
weakens edge and material contrast, while range and angle-dependent Stokes mix-
ing biases quantitative estimates. Spatiotemporal variability in particle fields makes 
polarization signatures nonstationary, hindering transfer of laboratory calibrations 
to the field. Reliable polarimetric imaging in water therefore requires tight control 
of illumination and viewing geometry, full Mueller-matrix calibration of the optical 
train to remove instrumental polarization, and physics-aware inference that explic-
itly models depolarization and interface effects. When these measures are in place, 
often in conjunction with time gating or spectral selection to favor ballistic and sin-
gly scattered photons, polarimetry remains a powerful complement to intensity and 
color-based underwater vision.

	 In practice, the polarization state of a wave can be robust to phase-only distortions, 
so vector-structured beams retain polarization inhomogeneity despite optical aber-
rations and modest misalignments, which is advantageous for structured-light 
sensing [33]. Underwater, however, the medium alters polarization through multi-
ple scattering, interface effects, and microbubble populations, producing range and 
geometry-dependent depolarization that varies even for identical materials, com-
plicating material inference and classifier design [34]. Polarization signatures also 
depend strongly on observation geometry at interfaces such as bubble boundaries, 
and forward versus backward propagation channels diverge with distance, leading 
to decreased degree of polarization and reduced contrast at longer paths [35]. The 
polarimetric imaging can enhance edge saliency and target discrimination in clean 

(15)DoP =
√
Q2 + U2 + V 2

I

(16)DoP(z, θ) = DoP0exp

[

−
z

ℓpol(�, θ)

]
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water, but requires careful control of illumination and viewing geometry, rigorous 
instrument polarization calibration, and models that account for medium-induced 
polarization changes to remain reliable in turbid, range-extended scenarios.

(5)	 Particles and turbulence
	 Underwater turbulence, driven by temperature-salinity microstructure, internal 

waves, and shear, introduces refractive-index fluctuations. These fluctuations act 
as a random, anisotropic phase screen along the optical path. For optical imag-
ing, beam wander and angle-of-arrival jitter reduce coupling efficiency. They also 
induce motion-like blur. Scintillation broadens the irradiance distribution and low-
ers SNR. Phase-front corrugation degrades the optical transfer function and creates 
a space and time-variant point-spread function. Path-length fluctuations broaden 
photon time-of-flight and erode axial resolution in gated, SPAD, and streak-tube 
systems. These effects decorrelate structured illumination, diminish polarization 
purity, and impair phase/coherence-dependent modalities, with severity set by tur-
bulence strength, inner/outer scales, stratification, and anisotropy [36, 37].

	 Furthermore, underwater turbulence modeling and measurement remain limited. 
Most forward models adopt isotropic, stationary spectra and Rytov-variance sur-
rogates that only partially capture oceanic reality. They under-represent salinity-
driven anisotropy, depth-dependent inner/outer scales, and non-stationarity across 
range. As a result, predicted scintillation, crosstalk among OAM states, and beam-
array correlations often misalign with field performance, hindering robust algo-
rithm design [38]. For imaging, this translates into calibration drift, PSF mismatch, 
and domain shift for learned restorers, particularly when in-air intrinsics or static 
underwater intrinsics are applied without refractive/turbulence correction.

(6)	 Inelastic processes
	 Inelastic processes impose several challenges for underwater optical imaging. Raman 

scattering adds a broad, Stokes-shifted background that rides on the elastic return 
and lowers contrast and SNR across wide spectral bands. This background varies 
with path length, illumination spectrum, and water chemistry, which breaks the 
assumptions of elastic-only image formation and biases color correction and reflec-
tance retrieval. Fluorescence introduces narrow but intense emissions, most prom-
inently near the chlorophyll-a band, that contaminate red and near-red channels 
and create spectral cross-talk for multispectral and hyperspectral sensors. Fluores-
cent lifetimes sit in the nanosecond range, so delayed photons leak into late gates 
and broaden photon arrival histograms, which degrades axial resolution for range-
gated, SPAD, and streak-tube systems and complicates time-of-flight calibration. 
Both Raman and fluorescence are partially depolarized, which depresses the degree 
of polarization and corrupts polarimetric cues used for de-scattering and material 
inference. Their magnitudes are scene dependent and nonstationary in space and 
time, which undermines radiometric stability and hinders transfer of laboratory 
calibrations to the field. Together these effects produce additive backgrounds, tem-
poral tails, and polarization dilution that, if unmodeled, lead to systematic errors in 
restoration, classification, and 3D reconstruction [39–41].

(7)	 Artificial intelligence (AI) enhanced signal processing
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	 AI methods for water-related optical imaging face severe, space and time-varying 
degradations. The medium imposes wavelength-dependent absorption, forward 
scatter, and backscatter. Then, the images exhibit color cast, blur, and low visibility. 
These factors shift the image distribution away from terrestrial data and vary with 
site, season, depth, water type, and platform, making learned models brittle when 
deployed outside the conditions seen during training [42].

	 First, data and supervision compound these physics-driven difficulties. Public under-
water corpora are heterogeneous in sensors, optics, lighting, water types, and 
annotation protocols. Many data are partial or no longer accessible, and evaluation 
practices vary issues that frustrate reproducible training and fair comparison of 
enhancement or restoration models. For imaging, an added challenge is the scarcity 
of paired “clean” ground truth, which pushes practitioners toward unpaired, self-
supervised, or synthetic supervision; this, in turn, raises concerns about domain 
fidelity and generalization when models trained on one site or simulator are 
deployed elsewhere [43, 44].

	 Second, objective mismatch further limits progress. Improvements in perceptual 
quality delivered by conventional underwater image enhancement are not reli-
ably predictive of downstream utility, because the losses and metrics used to train 
enhancement networks are only loosely related to task- or physics-faithful fidel-
ity. Thus, it is really necessary to incorporate measurement models, priors on light 
transport, or end-use awareness rather than relying solely on generic perceptual 
scores [45].

	 Third, generalization and domain shift remain central. Methods transferred from 
generic vision often underperform in underwater settings because they implicitly 
assume stable illumination, neutral color statistics, and haze-free edges, assump-
tions violated underwater. Models must therefore learn features and normalizations 
that are robust to medium-induced distortions and platform variability and should 
be stress-tested across diverse sites rather than a single dataset [46, 47].

	 Finally, deployment imposes stringent efficiency and reliability constraints. Long-
range missions on AUV/ROV platforms operate under tight energy budgets and 
limited on-board computer [48]. Maintaining real-time throughput with physically 
grounded, uncertainty-aware processing is non-trivial. The challenge therefore lies 
in the co-design of compact models, quantization, and algorithm hardware tailored 
for marine platforms.

System‑level and operational challenges

(1)	 Optical imaging system aberrations

	 Underwater optical systems inherit lens-design residuals and acquire additional 
errors at the air-glass-water interfaces. Refraction shifts the effective entrance pupil, 
alters focal length, and induces field- and depth-dependent distortions and chro-
matic dispersion, degrading inference when in-air intrinsics are applied underwa-
ter. Hydrostatic pressure and temperature induce elastic deformations and wedge in 
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windows, mounts, and barrels. In addition, stress birefringence in thick viewports 
and angle-dependent Fresnel coefficients introduce polarization diattenuation and 
retardance. These factors produce a space-variant, wavelength-dependent wave-
front error that differs fundamentally from in-air calibration [49].

	 Monochromatic aberrations (spherical, coma, astigmatism, field curvature, dis-
tortion) reduce the modulation transfer function and yield PSF that broaden and 
rotate across the sensor. Chromatic aberrations are amplified because glass and 
water disperse differently. The longitudinal chromatic shift defocuses bands, and 
lateral chromatic error misregisters color channels and biases stereo, mosaicking, 
and hyperspectral unmixing. Polarization aberrations contaminate Stokes meas-
urements and degrade division-of-focal-plane polarimeters. Stray light and ghost 
reflections at high-index interfaces add veiling flare, compounding contrast loss 
from backscatter. Biofouling, window contamination, and micro-bubbles further 
perturb the PSF and radiometry.

	 Because underwater aberrations vary with field angle, depth, wavelength, pressure, 
and temperature, they are nonstationary. This invalidates fixed PSF assumptions 
and degrades blind deconvolution. It also complicates transfer of laboratory cali-
brations to the field. Robust evaluation therefore requires in-water metrics, field-
resolved MTF/PSF maps, spectral radiometry, time-of-flight impulse responses, 
and Mueller-matrix stability, acquired over operating depths and temperatures. 
Meeting these requirements is difficult on submersible payloads and during long 
missions [50].

	 Addressing underwater imaging aberrations requires a system-level approach that 
co-optimizes optics, calibration, and computation under realistic mission and envi-
ronmental constraints. At the hardware layer, designs should manage the air-glass-
water interface, minimize depth-induced deformation, and suppress stray light and 
polarization artifacts. Calibration must move beyond in-air intrinsics to ray-traced 
intrinsics that encode interface geometry and indices, augmented by field-resolved 
PSF/MTF and Mueller-matrix measurements across depth, temperature, and wave-
length. Computational correction should then apply deblurring and denoising, with 
adaptive optics or computational wavefront sensing used where feasible to reduce 
residual phase error. Finally, physics-guided AI-unrolled deconvolution, domain-
adaptive or self-supervised training from in situ constraints, can close residual gaps 
[42].

	 Imaging through the air-glass-water stack introduces refraction at each inter-
face. Snell refraction changes effective focal length, shifts the principal point, and 
induces field- and depth-dependent distortions and chromatic dispersion, degrad-
ing inference when in-air intrinsics are applied underwater [35]. Robust operation 
therefore requires refractive calibration that accounts for interface geometry and 
refractive indices, or hardware designs that preserve central projection. In situ cali-
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bration with underwater targets and wavelength-aware radiometric checks further 
stabilizes downstream algorithms [36].

(2)	 Storage and transmission
	 High-resolution HD and 4  K imaging substantially raise scientific yield in under-

water inspection, mapping, and ecology, but they also multiply data rates, storage 
needs, and compute loads. Frame sizes and frame rates escalate linearly into multi-
Gb/s streams for uncompressed video, stressing the size-weight-power budgets of 
submersible payloads and the reliability of long-duration deployments. Algorithms 
that are now standard, dehazing, stabilization, mosaicking, stereo/SLAM, and AI 
inference, must operate at higher pixel counts and tighter latencies, which increases 
onboard power draw and thermal load and complicates real-time operation.

	 Local storage is the simplest acquisition path but has practical drawbacks under-
water. Storage capacity, file system limits, and write-speed ceilings cap recordable 
duration and frame quality, and the risk of single-point failure argues for redun-
dancy. Where feasible, live export to an external recorder is preferred to decou-
ple acquisition from storage and to enable immediate monitoring and quality con-
trol. For tethered platforms, live transmission typically rides fiber using established 
interfaces. Gigabit Ethernet supports IP streaming and control, while HDMI and 
HD-SDI transports carry high-resolution video, up to HD and 4 K at frame rates on 
the order of 60 fps, over deterministic links. Even so, bandwidth and latency budg-
ets force trade-offs among compression, resolution, and frame rate. Uncompressed 
links simplify processing but demand higher link margin, whereas compressed 
delivery reduces bitrate at the cost of codec latency and potential artifacts.

(3)	 Pressure-tolerant sealing
	 Underwater environments impose stringent operational constraints, optical imag-

ing device access is limited by depth, currents, visibility, and safety windows. Chi-
na’s deep-sea exploration technology achieved a milestone breakthrough in 2020 
with the manned submersible Fendouzhe successfully reaching the depths of the 
Mariana Trench Challenger Deep [51]. Its indigenously developed titanium-alloy 
pressure hull received international certification, signifying China’s attainment of 
world-leading capabilities in FOD pressure resistance technology. This manned 
cabin, manufactured via electron beam welding, features a 2.1 m diameter spherical 
structure. Remarkably, the weld strength achieved exceeds 95% of the base mate-
rial strength, ensuring exceptional sealing and structural integrity even under the 
extreme pressures at FOD, thereby demonstrating the robustness of fundamental 
industrial processes. However, the sustained advancement of deep-sea equipment 
continues to face multifaceted technical challenges. Cameras intended for FOD 
operation (depths beyond 11,000 m, ~ 110 MPa hydrostatic pressure) require care-
fully engineered sealing solutions to remain leak-tight under extreme conditions. 
At these hadal pressures, traditional sealing methods face several challenges. Elas-
tomeric O-rings, the most common seals, experience hydrostatic compression and 
material shrinkage that alter their sealing interference. High ambient pressure can 
reduce an O-ring’s volume and diametral compression, potentially leading to seal 
leakage if the initial squeeze was insufficient. Moreover, long‑term stress‑relaxation 
and creep of polymer seals are further accelerated by high pressure and the 2 to 4 °C 
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ambient temperatures typical of deep water [52]. Continuous immersion in salt-
water, and occasional exposure to hydraulic oils, requires sealing compounds that 
resist swelling, hydrolysis, and corrosion. At the optical port, adhesives and encap-
sulants around the lens window must also remain transparent and dimensionally 
stable to avoid distorting the transmitted wavefront [53]. Reliable imaging in the 
hadal realm therefore requires a holistic sealing strategy that couples mechanical 
robustness with optical integrity.

	 Recent advances in deep-ocean optical housings have crystallized around three syn-
ergistic strategies. First, high-performance thermoplastics such as PTFE and PEEK 
retain dimensional stability, extremely low permeation and chemical inertness at 
static pressures approaching 110 to 120  MPa, while carbon- or glass-fiber rein-
forcements halve long-term creep strain and suppress cold-flow without degrad-
ing machinability [54, 55]. Second, flooding the housing with an optically clear, 
dielectric oil and coupling it to ambient seawater via a bellows, bladder or piston 
equalizes internal and external pressures, thereby eliminating radial loads on seal 
lips and viewports [56]. Third, Kovar-to-glass feed-throughs joined by radial metal 
C-ring seals routinely achieve helium leak rates below 1 × 10–9 mbar·L/s and offer 
coefficients of thermal expansion of about 4 to 6 ppm/K, closely matching boro-
silicate or sapphire and thus mitigating stress-induced birefringence and focus drift 
over ± 50  °C thermal excursions. Finite-element models of 25 mm-thick sapphire 
windows loaded to 110 MPa predict peak von Mises stresses at least 25% below the 
yield strength of reinforced-PEEK seats and transmitted-wavefront error under λ⁄10 
across 400 to 700 nm [57, 58]. Hyperbaric-chamber dwell tests of identical assem-
blies for 72 h at the same pressure confirm leak-free operation and optical through-
put within 1% of atmospheric benchmarks. These pressure-tolerant sealing systems 
now underpin abyssal imaging sensors, including cameras rated to 11,000 m and 
emerging deep-sea lidar modules, enabling month-long deployments for benthic 
biodiversity surveys, geomorphological change detection and in-situ calibration of 
satellite ocean-color algorithms.

(4)	 Imaging payload platform
	 Underwater optical imaging places stringent demands on the deployment platform 

because platform dynamics directly govern image sharpness, exposure stability, and 
targeting. Diver-operated cameras are effective in shallow water but are unsuitable 
for continuous or deep (> 30 m) surveys. Fixed landers provide the highest stability, 
ideal for long, unblurred time series of stills and video, at the cost of spatial cov-
erage. ROVs offer good station-keeping and allow detailed imaging with moderate 
mobility, while AUVs trade precise station-keeping for extended range, endurance, 
and fully autonomous operation. Towed systems enable wide-area, cost-effective 
surveys with large payloads but introduce motion, altitude, and heading variability 
that can blur imagery and complicate focus, especially over rough terrain. Across 
all platforms, residual motion, vibration, and hydrodynamic disturbances remain 
primary risks for blur and misregistration [59].

	 These engineering constraints degrade the performance of underwater reconstruc-
tion systems, and in-air optical designs and algorithms rarely satisfy operational 
requirements in water. Meeting practical needs therefore demands domain-specific 
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advances in optics (e.g., pressure-tolerant, blue-green, low-scatter illumination, 
refractive-interface correction) and algorithms (e.g., physics-based restoration, 
robust calibration, uncertainty modeling), with particular emphasis on ultra-low-
illumination regimes.

Water‑related optical imaging from epipelagic zone to Mariana Trench
Light source

In 1963, Duntley identified an optical attenuation window in the blue-green wave-
length region, demonstrating the feasibility of water-related detection and communica-
tion using blue-green light [60]. Subsequent studies by Smith and Baker revealed that 
pure and clear seawater exhibits minimal attenuation of blue light, particularly within 
the deep-blue spectral range (450 to 485 nm), where transmission loss is only about 1% 
of that in other wavelength bands [61]. This characteristic significantly enhances laser 
transmission efficiency and provides a practical basis for water-related laser-based detec-
tion and communication. However, laser attenuation in seawater still varies considerably 
depending on water quality. According to the water type classification described by Jer-
lov [62] and subsequent optical measurements of Jerlov water types [63], the optimal 
transmission wavelength differs across various types of seawater. In coastal and shallow 
sea areas, the optimal optical transmission window is around 510 to 550 nm, whereas 
in open ocean and deep-sea waters, it shifts toward shorter wavelengths, with peak 
transmission occurring in the blue range of 450 to 490 nm [62, 63]. The existence of this 
blue‑green window opens new possibilities for marine applications. When combined 
with the high brightness, strong directionality, narrow linewidth and high‑peak‑power 
of pulsed lasers, blue‑green light enables cross‑medium ocean remote sensing and sup-
ports high‑capacity, high‑data‑rate underwater optical communication [64].

The most representative methods and sources for generating blue and green lasers 
are illustrated in Fig.  5. In the context of oceanic lidar systems, the development 
of high-performance pulsed lasers has prioritized high peak power and spectral 

Fig. 5  Typical blue/green laser generation methods and sources



Page 19 of 89Sun et al. PhotoniX             (2026) 7:7 	

stability [65]. Among these, the predominant and technologically mature solution 
employs neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers as the gain 
medium. Specifically, a semiconductor laser diode-pumped Nd:YAG crystal emits 
at the fundamental wavelength of 1064  nm in the near-infrared regime. This output 
is subsequently converted to 532  nm green pulses via second-harmonic generation 
(SHG), leveraging nonlinear optical crystals such as potassium titanyl phosphate (KTP) 
or lithium triborate (LBO) [66–70]. This approach dominates current applications due 
to its proven reliability, conversion efficiencies exceeding 50%, and compatibility with 
high-repetition-rate operation, critical for airborne and shipborne lidar deployments. ​In 
contrast, there are multiple technical routes for generating high-peak-power blue pulsed 
lasers. One common approach involves using a quasi-three-level Q-switched laser 
doped with Nd3+ ions, pumped by a semiconductor diode to produce a fundamental 
laser pulse at ~ 0.9 μm, which is then frequency-doubled to obtain blue laser pulses. The 
advantage of this method lies in its relatively high energy conversion efficiency due to the 
requirement of only a single frequency-doubling process. However, the major challenge 
is the efficient generation of the ~ 0.9 μm fundamental pulse [71]. Another mainstream 
method involves using pulsed laser-pumped optical parametric oscillators (OPO), and 
third-harmonic generation to obtain blue laser output [72–74]. These approaches allow 
for cascaded amplification to boost pulse energy, but their energy conversion efficiency 
is relatively low, ranging from 0.4% to approximately 30%. While THG offers tunability 
and broader spectral coverage, its complexity and reduced efficiency present trade-offs 
compared to direct frequency-doubling methods. In practice, SHG dominates for green 
(532 nm) in airborne/shipborne systems, whereas blue generation trades off THG/OPO 
flexibility against added complexity and reduced conversion efficiency, chosen according 
to the platform’s power, stability, and spectral requirements.

Currently, the effective suppression of solar background noise is key to achieving sta-
ble, all-day performance of water-related laser systems. Within the blue-light transmis-
sion window of seawater, a notable Fraunhofer absorption line (the H-β line) exists at a 
central wavelength of 486.13 nm [75]. It is evident that aligning the laser source’s cen-
tral wavelength with the solar spectral dark line markedly suppresses solar background 
radiation at the receiver. Moreover, both the laser linewidth and the photodetector filter 
bandwidth should be kept narrower than the H-β line’s spectral width of about 0.1 nm, 
as demonstrated in single‑frequency OPO systems at 486.1 nm [76, 77]. Together, these 
measures greatly enhance the photodetection SNR. For deep-sea applications, even 
shorter wavelengths in the deep-blue region are required. Deep-blue laser output at 
473 nm with high repetition frequency can be achieved through direct generation using 
GaN-based laser diodes or by frequency doubling vertical-cavity surface-emitting lasers 
(VCSELs), though these methods are limited in peak power [78, 79]. Alternatively, fiber-
laser-based frequency doubling can also produce high-repetition-rate 473  nm output, 
but the low damage threshold of optical fibers restricts their ability to handle high-peak-
power pulses and increases susceptibility to strong nonlinear effects, leading to laser 
degradation [80]. Therefore, the most promising solution is to use solid-state lasers to 
generate high-peak-power, high-repetition-rate 473 nm deep-blue laser pulses [81, 82].

With the continuous expansion of laser applications in ocean science, there is grow-
ing demand for all-solid-state blue-green lasers capable of high repetition rate with high 
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pulse energy. The increasing application of hyperspectral technologies in marine explora-
tion further drives the need for single-frequency, frequency-stabilized blue-green lasers 
with high pulse energy output. Current nonlinear harmonic generation techniques, 
particularly parametric oscillation/amplification schemes seeded by single-frequency 
sources, can produce narrow-linewidth, high energy blue laser pulses with peak powers 
over the megawatt level, which are suitable for marine lidar applications. However, these 
systems are often limited by the complexity of frequency conversion processes, low effi-
ciency, and susceptibility to wavelength drift. One of the most critical challenges is that 
high-peak-power ultraviolet laser irradiation can cause optical damage to components 
and nonlinear crystals, which can seriously affect the stability and reliability of the sys-
tem. Additionally, at high peak power densities, the spontaneous emission effect of the 
laser gain medium becomes prominent, further impacting performance [83, 84]. There-
fore, identifying high-quality gain media capable of directly emitting in the blue spectral 
region or achieving blue light output through a single-stage harmonic conversion pro-
cess, along with the development of efficient laser modules, is expected to be a key direc-
tion for the future development of high-energy, high-repetition-rate blue pulsed lasers.

Polarimetric imaging

Principle

Polarimetric imaging technology leverages the polarization properties of light to 
enhance image quality in water-related environments, particularly in highly scattering 
conditions [85–88]. Its core principle relies on the partial polarization of scattered 

Fig. 6  a Water-related polarimetric imaging (PD) model. (b-1) Selection of the light source. (b-2) Selection of 
utilized polarization information. c Applications of polarimetric imaging



Page 21 of 89Sun et al. PhotoniX             (2026) 7:7 	

light and the distinct polarization characteristics between targets and water-related 
medium [85]. By capturing and processing the polarization information of a scene, this 
technique suppresses scattered light and extracts the light reflected from the target, 
thereby improving image contrast and clarity [89–91]. The typical system setup for 
water-related polarimetric imaging, as illustrated in Fig. 6 (a), consists of a light source, 
polarization filter, and imaging device. The light source can be natural light, unpolarized 
light, or polarized light, which illuminates the water-related scene. The polarization filter 
selectively captures light based on its polarization state, allowing differentiation between 
back-scattered light and directly transmitted light from the target. The imaging device, 
such as a polarization-sensitive camera, then records the filtered light to produce images 
that can be further processed to reveal detailed information about the scene, such as 
target structure, depth, or material properties [92].

Polarimetric imaging methods

Typical water-related polarimetric imaging systems fall into three main categories, as 
illustrated in Fig. 6 (b). Polarization difference imaging employs two orthogonally polar-
ized sub-images to estimate transmittance via the degree of linear polarization [91–93]. 
Stokes polarimetric imaging, particularly full-Stokes approaches, leverages the stability 
of polarization angles or circular polarization “memory effect” to suppress backscat-
ter [94, 95]. Mueller matrix imaging provides a complete characterization of polariza-
tion behavior through matrix decomposition [96–98]. These methods rely on distinct 
optical architectures, offering versatile solutions for varying water-related applications. 
Additionally, integrating polarization data into computer vision and learning-based 
frameworks can further enhance image quality, expanding use cases in target detection, 
environmental monitoring, and water-related archaeology, as illustrated in Fig. 6 (c).

Schechner et al. [85] pioneered a descattering model for turbid water using polarized 
illumination in Fig.  7 (a-1), demonstrating effective contrast and color recovery for 
submerged objects like an iron box in Fig. 7 (a-2) [91]. However, their model assumes 
object radiance is unpolarized, which breaks down for low-depolarizing materials, 
leading to inaccurate transmittance estimation. Huang et al. [99] highlighted this issue, 
noting negative transmittance values (Fig. 7 (b-1)), and addressed it by fitting the target’s 
polarization difference image within a feasible region, successfully restoring details in 
both high- and low-depolarizing scenes (Fig. 7 (b-5)). Liu et al. [100] further advanced 
the field by proposing a red-light-based polarization imaging method optimized for 
turbid water, enabling visibility of previously undetectable targets while balancing 
imaging range and clarity (Fig. 7 (c)).

Recent advancements in deep learning (DL) have significantly enhanced polarimetric 
imaging, focusing on polarization information processing [101–103]. Hu et  al. 
introduced a polarimetric dense network (PDN) for water-related polarimetric image 
restoration, as shown in Fig.  8 (a). The PDN, comprising shallow feature extraction, a 
residual dense block, and dense feature fusion, extracts and fuses features from three 
polarization images, yielding detailed results compared to intensity-only methods. Yang 
et al. [103] developed an end-to-end unsupervised generative network using adversarial 
loss to remove backscattered light. By modifying the water-related imaging model 
with physical priors, such as matching the Degree of Polarization of backscatter to 
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background light, this method adapts to non-uniform optical fields. Similarly, Zhu et al. 
[104] proposed a non-GAN unsupervised method combining polarization physics and 
DL (Fig. 8 (b-1)). Using U-Net, they processed polarimetric hazy images and computed 
loss between generated and captured images. Figure  8 (b-2) shows this method 
effectively removes homogeneous scattering in background areas while preserving 
object details, eliminating the need for paired or haze-free datasets.

Data-driven techniques are increasingly merged with physical models to direct 
network training, tackling the constraints of traditional techniques [32, 105]. They 
enable the extraction of more extensive features, adapt to complex scattering media, 

Fig. 7  (a-1) Imaging system. (a-2) Imaging result based on Schechner’s model [91]. (b-1) Raw image. The 
deduced (b-2) transmittance and the recovered (b-3) radiance of the objects when the light emanating from 
objects in the scene is unpolarized. The retrieved (b-4) transmittance and (b-5) radiance of the objects by 
Huang’s method [99]. (c-1) Synoptic diagram; FT denotes Fourier transform. (c-2) Experimental arrangement 
for imaging in highly turbid water. (c-3) Detection results with blue light illumination, and from the proposed 
method in water with gradually varied turbidity [100]
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and enhance training efficiency via self-supervised, closed-loop optimization [106, 
107]. However, obtaining suitable datasets for training remains a key challenge. While 
synthetic and generative approaches offer potential solutions, they continue to present 
significant obstacles for future progress.

Table 1 summarizes recent active and passive polarimetric imaging architectures for 
water-related vision. Current water-related polarimetric imaging bifurcates into active 
and passive paradigms with distinct operating envelopes and trade-offs. Active systems 
couple controlled linear or circular laser illumination with time-gating or time-of-flight 
detection to reject multiply scattered photons, thereby extending range in turbid media 
and achieving centimeter-scale resolution over several ALs despite predominantly pro-
totype-level maturity. Their advantages in penetration and depth accuracy are balanced 
by higher system complexity, power and eye-safety constraints, and stringent calibration 
needs, with ongoing work on circular polarization, polarization-enhanced backscatter 
suppression, and improved radiometric/Stokes calibration. Passive systems rely on nat-
ural downwelling irradiance and acquire Stokes information either sequentially (rotat-
ing analyzer) or instantaneously via division-of-focal-plane sensors; they are compact 

Fig. 8  (a-1) The architecture of PDN and (a-2) recovered image [103]. (b-1) The architecture of untrained 
network and (b-2) visual comparison among different de-scattering methods [104]

Table 1  Representative water-related polarimetric imaging systems [108–114]

System Institution Depth range Device Type

Polarimetric De-scatter-
ing Camera

Tianjin Univ. & Xiamen 
Univ

 ~ 0.6 m tank, high 
turbidity

12 MP DSLR + rotating 
pol. filter

Passive

Auto Stokes Imaging Northwestern Polytech-
nical Univ

 ~ Lab tank tests (various 
turbidities)

CCD with rotating 
polarizer

Passive

One-Shot Polarization 
Camera System

Ocean Univ. of China 
& CAS

 ~ 1 m tank, moderate 
turbidity (milk or sedi-
ment)

Division-of-focal-plane 
polarimeter

Passive

Passive Polarization 
Image Dataset

Dalian Maritime Univ Shallow coastal 
waters, ~ 1–2 m visibility

GoPro-based rig + linear 
polarizers

Passive

Polarization-Enhanced 
Range-Gated Camera

SUSTech & SIAT, CAS  ~ 0.5–0.6 m (lab) Gated camera Active

Laser Pol. Backscatter 
Suppression System

Institute of Oceanology, 
CAS

Up to 10 m (lab) CMOS polarimetric 
camera

Active

Circular-Polarization 
LiDAR Prototype

Xi’an Inst. of Optics & 
Precision Mech., CAS

 ~ 2 m (lab) CMOS camera + polar-
izers

Active
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and low power, consistently improving contrast and feature visibility in mildly to mod-
erately turbid, shallow waters (visibility ≈ 1 to 2 m), yet are limited to daylight opera-
tion, reduced penetration, and potential temporal misregistration in sequential capture. 
Across both paradigms, contemporary research increasingly integrates polarimetry with 
deep-learning restoration and advanced optics to elevate image fidelity while reducing 
size, weight, and power, with the field trending toward compact snapshot polarimeters 
plus physics-aware algorithms for passive use cases and polarization-augmented gated 
LiDAR for active deployments in turbid waters.

Range‑gated imaging

Principle

Range-gated imaging isolates a chosen depth slice by synchronizing short laser pulses 
with an ultrafast electronic shutter at the detector. The transmitter emits a brief burst of 
light into the water column; the receiver opens its gate after a programmable delay that 
corresponds to the two-way travel time to the desired range, then closes within a few 
hundred picoseconds to a few nanoseconds. Photons returning from shallower ranges 
arrive earlier and are rejected, while photons from the target slice, primarily ballistic and 
singly scattered, are admitted (Fig. 9). Because only a thin axial layer contributes during 
the open interval, near-field path radiance and multiply scattered foreground light are 
strongly suppressed, yielding higher contrast and improved signal-to-noise ratio under 
turbidity. The temporal width of the gate determines the thickness of the imaged slice. 
Shorter gates produce finer depth separation but admit fewer photons, whereas longer 
gates increase photon counts at the cost of more residual in-gate backscatter [115].

Fig. 9  Principle of range-gated imaging
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Practical systems pair blue-green sources, where seawater attenuation is lower, with fast 
shutters such as gated image intensifiers, Pockels cells, or single-photon avalanche detector 
arrays operated in gated mode. Key timing parameters include the laser pulse width, the gate 
rise and fall times that set slice sharpness, and timing jitter between the source and sensor 
that broadens the effective slice. Spectral and polarization filters are commonly integrated 
to reject out-of-band glow, bioluminescence, and cross-polarized backscatter, further 
improving SNR. Performance reflects several coupled trade-offs. Narrow gates and precise 
synchronization maximize axial resolution and minimize in-gate haze but reduce photon 
budgets and increase sensitivity to timing drift. Wider gates improve throughput but admit 
more multiply scattered light. Residual errors arise from in-gate multiple scattering in very 
turbid water, platform motion during the open interval, speckle from coherent illumination, 
and calibration drift of the instrument response [116].

First proposed by Gillespie et al. [117] in the 1960 s, range-gated imaging remained 
impractical for decades due to optoelectronic limitations. In the 1990 s, Canada’s 
DRDC achieved notable progress with the LUCIE series systems [118–120]. RGI 
enables time–space mapping by establishing precise delays between laser pulses 
and sensor gating, allowing selective capture of spatial “slices” at specific ranges. 
Two 3D imaging approaches have since evolved. On the one hand, time-slice 
scanning acquires sequential gated images via fine delay stepping for volumetric 
reconstruction, but suffers from high data loads and limited real-time performance 
[121]. On the other hand, energy-versus-range correlation imaging reconstructs 
depth from only two gated frames, enabling video-rate acquisition [122, 123]. A 
typical range-gated imaging system includes a pulsed laser, a gated sensor, and a 
timing control unit (TCU). The TCU synchronizes laser emission with sensor gating, 
adjusting delay, pulse width, and repetition rate. As depicted in Fig. 10, the laser pulse 
propagates through the medium, reflects off the target, and the gate opens just as the 
return photons arrive. A CCD or CMOS focal-plane array then records the gated 
signal, yielding a high-contrast image confined to the target range.

When the temporal offset between the laser-emission pulse and the gating pulse is 
τ, the standoff range R of the gated slice is [124]:

Fig. 10  Representative gated imaging system
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When the gate width is tg and the laser pulse width is tL, the depth of field d of the 
gated slice is:

where, c is the speed of light in vacuum, and n is the refractive index of the transmission 
medium. Theoretically, laser range-gated imaging is achieved by convolution of the laser 
pulse function P(t) and the gated pulse function G(t). The target echo signal energy I(r) 
at distance r is:

Here, ηr and ηL are the transmittances of the imaging and illumination optics, 
respectively, M × N is the pixel count of the ICCD/ICMOS sensor, ρ is the target 
reflectance, Ar is the clear-aperture area of the receiving lens, and σ denotes the 
attenuation coefficient of the medium. Equation  (19), commonly referred to as the 
lidar range equation for gated imaging, explicitly couples the characteristics of the 
laser pulse, medium propagation, target reflectance, optical throughput, and detector 
response in a single multiplicative framework.

Range‑gated imaging system

After decades of development, 2D laser range-gated imaging has reached commercial 
maturity. Notable systems include the ARGC series from Obzerv (Canada) [125], the 
GLASS series by Sinotech Sensing (China) [126], and the SeaLVi platform developed by 
the Franco-German Saint-Louis Institute [127]. A key innovation is the UTOFIA pro-
ject [128], which produced a compact water-related range-gated camera integrating a 
pulsed laser and a fast-gated CMOS sensor into a single unit. UTOFIA delivers both 2D 
video and 3D depth maps with operational ranges up to ~ 5 ALs, achieving 2–3 × range 
enhancement in turbid waters compared to conventional cameras, and centimeter-level 
depth accuracy within 5 m. Crucially, it is the first water-related range-gated system to 
adopt CMOS rather than ICCD technology, reducing cost and complexity while ena-
bling higher frame rates.

In parallel, Wang et al. [128] developed a series of gated imaging prototypes, “Lvtong”, 
“Fengyan” and “Longjing”. Representative gated imaging system is shown in Fig. 10. These 
systems employ high-power 532 nm pulsed lasers and gated image intensifiers to enable 
long-range 3D imaging in coastal waters. Laboratory and field tests demonstrated their 
ability to detect targets beyond visibility limits and generate reliable 3D point clouds in 
turbid conditions. Primarily deployed for marine surveillance, these systems also exhibit 
robust performance under fog, rain, and snow [129]. Range-gated imaging’s capability 
to deliver high-resolution reflectance and dense 3D data is accelerating its adoption in 
pilot applications such as security monitoring, ecological observation, and autonomous 
navigation, with several nearing practical deployment [130]. Representative systems are 
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summarized in Table 2. Across scattering environments, range-gated imaging now spans 
mature atmospheric systems and rapidly advancing water-related variants, with clear 
modality, wavelength, and sensor trade-offs. In air, commercial NIR solutions achieve 
surveillance-grade standoff performance. Underwater, green gating leverages the blue-
green transmission window to extend operation to several ALs, research prototypes 
such as SeaLVi, UTOFIA, and CAS “Dragon Eye” and related platforms deliver high-
contrast reflectance and dense depth at short-to-medium ranges. ICCD detectors 
provide high gain for weak returns at the cost of size/power and blooming risk, whereas 
modern gated CMOS favors compactness, frame rate, and integration [131]. Ongoing 
work, polarization control to suppress backscatter, multi-gate fusion for SNR and depth 
linearity, and tighter laser-sensor synchronization, continues to raise performance 
ceilings.

Range-gated imaging has become a versatile tool for extending optical vision in 
scattering media. Operational atmospheric systems already deliver surveillance-grade 
imagery that passive sensors cannot match, while water-related variants, powered by 
improved lasers, modern sensors, and sophisticated algorithms, now provide high-
contrast, high-resolution scenes at standoff ranges of several ALs. This capability is 

Table 2  Representative range-gated imaging systems [129–134]

Manufacturer
/Institute

System Distance Resolution Primary 
application

Status

Obzerv Technolo-
gies

ARGC-2400 6.4 km in air 40 cm @ 6 km Coastal/border 
long-range sur-
veillance
808 nm 
laser, > 10 km 
imaging

Commercial

Sinotech Sensing GLASS Series Under the 
condition of 
20 km range, the 
distance measure-
ment to a target 
of 2.3 m × 2.3 m 
is ≥ 12 km

/ All-weather secu-
rity monitoring
NIR laser, gated 
ICCD

Commercial

BrightWay Vision VISDOM  ≤ 300 m in air 0.8–9 cm Automotive night 
vision and ADAS
805 nm NIR laser 
diodes, gated 
CMOS

Commercial

Fr.-Ger. Inst. Saint-
Louis

SeaLVi / cm level Detection and 
ecological survey
532 nm laser, 
dual-gate 3D 
imaging

Research 
Prototype
Sea trials

UTOFIA Consor-
tium

UTOFIA Camera Typical scanning 
distance: 1–9 m; 
Sea trials can 
observe up to 
4.5–5 ALs; > 20 m 
visibility in clear 
water

/ Underwater 
inspection and 
mapping
532 nm laser, 
gated CMOS

Research 
Prototype

CAS Inst. of Semi-
conductors

Dragon Eye
& others

/ mm—cm level High-resolution 
3D imaging
532 nm laser, 
gated ICCD

Research 
Prototype
Sea trials
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transforming oceanographic surveys, industrial inspections, and naval defense, enabling 
tasks such as object detection and 3D mapping in conditions where conventional 
cameras fail. Although challenges remain, ongoing work on polarization control and 
multi-gate data fusion continues to raise performance ceilings, positioning range-gated 
imaging as an indispensable technology for future water-related vision applications.

Single‑photon imaging

Principle

Water-related single‑photon imaging operates by detecting and time‑tagging individual 
photons returned from a pulsed light source, thereby reconstructing range‑resolved 
reflectivity profiles with subcentimeter accuracy even in highly scattering media. In this 
approach, the system emits ultra-short laser pulses and detects individual backscattered 
photons with single-photon avalanche diodes (SPAD) rather than integrating intensity 
over a gated exposure. Each emitted photon that survives absorption and multiple scat-
tering is registered by a SPAD array or superconducting nanowire detector [135]. Time-
correlated single-photon counting (TCSPC) based lidar offers picosecond-scale timing 
resolution for range measurement, translating to millimeter-scale depth precision in 
principle. Notably, this method was pioneered in early work on point-by-point single-
photon ranging and demonstrated sub-centimeter accuracy using picosecond timing 
electronics. Unlike traditional laser line scanning (LLS) systems that rely on continuous-
wave illumination and camera integration, a TCSPC lidar detects and time-tags each 
photon return. This per-photon time-stamping approach inherently gates against long-
lasting backscatter and is highly photon-efficient, enabling operation at much lower 
laser power levels for a given range compared to analog or intensifier-based techniques. 
By utilizing single-photon detection, the need for high laser pulse energy and large aper-
tures is significantly reduced [18, 136–139], enabling system miniaturization and making 
water-related deployment feasible [140–142].

Fig. 11  Principal of single-photon imaging lidar
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Single‑photon imaging lidar

Figure  11 illustrates a single-photon imaging lidar system. A single-photon imaging 
LiDAR emits ultrashort laser pulses into the scene and measures the time of arrival of 
individual backscattered photons relative to a synchronized clock, using Geiger-mode 
detectors such as SPAD arrays or superconducting nanowire single-photon detectors. 
For each pixel or scan position, the system accumulates a time-of-arrival histogram 
whose earliest, highest-confidence peak corresponds to the ballistic or minimally 
scattered return from the target surface. The peak time yields range via time-of-flight, 
while the peak area estimates reflectivity. Because detection is event-driven at the single-
photon level, the method discriminates against delayed, multiply scattered background 
and operates with low pulse energies. It delivers range-resolved reflectivity with 
picosecond timing, yielding millimeter to centimeter-scale depth precision underwater, 
and extends imaging distance to roughly 10 ALs.

Consequently, single-photon imaging lidar has been proposed and successfully dem-
onstrated for water-related imaging [143, 144]. The picosecond temporal resolution of 
modern SPAD arrays allows photon‑efficient acquisition, often below one photon per 
pixel on average, so that high‑contrast 3D imagery can be recovered at depths exceeding 
100 m where conventional intensity imaging fails. Crucially, photon‑by‑photon statistics 
enable adaptive gating and quasi‑Bayesian deconvolution, suppressing backscatter and 
enhancing the SNR in turbid water, thus extending the operational envelope of active 
optical sensing in oceanographic exploration, submerged archaeology, and autonomous 
vehicle navigation. However, water-related single-photon imaging lidar still faces techni-
cal challenges, including achieving efficient scanning to acquire underwater target infor-
mation and mitigating interference from strong water column backscatter. To achieve 
fast imaging, detector arrays [143] or multibeam technology [145] are commonly 
employed. These require independent time-to-digital converters (TDCs) for each pixel, 
demanding high-performance computing for real-time processing [143]. To address this, 
multiplexing technologies like time-division multiplexing (TDM) [144–146], frequency-
division multiplexing [147] and spectro-temporal encoding technology [148] have been 
proposed for simultaneous multi-pixel detection with a single-pixel detector. TDM 
scheme based on optical fiber arrays offers a notable advantage by enabling multi-pixel 
detection with a simple fiber array addition to a traditional lidar, greatly simplifying the 
architecture.

The lidar prototype (Fig. 12) comprises four subsystems, including a 532 nm pulsed laser, 
a transceiver, a TDM module and a data-acquisition unit. A fiber-coupled 532 nm source 
is selected because this wavelength lies in the blue-green optical window of water and 
benefits from mature, commercially available technology. The laser delivers picosecond/
nanosecond pulses at MHz with user-selectable energies up to microjoule. On return, a 
large-aperture achromatic fiber collimator collects the signal through a band-pass filter. The 
lidar prototype was evaluated in a swimming-pool test tank at Xiamen University.

Recent breakthroughs in single-photon imaging lidar for water-related environments 
provide the cornerstone for centimeter-scale target detection by uniting photon-
efficient optical ranging with complementary acoustic sensing in a tightly coupled, 
multi-modal framework. Table  3 summarizes the key parameters and performance 
metrics of representative water-related single-photon lidar systems in recent years. 
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Fielded and near-fielded systems span airborne bathymetry in clear water and industrial 
subsea mapping, while laboratory and sea-trial prototypes demonstrate photon-efficient 
ranging over several ALs (up to ~ 8 to 10 AL) with decimeter-to-sub-millimeter vertical 
precision. Detector choices map to use cases: time-correlated SPADs enable sub-
millimeter depth discrimination, SPAD arrays support real-time millimeter-scale 3D, 
Geiger-mode APDs offer rugged, wide-area coverage, and emerging SNSPD prototypes 
resolve centimeter-scale targets at short range. Blue-green operation and histogram-
level inference suppress backscatter and recover depth at low photon counts, and tightly 
coupled optical–acoustic fusion improves coverage and robustness for AUV deployment. 
Remaining challenges include ambient-light resilience, backscatter/multipath rejection 
in highly turbid water, array calibration, and the latency–throughput balance for dense 
point clouds. Overall, the evidence indicates a transition from specialized prototypes to 
application-ready, photon-efficient, acoustically aided lidar capable of centimeter-scale 
detection and high-throughput 3D mapping across diverse marine conditions. This 
optical-acoustic fusion sharply elevates the situational awareness and autonomy of next-
generation sub-sea platforms, most notably autonomous underwater vehicle (AUV) 
and thereby ushers in a new era of high-throughput, high-resolution marine surveying. 
The resulting gains in depth penetration, spatial coverage, and measurement fidelity 
are poised to accelerate fundamental oceanographic discovery, refine bathymetric 
and habitat mapping, and enable more responsible exploitation of marine resources, 
collectively heralding a transformative chapter in deep-sea exploration and sustainable 
blue-economy development.

Streak tube imaging

Principle

Streak tube imaging, a variant of LLS technology, synchronizes a collimated linear laser 
array with a receiver that has a narrow instantaneous field of view. It is characterized 
by picosecond-level temporal slicing, making it a powerful approach for high-precision 

Fig. 12  a Schematic diagram of the water-related single-photon imaging lidar. b Enlarged cross-sectional 
images of the fiber interfaces at positions A, B, and C as marked in (a). c Internal view of the lidar. d External 
appearance of the lidar. e Photo of the lidar experiment in the pool
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imaging in water-related environments. Such systems employ high-speed streak tubes 
and implement a spatial decoupling strategy that transforms imaging into efficient 
1D scanning. By combining the ultrafast temporal resolution of the streak tube with 
the spatial line-scan capability of the laser, this technique enables accurate target 
reconstruction in scattering media. Its key strength lies in the streak tube’s ability to 
convert photon arrival times directly into spatial positions, forming a natural distance-
intensity mapping. The line laser contributes spatial information through sequential 
scanning, collectively boosting SNR in particle-laden water. Streak tube imaging 
systems also feature wide fields of view, high spatial resolution, and excellent sensitivity. 
However, the inherent one-dimensional nature of the streak tube restricts illumination 
options to linear scanning, posing challenges in practical deployment. These include 
light attenuation in complex water-related media, real-time processing constraints, and 
limits in photoelectric conversion efficiency [154, 155].

Table 3  Representative water-related single-photon lidar systems [140, 143, 149–153]

System Institution Depth range Resolution Detector

EAARL-B NASA & USGS  ~ 0–40 m in clear 
water

 ~ 0.3 m laser foot-
print
 ~ 2 m shot spacing
 ~ 0.2 m depth 
accuracy

SPAD

Underwater Single-
Photon Bathymetric 
Lidar

Xiamen Univ  ~ 0–54 m (10 AL) 
(lab)

Decimeter-scale 
vertical accuracy
High point density

SPAD

Heriot-Watt Under-
water Lidar Prototype

Heriot-Watt Univ. & 
Univ. of Edinburgh

up to 8 AL (lab) Sub-millimeter depth 
resolution (TCSPC)

SPAD

Heriot-Watt Under-
water Lidar Sensor

Heriot-Watt Univ. & 
Univ. of Edinburgh

 ~ 4 m in turbid water 
(lab)

Millimeter-level 
detail in real-time 3D 
images

SPAD array

3D at Depth Single-
Photon Lidar

3D at Depth, Inc  ~ 2–45 m under-
water

 ~ 6 mm depth 
accuracy
 ~ 30° × 30° field of 
view

Geiger-mode APDs

Dual-Band SNSPD 
Lidar Prototype

KTH & Nanjing Univ  ~ 0.5 m (lab) Resolved cm-sized 
submerged objects

SPAD

System Institution Depth Range Resolution Detector

EAARL-B NASA & USGS  ~ 0–40 m in clear 
water

 ~ 0.3 m laser foot-
print
 ~ 2 m shot spacing
 ~ 0.2 m depth 
accuracy

SPAD

Shipborne Single-
Photon Bathymetric 
Lidar

Xiamen Univ  ~ 0–10 m (shallow 
coastal)

Decimeter-scale 
vertical accuracy
High point density

SPAD

Heriot-Watt Under-
water Lidar Prototype

Heriot-Watt Univ. & 
Univ. of Edinburgh

up to 8 AL (lab) Sub-millimeter depth 
resolution (TCSPC)

SPAD

Heriot-Watt Under-
water Lidar Sensor

Heriot-Watt Univ. & 
Univ. of Edinburgh

 ~ 4 m in turbid water 
(lab)

Millimeter-level 
detail in real-time 3D 
images

SPAD array

3D at Depth Single-
Photon Lidar

3D at Depth, Inc  ~ 2–45 m under-
water

 ~ 6 mm depth 
accuracy
 ~ 30° × 30° field of 
view

Geiger-mode APDs

Dual-Band SNSPD 
Lidar Prototype

KTH & Nanjing Univ  ~ 0.5 m (lab) Resolved cm-sized 
submerged objects

SPAD
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The streak tube itself comprises a photocathode, acceleration electrodes, deflection 
plates, a microchannel plate (MCP), and a phosphor screen, as illustrated in Fig.  13. 
Unlike conventional cameras that capture 2D spatial images, it maps light intensity as 
a function of time and wavelength. Incoming light passes through a slit to form a one-
dimensional spatial profile, which hits the photocathode and emits electrons via the 
photoelectric effect. These electrons are accelerated and deflected by time-varying 
electric fields, spatially encoding their arrival time. The electrons then strike a phosphor 
screen, producing a streak image where time is mapped along the horizontal axis, and 
spatial or spectral information along the vertical. This image is finally captured by a CCD 
or CMOS sensor, achieving femtosecond-to-picosecond temporal resolution [156].

Streak tube imaging lidar (STIL)

Streak cameras have become a transformative tool in water-related STIL applications, 
offering robust solutions to challenges posed by scattering, absorption, and turbidity 
in water-related environments. Their capacity to simultaneously capture temporal 
and spatial information enables precise 3D imaging under low-visibility conditions. 
In 1988, S. Williamson first proposed a streak-tube-based laser radar, demonstrating 
that synchronizing a pulsed laser with a streak camera could yield accurate time-of-
flight measurements while recording a one-dimensional intensity profile of the target 
[157]. Building upon this, F. K. Knight et  al. [158, 159] introduced an angle-angle-
range STIL system in 1989, where echo photons were mapped by the photocathode 
and, through fiber-optic reordering, produced a 16 × 16 pixel field with 4  cm depth 
resolution. With support from the U.S. Office of Naval Research, Areté Associates 
initiated the development of a high-resolution littoral-sensing STIL prototype in 1994. 
This system integrated streak tube imaging with flash lidar capabilities, advancing 
mine-countermeasure sensing. By 2003, it had been mounted on a towed water-related 
platform for 3D seabed imaging in the Gulf of Mexico. Using motorized scanning, it 
mapped spatial variations in seafloor morphology, including sand ripples, achieving 
a working range of ~ 3.4  m and 1  mm resolution, establishing its viability for detailed 
water-related target imaging [160, 161]. In parallel, Areté launched the Multiple-Slit 
STIL program to evaluate autonomous missile-borne target recognition. Phase-I trials 
yielded offline 3D range-intensity reconstructions of static targets [162]. Subsequent 
work by McLean et  al. [163] validated centimeter-scale water-related 3D imaging, 
detailing system design and ocean-monitoring performance. Airborne MS-STIL 
experiments later confirmed the feasibility of autonomous seeker-based detection and 

Fig. 13  Principle of streak camera
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classification [164]. A 2008 internal study further demonstrated the capability of STIL 
to capture the 3D morphology of short-scale sea-surface waves. Meanwhile, Mitsubishi 
Corporation developed a compact water-related topographic LLS system, utilizing a 
microchannel plate photomultiplier tube (MCP-PMT) for detection [165], as illustrated 
in Fig. 14.

Zhao et  al. [166] at Xi’an Institute of Optics and Precision Mechanics (XIOPM) 
presented the first analytical design of a multi-slit STIL system, establishing trade-
offs between time resolution and deflection sensitivity, and optimizing the electron-
optical layout. In 2007, Harbin Institute of Technology enhanced spatial resolution by 
narrowing laser divergence, capturing 3D images of building façades at 700 m [167]. 
Within a linear systems framework, Lei et  al. [168] analyzed STIL signal-to-noise 
characteristics, identifying detector-limited noise as the dominant constraint. Gao 
et al. [169] applied high-resolution single-slit STIL of ocean-surface capillary waves, 
serving anti-submarine applications. Ye et  al. [170] developed a theoretical signal-
distribution model for streak-array detectors, identified sources of ranging error, and 
proposed slot-width optimization combined with an iterative weighted-centroid algo-
rithm to improve 3D imaging quality.

To further enhance depth precision, Chen et  al. [171] addressed accuracy degra-
dation under high-dynamic-range echoes by integrating streak-array detection with 
time-correlated single-photon counting. Luo et al. [172] applied Wiener deconvolu-
tion to reduce edge error and double spatial resolution from 9 mm to 4.5 mm. Li et al. 
[173] implemented a modulated sub-nanosecond laser in conjunction with a streak 
tube, achieving 9  mm depth resolution at 20  m underwater. Guo et  al. [174] intro-
duced a dual-mode multispectral-polarization STIL system, capturing depth, inten-
sity, and polarization in a single or dual exposure, significantly improving contrast 
over single-wavelength systems.

To accelerate target recognition, Li et  al. [175] combined ResNet classification with 
a beam-splitting fiber design that mitigates the trade-off between depth resolution and 
depth of field. Deep in-painting techniques with MS-STIL restored occluded regions, 
refining depth resolution from 0.4 to 0.1 m. Yan et al. [176] devised a hybrid k-nearest-
neighbor and Gaussian-weighted voting framework to extract suburban buildings 
from airborne STIL datasets, effectively suppressing noise. Follow-up implementations 
confirmed that single-echo, single-source data suffices for rapid ground target extraction 

Fig. 14  Mitsubishi corporation’s water-related 3D imaging system
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[177]. Fang et  al. [178] introduced a STIL system achieving sub-centimeter resolution 
in both clear and turbid conditions, supported by an ADMM-based denoising and 
deblurring framework [179] that simultaneously suppresses noise, corrects blur, 
and enhances echo localization even under low SNR. Feng et  al. [180–182] recently 
addressed frame-rate limitations in water-related LiDAR by combining LLS illumination 
with streak-camera reception. In 2024, their team developed China’s first long-range, 

Fig. 15  The LLS system and imaging experiment

Fig. 16  Overview of the StreakNet-Arch based UCLR system
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deep-sea-capable LLS 3D imaging system in Fig.  15, achieving 27 frames per second 
or 6.48 × 106 points per second, while maintaining ≤ 5 cm resolution across a 34° field 
of view. The system operates at pressures equivalent to 6,000 m depth and reaches 5.2 
ALs in seawater. Compared to existing systems, it achieves over 73 × the point density 
of Sweden’s LSV-W at similar range, and surpasses Canada’s 2G Robotics system in both 
depth rating and attenuation-limited range, establishing new benchmarks in deep-sea 
optical 3D imaging.

Li et  al. [183] introduced StreakNet-Arch, an anti-scattering, end-to-end binary 
classification network for underwater carrier LiDAR-Radar (UCLR) systems in Fig. 16. 
The architecture embeds streak-tube imagery into a self-attention backbone with 
a novel double-branch cross-attention block, delivering real-time acquisition and 
superior scatter rejection. On an NVIDIA RTX 3060 GPU, StreakNet-Arch achieves a 
constant average imaging time (AIT) of 54 to 84  ms across up to 64 frames, whereas 
traditional methods’ AIT grows linearly from 58  ms to 1,257  ms, confirming its real-
time advantage. Finally, to validate deep-sea performance, we conducted a South China 
Sea trial, reaching an error of 46 mm for 3D target at 1,000 m depth and 20 m range.

Table 4 summarizes recent water-related STIL systems spanning laboratory prototypes 
to fielded bathymetric mappers. STIL combines the picosecond temporal precision of 
streak tubes with modern pulsed lasers to deliver centimeter-accurate depth and mil-
limeter to centimeter lateral resolution over tens of meters underwater. In a streak tube, 
photons are converted at a photocathode, accelerated and deflected by tailored electric 
fields, and recorded on a position-sensitive anode, enabling sub-nanosecond timing and 
sub-millimeter spatial sampling. Advances in photocathode quantum efficiency, micro-
channel-plate gain/linearity, electron-optical design, and compact DPSS/fiber lasers 
have reduced temporal jitter, extended range, and lowered size-weight-power. Architec-
tural choices trade throughput for detail: single-slit, high-frame-rate designs prioritize 
spatial fidelity and timing stability, whereas multi-slit geometries increase throughput at 
the cost of coarser lateral resolution. Large-FOV implementations achieve < 9 mm lateral 
error at 20 m with ~ 1 cm range accuracy, and few-photon variants report ~ 0.5 mm depth 

Table 4  Representative water-related STIL systems [178, 184–187]

System Institution Depth range Resolution Device

High Frame-Rate 
STIL

Harbin Institute of 
Technology (HIT)

31 m  ~ 3 mm lateral 
at 22 m (range 
res. ~ 1 cm)

Single-slit streak tube

Multi-Slit STIL Beijing Institute of 
Technology (BIT)

 ~ 10 m 22 mm at 10 m Multi-slit streak tube

Large-FOV STIL XIOPM 20 m in clear water; 
10 m in turbid water

 < 9 mm at 20 m 
range; range accu-
racy ~ 1 cm

Streak tube with 60 ps 
temporal resolution, 
12 lp/mm spatial 
resolution

Few-Photon STIL XIOPM Weak-signal imaging 
in scattering media

 ~ 0.5 mm depth 
resolution

Streak tube enabling 
few-photon detection

PILLS/RAMMS 
Bathymetric STIL

Areté Associates & 
Fugro

 ~ 42 m (~ 3 × Secchi 
depth)

 ~ 1 m horizontal 
spot size

high-dynamic-range 
streak camera
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precision under weak returns. At the system level, high-dynamic-range airborne pro-
grams emphasize wide-area coverage and standoff operation, mapping to ~ 42 m depth 
with ~ 1 m spot size from crewed and UAV platforms. Persistent challenges include radi-
ometric/timing calibration across slits, motion compensation under platform dynamics, 
suppression of backscatter and multipath in turbid water, and low-latency inversion for 
dense 3D products. With continued miniaturization, tighter integration with electro-
optic and inertial sensors, and real-time learning-based reconstruction, STIL is poised 
to become a core element of next-generation multimodal marine sensing. Notably, all 
systems listed in Table 4 demonstrate effective operation in water-related environments 
and achieve better spatial resolution.

Ghost imaging

Principle

GI is an active imaging technique that leverages high-order statistical correlations 
within light fields. By concurrently recording one-dimensional intensity signals after 
light interacts with an object and capturing two-dimensional light field distributions, GI 
reconstructs images based on the correlations between these datasets. GI reconstructs 
scenes from second-order intensity correlations rather than direct irradiance maps, 
allowing high-fidelity images to be recovered even when fewer than one photon per 
pixel is detected, an essential advantage in the photon-starved hadal zone. Moreover, 
because the random speckle patterns used in GI are spatially incoherent with the diffuse 
backscatter field, uncorrelated veiling glare is statistically averaged out, yielding superior 
contrast in highly turbid water where conventional cameras saturate. This method 
transcends the traditional one-to-one mapping between objects and detectors inherent 
in conventional imaging systems, thereby offering superior resilience in ultra-low 
illumination and scattering environments [188–194], as shown in Fig. 17.

Early demonstrations of GI employed entangled photon pairs, yielding high SNR 
images and sparking significant interest in computational imaging. However, practical 
applications of quantum GI are hindered by challenges in generating entangled photons 

Fig. 17  Principle of computational GI
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at specific wavelengths and inherent photon flux limitations. To address these issues, 
researchers introduced GI schemes based on classical light sources. While this approach 
entails a reduction in SNR, it eliminates the reliance on entanglement. Subsequent 
efforts demonstrated GI using pseudo-thermal light sources. With the advancement 
of liquid crystal technology, micro-electro-mechanical systems, and high-speed digital 
control, spatial light modulators (SLMs) and digital micromirror devices (DMDs) have 
been widely adopted to generate pre-modulated optical fields, enabling single-arm 
correlation imaging, commonly referred to as computational GI (CGI). This technique 
evolved from the conventional two-arm configuration, which required a reference path 
to measure random light fields, into a simplified single-arm system based on known 
modulation patterns. Nevertheless, due to the intrinsic incoherence of pseudo-thermal 
light, the theoretical visibility of CGI is limited to 33% of that achieved by quantum 
GI. Furthermore, CGI typically requires a large number of single-pixel measurements, 
as each measurement provides only limited information about the object. By the way, 
there are some studies have tried to combine single-photon imaging technology with GI 
technology to further integrate the advantages of the two in underwater imaging [195]. 
Consequently, enhancing sampling efficiency and image contrast has become a central 
challenge in the field. These demands have driven the development of techniques such 
as compressed sensing and nonlinear correlation extraction, aiming to improve image 
quality while reducing the number of required measurements [188, 196, 197].

GI methods

a.	 Classical GI

	 Classical GI algorithms reconstruct images by second-order intensity correlations 
between a known pattern sequence and bucket measurements. The baseline linear 
correlator forms the image from the covariance between the reference pattern and 
the bucket signal; Its variants, including Differential GI (DGI) [198] and normal-
ized GI (NGI) [199], stabilize against illumination drift and suppress background 
by differencing or normalization of reference and bucket totals, improving SNR 
and robustness for pseudo-thermal and computational GI setups. These operations 
are the canonical classical baselines on which later methods build, and they remain 
attractive for their simplicity and physical interpretability. Yet they typically require 
many measurements because each bucket sample carries limited information, and 
their visibility/SNR are bounded under partially coherent illumination, which con-
strains performance in scattering media.

b.	 Compressive-sensing (CS) GI
	 Motivated by the measurement burden of classical correlators, CS formulations of 

GI reconstruct the object under sparsity priors via convex optimization [200]. Total-
variation regularization solved with augmented-Lagrangian schemes is a widely used 
choice for edge-preserving recovery at sub-Nyquist sampling [201]. Pioneering sin-
gle-pixel/CGI work by Duarte et al. [202] and extensions to pseudo-thermal GI by 
Katz et al. [203] demonstrated that an image with N pixels can be recovered from far 
fewer than N measurements, thereby reducing sampling demands, improving noise 
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tolerance, and enhancing system flexibility. However, performance remains contin-
gent on a faithful sparsity model and accurate forward operators; when the scene is 
not sufficiently sparse in the chosen transform or when noise/statistics deviate from 
assumptions (e.g., Poisson counts, speckle non-idealities), reconstruction quality 
degrades and the computational cost of large-scale optimization becomes nontrivial. 
These limitations helped catalyze DL for GI, while the explicit forward model and 
priors from CS continue to inform physics-guided learning that embeds measure-
ment physics to improve robustness and interpretability [191, 204, 205].

c.	 DLGI
	 With the continuous advancement of DL, its powerful capabilities in feature extrac-

tion and nonlinear modeling have enabled significant improvements in image recon-
struction quality. As a result, DL has been introduced into the field of CGI to achieve 
high-quality imaging. Depending on the training paradigm, DL-based CGI methods 
can be categorized into data-driven supervised approaches and physics-driven self-
supervised approaches. The frameworks of DL-based CGI method under these two-
training paradigm are illustrated in Fig. 18.

	 In recent years, data-driven supervised DL techniques have advanced rapidly, dem-
onstrating outstanding performance in computer vision and related domains. These 
methods rely on large volumes of labeled training data to optimize a loss function, 
enabling models to learn complex mappings between inputs and outputs for accu-
rate predictions on previously unseen data. Motivated by these successes, research-
ers have begun incorporating DL into GI [206–208]. Lyu et al. [209] first introduced 
DL into computational GI (GIDL). They employed traditional computational GI 
techniques to reconstruct a series of noisy, low-quality images under low sampling 
conditions, which were then paired with corresponding high-quality ground truth 
images to form a training dataset. Once trained, the deep neural network successfully 
mapped noisy reconstructions to high-fidelity outputs. Subsequently, He et al. [210] 
proposed a convolutional neural network (CNN) architecture tailored for computa-
tional GI. Both simulations and experimental results verified its effectiveness in sig-
nificantly enhancing reconstruction quality at low sampling rates. Shimobaba et al. 
[211] also conducted additional experimental studies, further confirming the poten-
tial of DL in this field. Despite these advancements, data-driven supervised learn-
ing approaches typically require large amounts of labeled data, which is often need 

Fig. 18  Classification of CGI methods in DL
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high costs and time-consuming data preparation. Moreover, such models frequently 
exhibit limited generalization to novel or unseen scenarios, leading to suboptimal 
reconstruction performance.

	 Self-supervised learning enables models to autonomously learn deep and robust fea-
ture representations from large volumes of unlabeled data, thereby maintaining high 
reconstruction quality under varying imaging conditions and in previously unseen 
scenarios[212]. Owing to these advantages, self-supervised learning has been widely 
applied to CGI, effectively reducing the cost of training data acquisition while sig-
nificantly enhancing the generalization capability of imaging systems in complex 
environments. Liu et al. [213] introduced a self-supervised DL framework into the 
field of CGI by integrating the physical model of GI with an untrained neural net-
work. This method achieved high-quality image reconstruction without requiring 
any pre-training. The model takes the measured one-dimensional intensity sequence 
as input and predicts the corresponding reconstructed image. By using the experi-
mentally collected intensity sequence as the supervisory signal, the network is opti-
mized to ensure that the predicted intensity fluctuations match those of the actual 
object, thereby improving the fidelity of the reconstructed image. Extensive experi-
ments [214–216] conducted in long-range outdoor scenarios validated the effective-
ness and generalization ability of the self-supervised approach, further broadening 
the application scope of computational GI. However, existing DL-based GI methods 
still face underfitting issues when reconstructing images of complex objects. This is 
primarily due to limitations in model architecture and parameter capacity, which 
hinder the effective mapping between single-pixel measurements and intricate object 
features, ultimately reducing image visibility. Moreover, self-supervised algorithms 
solve a scene-specific inverse problem by alternating a physics-consistency step and 
a prior step. The per-frame cost grows with the number of iterations, the number of 
channels, and the number of pixels. In practice, tens to hundreds of iterations are 
common. Latency on edge hardware ranges from about 1/10 s to more than 1 s. That 
is acceptable for mapping or inspection at one to 5 Hz. It is not acceptable for closed-
loop navigation, tracking, or manipulation at ten to thirty hertz. Feasibility improves 
with amortized inference or meta-learned initializers that reduce warm-start time. 
Unrolled optimization with learned proximal operators or learned denoisers fixes 
a small depth while keeping the physics. Multi-resolution pyramids and region-of-
interest scheduling reduce work. Temporal warm starts and early stopping based 
on residual tests cut iterations. Mixed precision, quantization, fused operators, and 
kernel specialization raise throughput on vehicle processors. A hybrid pipeline is 
practical, with a light model online for control and a slower self-supervised module 
updating maps at a lower rate. Task-aware objectives and uncertainty-aware budgets 
further trim cost. Fast surrogates for the physics model, such as Fourier-based solv-
ers or low-rank approximations, also help. These measures preserve the key benefit 
of self-supervision, label-free scene adaptation, while closing the compute gap that 
blocks real-time use.

	 In order to further improve the reconstruction ability of complex objects, the arrival 
of foundation-scale vision models, such as SDXL [217] and GPT-4 vision [218], has 
removed many of the parameter-count and architectural ceilings that once con-
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strained conventional DL, allowing networks to reason over long-range dependencies 
throughout an entire feature sequence. This capability is especially valuable for GI, 
where the signal is both noisy and highly undersampled. Building on these insights, 
Chen et al. [219] introduce what is, to the best of our knowledge, the first large-scale 
imaging model tailored to GI, comprising 1.4 billion parameters and dubbed large 
model GI (GILM) in Fig.  19. Figure  19 (a) and (b) illustrates the principle of the 
GILM. GILM embeds a differentiable physical forward model of GI directly into its 
reconstruction pipeline, so that learning is guided not only by data supervision but 
also by the governing imaging physics. Deep skip connections span the full depth 
of the network to alleviate vanishing-/exploding-gradient issues, preserving high-fre-
quency details while enabling the very large expressive capacity needed to model the 
subtle correlations hidden in single-pixel measurements. A multi-head self-attention 
block further captures global spatial dependencies, permitting the network to infer 

Fig. 19  Large model enhanced computational GI
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object features even when local measurements are severely corrupted. Chen et  al. 
benchmark GILM on a demanding water-related scenario in which reflective objects 
are positioned 52  m from the transmitter–receiver unit in Fig.  19 (c). Preliminary 
assessments suggest that, prior to quantization and compression, the model’s com-
putational requirements necessitate high-performance GPUs such as the NVIDIA 
A100 or Ascend 910B. Nevertheless, following quantization and compression, the 
model has been successfully deployed on a portable computing platform, the Jetson 
AGX Orin NX. Compared with state-of-the-art GI approaches, including compres-
sive sensing, UNet-based reconstructions, and transformer baselines, GILM deliv-
ers substantial gains. It raises the peak SNR (PSNR) by up to 5.8 dB and halves the 
required sampling ratio. At the same time, it faithfully recovers fine structural details 
that competing techniques lose. The model’s ability to track the temporal fluctuations 
of bucket signals under strong scattering proves essential to this performance gain.

	 To assess real-world deployability, Chen et al. ported the trained network to an edge 
computing device (NVIDIA Jetson AGX Orin). Thanks to mixed-precision quantiza-
tion and kernel fusion, GILM achieves a 43 ms per-frame inference time, sufficient 
for live video at ~ 23 fps, without sacrificing accuracy, thereby validating its suitability 
for field deployments such as AUV/ROV. These results demonstrate that scaling DL 
models, when coupled tightly with the underlying physics of GI, offers a powerful 
path toward robust, noise-tolerant imaging in highly scattering environments.

d.	 AI-driven GI and AI-driven image restoration & enhancement
	 AI provides a common framework for both underwater image restoration/enhance-

ment and AI-driven GI by casting them as physics-constrained inverse problems. In 
each case, the forward model of light transport through scattering media acts as a 
structural prior that guides learning. Restoration pipelines increasingly embed this 
physics via model-unfolding, plug-and-play denoisers, or self-supervised losses that 
enforce consistency between predicted clean images and the formation model of 
the observed data. AI-driven GI adopts the same paradigm but at the sensing stage. 
The structured illumination or speckle modulation, bucket detection, and correla-
tion or compressive decoding, is made differentiable and integrated into the training 
loop, allowing networks to co-optimize reconstruction with illumination design or 
sampling policy. Across both areas, the trend is toward physics constrained AI that 
blends inductive priors with learned representations, leverages temporal coherence, 
quantifies uncertainty, and targets edge deployment through pruning, quantization, 
and unrolled architectures.

	 Key differences stem from where the intelligence is applied in the imaging 
chain and from the measurement geometry. AI restoration is post-capture and 
operates on full-frame measurements from conventional cameras. It aims to undo 
degradations while preserving real-time throughput and compatibility with existing 
payloads. Its dominant risks are model mismatch to water type and illumination, 
and generalization across scenes. AI-driven GI is an imaging modality. It actively 
controls illumination patterns and must reconstruct scenes from low-dimensional 
bucket signals. This yields strong resilience to scattering and high photon efficiency 
but introduces sampling latency, tight calibration of modulators and detectors, and 
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hardware-coupled failure modes. Restoration typically favors operational simplicity 
and higher frame rates, whereas AI-GI trades complexity for robustness and depth 
reach.

	 In summary, GI has progressed from entangled-photon demonstrations to practical 
classical and CGI using pseudo-thermal/SLM/DMD modulation that eliminates 
the reference arm via known patterns. While scalable, classical GI incurs a lower 
theoretical visibility (≈33%) and heavy sampling demand, motivating compressed-
sensing reconstructions that reduce measurements but degrade when object sparsity 
is weak. DL now underpins two complementary tracks: data-driven supervised 
models that markedly improve low-sample reconstructions yet require costly labels 
and generalize poorly, and physics-driven self-supervised frameworks that embed the 
GI forward model to fit measured bucket sequences, delivering label-free robustness 
in challenging, long-range scenes. Foundation-scale, physics-integrated architectures 
further raise PSNR, halve sampling ratios, and reach real-time edge inference, 
enabling field deployment. Emerging trends include fusion with single-photon 
detection and acoustic sensing for underwater operation. Key open issues span 
backscatter/multipath suppression, underfitting for complex targets, and rigorous 
radiometric/temporal calibration to ensure photon-efficient, reliable imaging in 
turbid environments. In future, Field-ready GI payloads remain limited by motion-
induced speckle decorrelation during AUV/ROV drift or surge, which degrades 
correlation fidelity. They also experience SLM calibration drift under ~ 110  MPa 
hydrostatic pressure and 2 to 4  °C thermal gradients, necessitating periodic in situ 
self-referencing on extended missions.

Spectral imaging

Principle

Conventional cameras that record only red, green, and blue (RGB) channels frequently 
generate bluish, low-contrast imagery [220, 221]. This degradation arises from two 
coupled phenomena [222–224]. First, there is rapid, depth-dependent absorption of 
longer wavelengths, particularly red light. Second, multiple scattering by suspended 
particulates further attenuates direct light and obscures scene details. Water-related 
spectral imaging circumvents these limitations by sampling the full optical spectrum 
at every pixel, thereby enabling pixel-wise reconstruction of the scene’s spectral 
reflectance [225, 226]. Spectral imaging measures spatially resolved spectra to form a 
3D data cube, enabling material discrimination from the wavelength dependence of 
reflectance and emission. In passive systems, the scene’s spectral radiance is imaged and 
spectrally separated by a dispersive or filtering element, so that each pixel is associated 
with a narrow spectral response. Active variants illuminate with controlled spectra 
or narrowband laser lines and record the returned spectrum. Radiometric calibration 
maps raw digital counts to spectral radiance via flat-fielding and instrument response, 
while spectral calibration ties detector pixels to wavelength and corrects instrument 
line shape, smile/keystone, and stray light. Calibrated radiance is converted to apparent 
reflectance by normalizing the incident irradiance and correcting water-column path 
radiance and transmittance to counter wavelength-dependent absorption and scattering. 
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Subsequent analysis exploits the high spectral resolution and contiguous bands to 
separate materials with similar colors but distinct spectra, yielding quantitative maps of 
composition and condition that exceed the capabilities of broadband RGB imaging. As 
illustrated in Fig.  20, the resulting data cubes provide an additional, information-rich 
dimension of observation, exposing subtle inter-object differences that remain invisible 
to the naked eye or to conventional RGB sensors.

Recent advances in compact image sensors, miniaturized dispersive optics, and pres-
sure-tolerant housings have markedly reduced the size, weight, and power budget of 
spectral imagers, accelerating their deployment in the marine environment. At the same 
time, demand for higher-fidelity visual tools has surged across disciplines such as marine 
ecology, archaeology, and ocean conservation. Current use cases span coral-reef health 
assessment, benthic habitat mapping, shipwreck documentation, and the detection of 
ecological change or deep-sea megafauna [227–232]. Central to these applications is the 
concept of optical “fingerprinting,” whereby each material is distinguished by its unique 
spectral signature even when shape, color, or texture cues are degraded or ambiguous.

Spectral imaging method

Water-related spectral imaging currently embraces two primary modalities. Multispec-
tral systems acquire a limited set of discrete wavelength bands, selected with optical 
filters, filter wheels, or bandpass-segmented cameras, yielding compact, cost-effective 
solutions that are amenable to real-time or resource-constrained missions [233, 234]. 
Hyperspectral imaging (HSI), in contrast, records tens to hundreds of contiguous nar-
row bands, producing a 3D (x, y, λ) data cube that supports fine-grained material dis-
crimination, precise water-column correction, and detailed extraction of environmental 
features [230–235].

Fig. 20  Schematic diagram of water-related spectral imaging technology
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Water-related spectral imaging first emerged in the late twentieth century, but its 
early adoption was hampered by limited detector sensitivity and poor in‑water illu-
mination. Initial efforts therefore concentrated on multispectral approaches. In 2002, 
Zawada introduced one of the earliest examples, the low‑light‑level underwater mul-
tispectral imager (LUMIS), which recorded four narrow bands centered at approxi-
mately 460, 522, 582, and 678 nm without beam splitters, enabling the documentation 
of natural fluorescence in marine organisms to depths of 20 m [236]. Building on this 
concept, Gleason et al. [237] developed a six‑band multispectral camera (MSCAM) 
that employed a mechanical filter wheel to acquire sequential exposures; despite the 
multi‑shot acquisition, its staring‑mode design furnished high spatial resolution suit-
able for diver‑operated coral‑reef surveys. Wu et al. [238] subsequently introduced 
the Underwater Multispectral Imaging System (UMIS), a dual-filter-wheel apparatus 
capable of acquiring 31 spectral bands across the 400–700  nm range with approxi-
mately 10  nm resolution.​ Encased in a pressure-tight housing, the system supports 
deployment via remotely operated vehicle (ROV) or manual operation by divers.​​ Its 
design enables targeted applications in coastal and archaeological investigations, 
ensuring robustness in water-related environments.​ More recently, Liu et al. [239] 
introduced TuLUMIS, a tunable, LED‑based imager that illuminates scenes with 16 
LEDs across eight discrete wavelengths, thereby reducing mechanical complexity by 
modulating the illumination rather than filtering the detected light. Collectively, these 
systems established the foundational architecture for modern water-related spectral 
imaging and underscored its superiority over conventional RGB observation.

By the early 2010 s, gains in detector quantum efficiency, onboard processing, 
and storage made hyperspectral imaging (HSI), the capture of tens to hundreds 
of contiguous narrow bands, feasible underwater. The dominant push-broom 
architecture disperses slit light spectrally while vehicle motion (ROV/AUV) sweeps 

Fig. 21  UHI underwater spectral camera. a The prototype of UHI and set up of an UHI prototype seafloor 
mapping system. b UHI deployed on ROV equipped with artificial light sources for illumination. c 
Identification and area coverage of different biogeochemical objects based on specific optical fingerprints. d, 
e Pseudo-RGB and classification image of manganese nodules and a stalked sponge
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successive lines to assemble an (x, y, λ) cube. NTNU’s 2009 patent established the first 
operational underwater system [240]. Diver-towed prototypes soon demonstrated 
shallow-water spectral mapping [241], leading to Ecotone A/S’s commercial 
underwater hyperspectral imager (UHI) [242]. The UHI Ocean Vision (380 to 750 nm, 
≈ 2.2  nm resolution, 150 to 200 bands, 60° FOV, 6000  m rating) now supports 
missions from millimeter-scale coral surveys at 80 m to manganese-nodule mapping 
at 4200 m and hydrothermal-vent or massive-sulfide reconnaissance on landers and 
AUVs [230]. Operating ~ 2 m above the seabed, it delivers sub-centimeter pixels and 
reliably discriminates substrates, biota, and geological resources, as shown in Fig. 21.

From the mid-2010s onward, water-related spectral imagers rapidly diversified, 
spanning miniature scanners, low-cost modular units, and diver-carried rigs. A prime 
example is HyperDiver, a push-broom hyperspectral system introduced in 2017 
by Chennu et  al. [243], as shown in Fig.  22. Centered on a Resonon Pika II camera 
and augmented with attitude, illumination, and water-quality sensors, HyperDiver 
logs hyperspectral cubes alongside RGB, depth, irradiance, and GPS data, allowing 
automated 3D benthic mapping while surveying roughly 15 to 30 m2/min on shallow 
reefs.

Parallel efforts in cost-reduction have demonstrated that hyperspectral sensing can 
be both effective and affordable. Nevala et  al. [244] constructed a low-cost system 
using off-the-shelf components, a rotating-mirror scanner, miniature spectrometer, 
and consumer-grade sensor, which successfully produced credible water-related 
spectral maps. Simultaneously, “internal-scan” architectures, wherein lenses or 
mirrors move within a sealed housing, eliminated the need for external motion, 
making them ideal for AUVs or stationary observatories with strict navigational 
constraints. Snapshot hyperspectral cameras have expanded into water-related 
applications, capturing full (x, y, λ) data cubes in a single exposure via optical 
multiplexing. For example, Cubert’s FireflEYE V185 encodes 50 × 50 spectral images 

Fig. 22  HyperDiver underwater hyperspectral imager. a HyperDiver system operated by a diver to survey 
a shallow coral reef. b, c Intensity and reflectance of specific benthic targets. (d) Three-channel color image 
derived from the hyperspectral data
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into a 1000 × 1000 panchromatic frame at up to 15 cubes per second. Rated to 60 m 
depth, it suits diver and shallow ROV use, though it sacrifices spatial resolution and 
optical throughput. The 2020 s have seen a trend toward more compact, intelligent, 
and versatile instruments. Bai et  al. introduced a dual-mode scanner with an 
internally actuated objective lens, enabling both fixed and mobile operation with 
high-fidelity classification [245]. Xue et al. [246] developed a compact prism-grating-
prism system that combines high spectral resolution with mechanical robustness. 
Song et  al. [247] proposed a six-channel staring camera using k-nearest-neighbor 
spectral reconstruction, offering a balance between optical simplicity and spectral 
fidelity. Most recently, the XIOPM unveiled the underwater spectral imaging system 
(USIS). USIS-1 is a push-broom hyperspectral sensor (360 to 1000  nm, 128 bands, 
5  nm interval) featuring internal mechanical scanning to decouple acquisition 
from vehicle motion, facilitating deployment on AUVs and fixed platforms. USIS-
2, a snapshot multispectral variant (32 bands), captures data cubes instantaneously, 
mitigating motion blur and excelling at transient event capture, such as fast-moving 
fauna or dynamic plumes. Both systems eliminate external moving parts, enhancing 
reliability in turbid or high-flow environments. Representative results are shown in 
Fig. 23.

Table  5 summarizes the key parameters of the water-related spectral imaging 
systems discussed in this section. Water-related spectral imaging is coalescing around 
two complementary design lines, high-fidelity push-broom hyperspectral scanners 
and agile snapshot spectral imagers, each tuned to the constraints of underwater 
light transport and mobile platforms. Push-broom systems such as UHI Ocean Vision 

Fig. 23  Representative data obtained using the USIS-1 and USIS-2 systems (a) Three-channel composite 
image reconstructed from hyperspectral data acquired by USIS-1. b Spectral curves of selected objects 
captured by USIS-1. c Classification results of USIS-1 (d) Single-band image of the moving targets captured by 
USIS-2. e Sixteen feature maps of different bands derived from USIS-2multispectral data
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and USIS-1 maximize spectral resolving power and band count for detailed material 
discrimination, but require controlled platform motion and stable illumination. At 
the extreme of spectral granularity, HyperDiver exemplifies laboratory/field mapping 
with fine chemotaxonomic sensitivity, trading scan logistics and data volume for 
accuracy. In contrast, snapshot architectures prioritize scene dynamics and platform 
agility, while USIS-2, LUMIS, MSCAM, UMSI, and TuLUMIS illustrate multispectral 
designs that reduce size–weight–power and ease real-time deployment on AUV/ROV. 
Overall trends favor broader spectral envelopes with emphasis on the blue-green 
window for penetration, on-board calibration for radiometric/spectral drift, and tight 
coupling to navigation and learning-based analytics for adaptive surveys.

Collectively, these next-generation systems support agile, high-resolution hyper-
spectral mapping for mobile AUVs and intelligent robotic platforms. The ongoing 
shift toward mobility, real-time processing, and adaptive mission execution reflects 
a broader trend in underwater sensing. With continued progress in sensor miniaturi-
zation, energy efficiency, and pressure-resistant design, future hyperspectral systems 
are poised to operate deeper, longer, and with increasing autonomy.

FOD imaging

Deep‑sea submersibles

a.	 Overview of the deep-sea submersibles

	 Deep-sea technology is widely recognized as a hallmark of a nation’s comprehen-
sive strength. Achieving independent mastery of deep-sea submersible technol-
ogy significantly enhances a country’s capabilities in resource exploration, main-
tenance of water-related military infrastructure, and maritime rescue operations. 
As early as the twentieth century, countries such as the United States, Russia, and 

Table 5  Representative water-related spectral imaging systems [236–245]

System Institution Imaging mode Spectral range Bands Spectral resolution

LUMIS University of Califor-
nia San Diego

Multispectral
snapshot

460, 522, 582, 
678 nm

4 /

MSCAM University of Miami Multispectral
Staring

400–700 nm 6 /

UMSI Zhejiang University Multispectral
Staring

400–700 nm 31 10 nm

TuLUMIS Zhejiang University Multispectral 400–700 nm 8 /

UHI Ocean Vision Norwegian Univer-
sity of Science and 
Technology

Hyperspectral
push-broom

380–750 nm 150–200 2.2–5.5 nm

HyperDiver Max Planck Institute 
for Marine Microbi-
ology

Hyperspectral
push-broom

400–900 nm 480 1.5 nm

Cubert UHD Cubert GmbH Hyperspectral
snapshot

450–950 nm 125 8 nm

USIS-1 XIOPM Hyperspectral
push-broom

360–1000 nm 128 5 nm

USIS-2 Multispectral
snapshot

360–1000 nm 32 /
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France had already developed manned deep-diving technologies capable of reaching 
depths between 4,500 and 6,500 m [248]. The successful development of the Jiaolong 
manned submersible in the early twenty-first century marked a major milestone in 
China’s advancement in deep-sea exploration [249]. Ocean exploration plays a vital 
role in expanding humanity’s understanding of the Earth, and submersibles, being 
the cornerstone of marine research, are not only indispensable tools for addressing 
resource challenges and conducting scientific investigations, but also a strategic asset 
in strengthening national maritime capabilities.

	 Submersibles, or underwater vehicles (UVs), can be classified based on various cri-
teria, including manning method, power source, and operational mode. Different 
types of submersibles are suited to distinct applications such as deep-sea exploration, 
resource extraction, and military reconnaissance. Based on the manning method, 
submersibles are generally categorized into manned submersibles, also known as 
human-occupied vehicles (HOVs), and unmanned submersibles, or unmanned 
underwater vehicles (UUVs) [250]. This section provides a detailed review of sub-
mersibles following this classification. Based on their power systems, submersibles 
can be classified into electric, hydraulic, and nuclear-powered types [251]. Electric 
submersibles typically use lithium or silver-zinc batteries, offering clean and low-
noise operation. However, their limited energy capacity restricts them to short-dura-
tion scientific missions [252]. Hydraulic submersibles, powered by hydraulic systems, 
provide greater power output, making them well-suited for tasks involving robotic 
arms on ROVs and for deep-sea engineering maintenance [253]. Nuclear-powered 
submersibles, which are still under development [254], rely on compact nuclear reac-
tors and offer exceptionally long operational endurance, potentially lasting several 
years. Despite their promise for long-term monitoring and military applications, 
they also pose significant safety and regulatory challenges. Based on operating depth, 
submersibles can be categorized into three types: shallow-water (less than 300 m), 
medium-deep (300 to 6,000 m), and FOD (deeper than 6,000 m). Shallow-water sub-
mersibles, such as commercial ROVs, are typically used in offshore engineering, rec-
reational diving, and other nearshore applications [255]. Medium-depth submersi-
bles, such as Alvin [256], are widely employed in marine scientific research. FOD 
submersibles, such as the Struggler [51], are designed for abyssal exploration, deep-
sea resource surveys, and other extreme environments. Surface and shallow-water 
submersibles generally involve lower technical complexity and prioritize cost-effec-
tiveness and operational practicality. In contrast, medium-deep and FOD submersi-
bles require advanced high-strength materials and intelligent technologies, serving as 
key indicators of a nation’s comprehensive scientific and technological capabilities. 
Although FOD operations have now become technically feasible, challenges remain 
in enhancing the endurance and real-time control of unmanned submersibles oper-
ating below 6,000 m.

b.	 HOV
	 Based on operational depth, manned submersibles can be classified into three 

categories, including shallow-water, deep-sea, and FOD types. Shallow-water 
submersibles (operating at depths of less than 1,000 m) typically feature a relatively 
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simple structural design with lower pressure-resistance requirements and high 
maneuverability. They are well-suited for short-duration missions such as early-stage 
test dives, tourism, basic scientific research, and rescue training. Representative 
examples include early prototypes of China’s Jiaolong, as well as sightseeing 
submersibles operating in the Maldives and Hawaii [257]. Deep-sea submersibles 
(operating at depths between 1,000 and 6,000 m) require robust pressure-resistant 
structures and are typically equipped with high-precision sensors and robotic 
manipulators to support extended underwater operations. Notable examples 
include China’s Jiaolong (maximum depth: 7,062 m) [258], the United States’ Alvin 
(maximum depth: 6,500  m) [259], and Japan’s Shinkai 6500 (maximum depth: 
6,527  m) [260]. These vehicles are widely used for deep-sea biological surveys, 
geological investigations, and resource exploration. FOD submersibles (operating 
beyond 6,000  m) are engineered with advanced pressure-resistant technologies, 
often including titanium-alloy spherical cabins, and equipped with high-definition 
imaging systems and high-speed communication capabilities. Prominent examples 
include China’s Fendouzhe (maximum depth: 10,909 m) [261] and the U.S. Trieste, 
which famously completed the first crewed dive to the bottom of the Mariana 
Trench (10,916 m) [262]. Fendouzhe represents a milestone in Chinese submersible 

Fig. 24  Representative deep-sea HOVs

Table 6  Comparison of structure parameters and equipment performance of HOVs [257–262]

Submersible Max depth (m) Crew 
capacity

Dive duration (h) Key features

Trieste I (Italy/US) 10,916 2 / Record-breaking depth

Alvin (US) 6500 3 8–10 High-res imaging and sonar

Shinkai 6500 (Japan) 6527 3 8 High operability; > 1300 dives

MIR-1/2 (Russia) 6000 3 17–20 High endurance; high operability

Nautile (France) 6000 3 8–10 Lightweight; multi-dimensional 
tasks

Jiaolong (China) 7062 3 10–12 Deep-sea research in multiple 
trenches

Shenhai Yongshi (China) 4500 3 6–8 Indigenous deep-sea tech; reduced 
cost

Fendouzhe (China) 10,909 3 10–12 96.5% localization



Page 50 of 89Sun et al. PhotoniX             (2026) 7:7 

engineering, reaching 10,909  m and achieving a 96.5% localization rate of core 
components, integrated with high-resolution imaging, autonomous navigation, and 
FOD operational capabilities. Figure 24 shows the representative deep-sea HOVs.

	 Table  6 presents a comparative overview of representative deep-sea HOVs. These 
submersibles are essential for probing the deepest parts of the ocean and conducting 
research on extreme marine environments, including deep biospheres and abyssal 
geology. Looking ahead, international competition in HOV development is expected 
to concentrate on innovations in energy efficiency, advanced pressure-tolerant 
materials, and commercial applications, signaling a new era of human presence and 
activity in the deep-sea.

c.	 ROV
	 ROVs are tethered unmanned underwater systems widely employed in deep-sea 

research, subsea engineering, and defense. Enabled by umbilical cables, ROVs offer 
real-time control with continuous power and data transmission, allowing for low-
latency maneuvering and high-precision task execution. Key features include robust 
stability under hydrodynamic stress and the capacity to carry modular payloads such 
as manipulators, sonar systems, and sampling devices. Representative platforms 

Fig. 25  Representative deep-sea ROVs

Table 7  Comparison of structure parameters and equipment performance of ROVs [269–276]

Type Max depth (m) Dive duration (h) Key features Representative applications

MROV  < 100 1–3 Lightweight (< 15 kg), fully 
electric, easy to deploy

Tank inspection, aquaculture 
monitoring

EROV  < 300 2–6 Onboard camera and lighting, 
basic maneuverability

Diver support, hazardous 
inspection

IROV Up to 1,000 4–8 Cost-effective, modular, 
increasingly electric powered

Offshore wind, infrastructure 
monitoring, environmental 
surveys

ROTV Varies (Towed) Continuous (towed) High-resolution sonar, towed 
operation

Cable/pipeline survey, military 
detection

WROV 3,000–6,000 8–12 Dual hydraulic manipulators, 
high lifting capacity

Oil/gas intervention, salvage, 
construction

TROV 1,000–4,000 6–24 Crawler-based mobility, sea-
bed contact, long-duration 
endurance

Deep-sea mining, polar explo-
ration, cable laying

Plough Up to 6,000 6–12 Integrated trenching systems, 
large and heavy

Pipeline burial, subsea trench-
ing, environmental mitigation
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include Seahorse, Sea Dou, Nereus, and Odyssey [263–267]. Douglas-Westwood 
further classifies ROVs into seven functional types [268]. Miniature ROVs (MROVs) 
[269], compact and fully electric, are suited for confined-space inspection. Eyeball 
ROVs (EROVs) [270] offer basic imaging capabilities for diver support. Inspection 
ROVs (IROVs) [271] provide mid-range performance for infrastructure monitoring, 
increasingly shifting from hydraulic to electric propulsion [272]. Remotely Operated 
Towed Vehicles (ROTVs) [273] conduct wide-area seabed surveys using towed sonar 
arrays. Work-Class ROVs (WROVs) [274], equipped with hydraulic manipulators, 
enable intervention tasks at depths up to 6,000  m. Tracked ROVs (TROVs) [275] 
employ crawler systems for long-duration seabed operations, while Excavation ROVs 
(Ploughs) [276] integrate trenching tools for pipeline burial and environmental miti-
gation. Figure 25 shows the representative deep-sea ROVs.

	 Table  7 presents a comparative overview of representative deep-sea ROVs. This 
typology reflects the evolving spectrum of ROV applications, from lightweight visual 
inspection to heavy-duty subsea operations. Current trends emphasize increased 
autonomy, localization, and intelligent control in work-class systems, while micro 
and observation-class ROVs are gaining momentum in environmental monitoring 
and scientific research due to their affordability and deployment flexibility [268].

d.	 AUV
	 AUVs are untethered submersible platforms designed to perform complex under-

water missions autonomously, without the need for surface-vessel control. Unlike 
ROVs, AUVs are powered by onboard energy storage systems and utilize pre-pro-
grammed or adaptive control algorithms for navigation, sensing, and task execution. 
Core advantages of AUVs include their fully autonomous operation [277], onboard 
decision-making capability [278], extended endurance, and adaptability for large-
area, long-duration missions [279]. These characteristics make them ideal for appli-
cations in oceanography, seabed mapping, infrastructure inspection, and deep-sea 
exploration.

	 AUVs are generally classified based on operational depth and propulsion mecha-
nisms. Depth-based categories include shallow-water AUVs, commonly used in 
nearshore surveys and pipeline monitoring [280, 281]. Deep-water AUVs, such as 
the Qianlong series, which are used for bathymetric mapping and mineral pros-
pecting [282], and FOD AUVs exemplified by Wukong, developed for missions in 
the Mariana Trench and other hadal zones [283]. From a propulsion perspective, 
electric AUVs, such as Bluefin-12, are powered by lithium-ion batteries and repre-
sent the most prevalent configuration[284, 285]. Fuel-cell AUVs, including Japan’s 
URASHIMA, leverage hydrogen fuel cells to significantly increase range and endur-
ance [286]. Hybrid AUVs, such as China’s Haiyan-X, combine buoyancy-driven glid-
ing and propeller propulsion to optimize energy use and maneuverability across mis-
sion profiles [287].

	 Underwater Gliders (UGs) represent a specialized subclass of AUVs that achieve 
horizontal propulsion through periodic buoyancy changes and hydrodynamic lift. 
Distinguished by their exceptional energy efficiency, gliders are designed for long-
duration missions across vast ocean regions [288]. Depending on their propulsion 
method, gliders are categorized into traditional gliders (e.g., Slocum), which use 



Page 52 of 89Sun et al. PhotoniX             (2026) 7:7 

mechanical actuators to adjust volume and buoyancy [289]. Thermal gliders (e.g., 
Seaglider), which exploit oceanic thermal gradients to generate motion [290]. Hybrid 
gliders (e.g., Haiyan series), which combine gliding with powered propulsion for 
enhanced maneuverability. Application-based classification includes environmen-
tal monitoring gliders [291], military reconnaissance gliders such as the U.S. Navy’s 
Liberdade [292], and polar observation gliders (e.g., Norway’s Alba), tailored for 
extended deployments in high-latitude, cold-water environments [293]. Figure  26 
shows the representative AUVs and UGs.

	 Table 8 summaries the representative AUV and UG classifications with key perfor-
mance metrics. Collectively, AUVs and UGs constitute essential tools in modern 
oceanography, offering complementary capabilities for high-resolution seabed analy-
sis and sustained, large-scale data acquisition.

e.	 Special-Purpose Submersibles
	 Special-purpose submersibles, particularly bionic and hybrid platforms, represent 

significant advancements in underwater robotics by integrating biomimetic 
principles with multifunctional control architectures. Bionic submersibles draw 
inspiration from marine organisms in morphology, propulsion, and functional 
adaptation, enhancing hydrodynamic efficiency, maneuverability, and environmental 
compatibility [294]. Design strategies include morphological biomimicry, locomotive 
biomimicry, and functional biomimicry, enabling low-noise, agile operation in 
complex environments. These platforms offer notable advantages over conventional 
systems in ecological monitoring, covert operations, and precision infrastructure 
inspection [295, 296]. Globally, various prototypes exemplify bionic design. Northrop 

Fig. 26  Representative deep-sea AUVs and UGs
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Grumman’s “Manta” UUV replicates ray-like gliding for stealth in turbulent waters 
[297]. Norway’s “Eelume” employs a flexible eel-inspired body for confined-space 
inspection [298]. Japan’s “Medusa” and “OctoBot” integrate cephalopod-inspired 
designs for high-mobility tasks [299]. China’s “RobDact” and “West Valley I” feature 
biologically driven propulsion and composite structures for agile and deep-sea 
operations [300, 301]. These developments signal a shift toward swarm-capable, 
intelligent bionic systems, with China leading efforts in control optimization and 
material innovation.

	 Hybrid submersibles combine the advantages of AUVs and ROVs, enabling seamless 
transitions between autonomous mapping and tethered precision control. The two 
main classes, Autonomous and Remotely Operated Vehicles (ARVs) and Hybrid 
Remotely Operated Vehicles (HROVs), support operational flexibility across depth 
ranges and mission profiles. The U.S. Nereus reached the Mariana Trench as the 

Table 8  AUV and UG classifications with key performance metrics [282–293]

Type Max depth (m) Dive duration 
(h)

Propulsion type Key features Representative 
models

Shallow-water 
AUV

 < 500 6–24 Electric Compact, 
nearshore survey 
and inspection

/

Deep-water AUV 500–6,000 10–40 Electric/Hybrid High-resolution 
seabed mapping, 
exploration

Qianlong series

FOD AUV  > 6,000 12–48 Electric/Hybrid Abyssal explora-
tion, high-pres-
sure endurance

Wukong

Electric AUV Up to ~ 6,000 
(varies)

8–30 Lithium-ion 
battery

Versatile, com-
mon for many 
mission types

Bluefin-12

Fuel-cell AUV Up to ~ 6,000 40–60 +  Hydrogen fuel 
cells

Extended range, 
energy-dense 
propulsion

URASHIMA

Hybrid AUV Up to ~ 6,000 30–72 Buoyancy + pro-
peller

Energy-efficient 
with better navi-
gation control

Haiyan-X

Traditional Glider  ~ 1,000–2,000 Weeks to 
Months

Buoyancy-driven 
(electric)

Minimal energy 
consumption, 
large-area obser-
vation

Slocum

Thermal Glider  ~ 1,000–2,000 Weeks to 
Months

Thermal 
gradient-driven

Exploits envi-
ronmental heat 
differentials

Seaglider

Hybrid Glider  ~ 2,000–4,000 Weeks to 
Months

Buoyancy + pro-
peller

Combines glid-
ing endurance 
with improved 
mobility

Haiyan series

Environmental 
UG

 ~ 1,000–2,000 Long-duration Buoyancy-driven Multi-parameter 
sensing

/

Military Recon 
UG

 ~ 1,000–3,000 Long-duration Buoyancy-driven Covert opera-
tion, long-range 
intelligence 
gathering

Liberdade

Polar Observa-
tion UG

 ~ 1,000–2,000 Long-duration Buoyancy-driven Cold-resistant 
design, high-lati-
tude resilience

Alba
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Fig. 27  Representative special-purpose submersibles

Table 9  Representative special-purpose submersibles’ performance [297–306]

Platform Type Max depth (m) Dive duration (h) Key features

Manta UUV (USA) Bionic  ~ 500–1,000 10–20 Manta ray-inspired gliding, stealth recon, 
turbulence adaptation

Eelume, (Norway) Bionic  ~ 500–1,000 Long-endurance Snake-like body, flexible inspection of pipe-
lines and structures

Medusa/OctoBot
(Japan)

Bionic  ~ 500 5–10 Squid/octopus-inspired rapid maneuvering 
and manipulation

RobDact
(China)

Bionic  ~ 100–200 Short-mission Fish-inspired with pectoral fin oscillation for 
agile motion

West Valley I
(China)

Bionic 2,000 8–12 Rigid-flexible structure, manta ray morphol-
ogy, pressure-resistant design

Nereus HROV
(USA)

HROV 10,902 6–10 FOD, hybrid control, lost in Mariana Trench 
mission

Ariane HROV
(France)

HROV  ~ 2,500–3,000 8–12 Coral reef and canyon exploration, biodiversity 
assessment

MR-X11
Japan)

HROV 4,200 6–10 Three operational modes, resource explora-
tion, infrastructure inspection

Polar-ARV
(China)

ARV  ~ 1,000 6–12 Airborne deployment, under-ice missions, 
fiber-optic comms

Haidou
(China)

ARV 10,767 8–12 Third in world to reach > 10,000 m, Mariana 
Trench survey

Haidou-1
(China)

ARV 10,907 10–14 China’s first FOD ARV, national depth record
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first FOD HROV before its loss in 2014 [302]. France’s Ariane HROV specializes 
in complex benthic terrain surveys [303], while Japan’s MR-X11 supports three 
operational modes up to 4,200  m [304]. The Shenyang Institute of Automation 
pioneered Polar-ARV for polar missions [305], followed by Haidou and Haidou-1, 
which achieved dives of 10,767 m and 10,907 m respectively, positioning China at the 
forefront of hybrid deep-sea exploration [306]. Figure  27 shows the representative 
special-purpose submersibles.

	 Table 9 summaries the representative special-purpose submersibles with key perfor-
mance metrics. Future developments are expected to focus on swarm intelligence, 
advanced materials, and energy autonomy. Intelligent cooperative control, bioin-
spired actuation, and adaptive autonomy will further extend the functionality and 
deployment range of these systems. Collectively, these trajectories will accelerate the 
formation of an intelligent, resilient, and ecologically adaptive underwater robotic 
infrastructure.

	 Submersible systems, including HOVs, ROVs, AUVs, UGs, and emerging bionic 
and hybrid platforms, offer complementary capabilities across diverse underwater 
missions. HOVs enable real-time human decision-making but are limited by cost and 
endurance. ROVs support high-power, remote operations yet rely on tethered control. 
AUVs allow untethered, long-range surveys but face constraints in adaptability and 
energy. UGs provide ultra-long endurance for environmental monitoring, though 
with limited speed and payload. Bionic and hybrid systems enhance maneuverability 
and flexibility but remain technically complex and less mature. Future advancements 
will integrate AI-driven autonomy, next-generation energy systems, and adaptive 
materials to improve endurance, resilience, and operational intelligence. These 
innovations will support the deployment of intelligent, full-depth, and networked 
submersible fleets, forming the foundation for digital ocean twins and enabling 
transformative progress in ocean exploration, resource management, and climate sci
ence.

Full‑depth camera and application

a.	 The evolution of water-related imaging technology

	 The development of water-related imaging technologies represents a significant 
chapter in the history of both photography and oceanic exploration. From rudimen-
tary beginnings to sophisticated FOD imaging systems, this field has progressed 
through remarkable technological innovations that have expanded our understand-
ing of marine environments.

	 As shown in Fig. 28, in the mid-nineteenth century, William Thompson pioneered 
water-related photography by capturing the first images using a camera mounted 
on a pole. Later, in 1893, French biologist Louis Boutan significantly advanced the 
field by developing specialized equipment for water-related photography, including 
an underwater flash and a remote-control mechanism utilizing an electromagnet. 
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The early twentieth century saw further milestones. In 1914, John Ernest William-
son utilized a device called the “Photosphere” to shoot “Thirty Leagues Under the 
Sea”, one of the first underwater motion pictures, filmed in the Bahamas. In 1926, 
William Harding Longley and Charles Martin achieved a breakthrough by captur-
ing the first underwater color photographs using a magnesium-powered flash. 
Advancements continued with the introduction of specialized equipment. In the 
1950s, Beuchat debuted “Tarzan”, the first commercially available underwater camera 
housing, designed by French photographer Henry Broussard for the Foca camera. 
Subsequently, the CALYPSO-PHOT camera, conceived by Jean de Wouters and pro-
moted by Jacques-Yves Cousteau, was introduced. Initially released in 1960, it was 
later marketed by Nikon as the Nikonos in 1963, featuring a maximum shutter speed 
of 1/1000 s. Deep-sea exploration also marked significant achievements. On January 
23, 1960, U.S. Navy Lieutenant Don Walsh and Swiss oceanographer Jacques Piccard 
reached the Challenger Deep in the Mariana Trench aboard the submersible Trieste, 
descending to a depth of 10,916 m. In 2012, filmmaker James Cameron made a his-
toric solo dive to the same location in the Deepsea Challenger submersible, reach-
ing a depth of approximately 10,908 m. This expedition was documented in the film 
“Deepsea Challenge 3D”.

Fig. 28  History of underwater camera
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	 Recent years have seen remarkable progress in water-related imaging technology. In 
2017, the FOD HD camera Haitong was deployed aboard the research vessel Tan-
suo-1 during a Mariana Trench expedition. Additionally, the Canghai lander plat-
form was equipped with the world’s first 4  K ultra-HD binocular 3D camera, and 
the Lingyun ROV integrated a FOD mini-HD camera. These systems collaborated 
with the Fendouzhe to achieve the globally unique accomplishment of live HD video 
broadcast during deep-sea exploration at a depth of 10,909 m.

b.	 FOD imaging
	 The FOD imaging system functions as a critical deep-sea periscope and represents 

a cornerstone strategic technology for China’s national oceanographic endeavors. 
Its development constitutes not merely a declaration of technological capability 
in conquering the abyssal depths exceeding 10,000  m, but a fundamental require-
ment for safeguarding national resource security and maritime sovereignty. Detailed 
exploration of strategic seabed resources, such as methane hydrates (clathrates) and 
polymetallic nodules, demands millimeter-scale imaging to resolve micro-fractures 
within ore bodies. Likewise, in-situ observation of extremophiles inhabiting deep-sea 
hydrothermal vents is essential, yet more than 80% of these organisms cannot sur-
vive the pressure changes imposed by traditional sampling. Both endeavors require 
FOD optical systems that remain stable under hydrostatic pressures exceeding 
110  MPa and in ultra-low illumination environments.​​ Concerted co-development 
efforts between FOD cameras and their carrier platforms will catalyze generational 
advancements in domestic specialty materials, advanced sealing technologies, and 
ultra-high-pressure system integration. This synergy is anticipated to establish an 
autonomous, end-to-end sensing capability spanning from shallow coastal waters to 
the deepest hadal trenches, ultimately securing a proactive technological position for 
China within the strategic competition shaping access to and utilization of the deep-
ocean frontier.

	 The development of deep-sea imaging systems traces its origins to the United 
States in the early 1950 s, with the pioneering NEL Type III deep-sea camera, as 
shown in Fig. 29. This film-based system, operational at depths of 6,000 m, captured 
sequential pairs of photographs to document microtopographic features of seabed 
sediments [307]. A decade later in 1963, the Edgerton deep-tow camera system 
revolutionized seafloor exploration by enabling systematic bathymetric mapping 

Fig. 29  Landmark research achievements in deep-sea cameras abroad
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[308]. The subsequent technological progression saw the Soviet Union’s Hydrorusa 
deep-tow apparatus during the 1970 s, equipped with ultra-low illumination level 
cameras and wide-angle lenses, which delivered the first documented biological 
observations from the Mariana Trench [309]. By the late 1990 s, the field underwent 
a fundamental transition from photographic film to digital imaging. The Woods 
Hole Oceanographic Institution (WHOI) engineered the electronic still camera, 
recognized as the first FOD digital imaging system [310]. Further innovations 
emerged in 2002 with Kevin Hardy’s DOV Michelle camera, a 9,000-m-rated system 
incorporating synchronized strobes to facilitate biological specimen collection for 
Scripps Institution of Oceanography [311]. Concurrently, the National Geographic 
Society sponsored a decade-long deep-sea exploration initiative based on its 
dedicated camera system, culminating in 2015 with autonomous lander deployments 
featuring real-time 4  K video transmission [312, 313]. Technological maturation 
continued in 2016 when the GEOMAR Helmholtz Centre for Ocean Research Kiel 
introduced a modular pressure-tolerant imaging module for AUV [314].

	 In 2017, China achieved a significant milestone with the successful development of 
the Haitong camera system, the nation’s first domestically engineered FOD high-def-
inition imaging platform. Then, the Haitong camera was deployed aboard the Tianya 
lander, completing multiple dives exceeding 10,000  m. Its record-setting descent 
to 10,909  m yielded unprecedented video documentation of the Mariana Trench 
hadal environment. Haitong executed multiple dives, achieving a maximum depth 
of 10,909 m and capturing 12 h of HD footage, including the first recorded observa-
tions of the species Pseudoliparis swirei at 8,152 m. These visual archives provided 
essential primary data for multidisciplinary research, including deep-sea biology and 
physical oceanography, resulting in the acquisition of numerous invaluable observa-

Fig. 30  Haitong camera and FOD ultra-high-definition 3D camera

Table 10  Full depth subsea HD camera systems on the market [316–319]

Manufacturer Model Diagonal FOV (◦) Optical zoom Depth (m)

DeepSea Power & Light Optim 86 15.5 11,000

DeepSea Power & Light Super Wide-i 185 Fixed 11,000

DeepSea Power & Light Vertex 86 10 ×  11,000

SULIS Z70 93 12 ×  11,000



Page 59 of 89Sun et al. PhotoniX             (2026) 7:7 	

tional datasets that filled critical knowledge gaps in marine science. Further advanc-
ing deep-sea exploration capabilities, China developed an ultra-high-definition FOD 
camera in 2020. Serving as the core technical component for deep-sea livestream-
ing, this system achieved the world’s first real-time video transmission from depths 
exceeding 10,000 m in Fig. 30. Subsequent iterations, encompassing FOD high-def-
inition cameras and 3D imaging systems, demonstrated exceptional performance in 
image enhancement, like high spatial resolution with minimal optical distortion and 
smooth continuous zoom functionality [315].

	 Currently, the main deep-sea cameras available on the international market are pro-
vided by the American company Deepsea. The camera models that meet the require-
ments for FOD operations are listed in Table 10.

	 Contemporary FOD imaging has evolved from early film systems through first-
generation digital platforms to modular AUV/lander payloads and 4 K binocular rigs 
capable of live transmission from the hadal zone, reflecting a steady consolidation 
of pressure-tolerant optomechanics, low-illumination photometrics, and platform 
integration. The evolutionary trajectory of water-related imaging technology 
is fundamentally driven by the tripartite imperative of achieving enhanced 
clarity, extended range, and comprehensive panoramic coverage. Across today’s 
landscape, research-grade systems emphasize millimeter-scale fidelity, endurance, 
and miniaturization, while commercial offerings deliver 11,000  m ratings with 
differentiated field-of-view/zoom trade-offs that balance situational awareness 
against resolution and light throughput. Future research directions will concentrate 
on paradigm-shifting innovations: Embedded optical designs that eliminate 
conventional protective windows and enable direct lens-water contact promise to 
eradicate refractive distortion at the fundamental physical level, establishing the 
optical foundation requisite for high-definition imaging. Concurrently, DL-based 
dehazing algorithms, rigorously grounded in the Jaffe-McGlamery radiative transfer 
model, offer transformative potential to overcome limitations imposed by water 
column scattering. These intelligent computational frameworks would empower 
imaging systems with unprecedented interpretative capabilities in turbid, low-
illumination environments. The integration of multi-dimensional sensing modalities 
is advancing rapidly. In particular, the synergistic fusion of laser-line scanning with 
multibeam-sonar measurements enables high-fidelity 3D reconstruction of the 
seafloor. This progress marks a decisive shift from stand-alone optical imaging to 
an integrated, intelligence-driven sensing paradigm that unites acoustic, optical, 
and electronic resources. These synergistic advancements collectively converge 
toward a next-generation water-related observatory framework. This emergent 
paradigm seamlessly integrates the precision inherent in windowless optical 
architectures, the adaptive intelligence of AI-enhanced image processing, and the 
comprehensive contextual awareness enabled by heterogeneous data fusion. The 
ultimate manifestation of this integrated capability will be the transformation of the 
enigmatic deep-sea realm. Its intricate structures, intrinsic spectral signatures, and 
immersive 3D panoramas will be rendered with unparalleled fidelity and accessibility 
within the operational and cognitive domains of human endeavor. This paradigm 
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shift promises to fundamentally expand the informational dimensions accessible for 
marine exploration, ushering in a new era of discovery.

AI‑driven water‑related optical imaging technology
Brief introduction

Image restoration and enhancement comprise a family of inverse problems that seek 
to recover perceptually and physically faithful imagery from data degraded by noise, 
blur, downsampling, compression artifacts, and, in aquatic settings, wavelength-
dependent absorption, scattering, and backscatter. Restoration aims to reconstruct the 
latent scene by explicitly modeling image formation and solving a regularized inverse 
problem, whereas enhancement improves visual utility without requiring a full physical 
inversion. Classical methods combine degradation specific forward models with priors 
or constraints, solved via variational optimization or plug-and-play proximal algorithms. 
Learning-based approaches include supervised CNN/Transformer restorers trained 
on paired data, self/unsupervised schemes when ground truth is unavailable, and 
physics-guided unrolling that embeds the forward model within the network [320]. The 
Overview of representative image restoration and enhancement methods are shown in 
Fig. 31.

Image restoration

As the water-related environments described above pose significant challenges to imag-
ing, such as low visibility, scattering, and spectral distortion, the acquired images are 
often severely degraded and cannot be used directly [342]. Consequently, image restora-
tion is essential to recover high-quality visual information and enable accurate percep-
tion, analysis, and decision-making in such conditions [343].

Fig. 31  Overview of representative image restoration and enhancement methods, include image denoising 
[321–325], color correction [326–330], image deblurring [331–334], and image dehazing [335–341]
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In standard scenarios, restoration techniques are typically applied to RGB images 
corrupted by noise, blur, compression artifacts, or exposure issues, often assuming 
relatively stable environmental conditions [344]. In contrast, water-related optical 
imaging faces unique challenges due to the complex light propagation in water-related 
environments, including wavelength-dependent absorption [345], scattering [346], 
and backscatter [347]. Therefore, although image restoration has achieved remarkable 
progress in addressing generic degradations, such as Gaussian noise, motion blur, and 
low resolution, extending these advancements to water-related environments introduces 
significant challenges. Moreover, images captured in deep-sea or extremely water-related 
conditions frequently extend beyond standard RGB formats, incorporating specialized 
optical modalities such as hyperspectral, polarimetric, or single-photon imaging. These 
modalities are characterized by unique degradation patterns and high-dimensional data 
structures, necessitating restoration strategies that are tailored to both the physical 
imaging process and the modality-specific noise [348]. As a result, water-related image 
restoration must not only pursue the objectives of conventional enhancement but also 
account for the complex physics of light propagation in water-related environments and 
the distinctive features of advanced optical sensing systems [349].

Task‑level taxonomy and comparisons

Generally, RGB-only image restoration tasks, such as deblurring, denoising, dehazing, 
and super-resolution, target distinct forms of degradation in terrestrial settings [344]. 
Each task addresses a specific aspect of visual quality degradation under the assumption 
of relatively stable imaging conditions with different image quality assessment (IQA) 
considerations. However, when these tasks are applied to water-related domains, their 
applicability must be re-evaluated in light of the unique characteristics of image data 
acquired under extremely water-related conditions.

a.	 Characteristic sensitive restoration considerations

	 Water-related optical imaging spans a wide range of depths and environmental con-
ditions, from the epipelagic zone to the hadal trenches, where image reconstruc-
tion is severely affected by light propagation, combining exponential, distance and 
wavelength-dependent attenuation with forward scatter and backscatter. These char-

Fig. 32  Comparison of raw (noisy) and restored (proceed) outputs across various water-related imaging 
modalities, including RGB, polarized, range-gated, single-photon, streak camera, ghost, and hyperspectral 
imaging
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acteristics significantly degrade image quality and challenge standard, linear restora-
tion models. To address these limitations, researchers have developed a range of spe-
cialized imaging modalities tailored to water-related environments. As outlined in 
the previous section, these include polarized imaging for surface reflection analysis, 
hyperspectral systems for recovering spectral signatures, and single-photon imaging 
for ultra-low illumination conditions, among others. Examples of different modality 
proceed data is shown in Fig. 32.

	 Each imaging modality introduces unique data structures and degradation 
patterns. Restoration techniques that succeed in standard RGB domains may fail 
or underperform when applied directly to these high-dimensional, low-SNR, or 

Table 11  Imaging types and restoration considerations

Imaging type Description Restoration Related works

RGB image Standard 3-channel optical 
image

Denoising, color correc-
tion, contrast enhance-
ment, dehazing

WaterGAN [319], WaterMono 
[350], HCMPE-Net [351]

Polarized imaging Captures light polarization 
states

Depolarization correction, 
reflection suppression

UCRNet [352], CPDCNN 
[353], Schechner [354]

Range-gated imaging Time-gated optical capture Gated signal refinement, 
low SNR compensation, 
motion deblurring

U-Net [355], Multi-PSF [356], 
Reconstruction [357]

Single-photon imaging Photon-counting under 
ultra-low illumination

Poisson-distributed noise 
handling, sparse signal 
recovery, denoising

Physics-informed DL [358], 
Reconstruction [359], PICK-
3D [360]

Streak camera imaging Captures time–space slices 
of light intensity

Spatiotemporal interpola-
tion, motion deblurring, 
slice reconstruction

N-CUP [361], 2D reconstruc-
tion from streak camera 
[362], Data decomposition 
[363]

GI Reconstruction using 
intensity correlations

Denoising Lightweight-CNN[364], 
CGAN [365], FUIGN [366]

Spectral imaging Captures reflectance across 
many spectral bands

Band-wise denoising, 
spectral misalignment 
correction

NSCT-based fusion [367], 
JURTD [368], Hyperspectral 
3D mapping [369]

Table 12  Imaging modalities vs. restoration tasks

Imaging 
modality

Deblurring Denoising Dehazing Resolution IQA 
considerations

RGB image Common Common Common Common PSNR, SSIM, LPIPS

Polarized imag-
ing

Rarely needed Polarization 
noise

Backscatter
removal

Uncommon Polarization aware 
metrics

Range-gated 
imaging

Ultra-low illumi-
nation motion 
blur

Gate-specific
noise

Residual haze 
remains

Temporal fusion 
possible

SNR, gating 
accuracy

Single-photon 
Imaging

Photon spread 
blur

Poisson/sparse
noise

Not typical Limited due to 
sparsity

Photon efficiency, 
edge clarity

Streak camera 
imaging

Temporal blur Slice noise Not applicable Possible post 
reconstruction

Time consistency, 
motion IQA

GI Indirect blur Structured noise Not applicable Achievable via 
inversion

Fidelity to correla-
tion

Spectral imaging Spectral
misalignment

Band-specific
noise

Wavelength
sensitive haze

Spatial + spec-
tral SR

SAM, PSNR per 
band
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physics-constrained modalities. For example, range-gated imaging suppresses 
backscatter physically but may still require temporal deblurring, while hyperspectral 
imaging introduces challenges such as spectral band misalignment and wavelength-
dependent noise. Addressing these issues requires restoration methods that are 
not only data-driven but also sensitive to the physical characteristics of each 
imaging process. Table 11 summarizes these modalities along with their distinctive 
restoration considerations.

b.	 Task Mapping Across Modalities
	 To further illustrate how traditional image restoration tasks map onto these 

modalities, Table 12 provides a concise taxonomy of the applicability of deblurring, 
denoising, dehazing, super-resolution, and image quality assessment (IQA) across 
different imaging types.

Network architecture evolution

The evolution of water-related image restoration architectures has closely followed 
advancements in computer vision, progressing from physically inspired heuristics to 
DL-based frameworks capable of learning complex degradations directly from data. In 
this section, we trace this progression through three phases: foundational models, learn-
ing strategies, and cutting-edge architectures.

a.	 Baseline models

	 Early water-related restoration efforts were driven by physically inspired priors such 
as the dark channel prior (DCP) [370], red channel enhancement [371], and wave-
length compensation [372]. While these techniques provided interpretable out-
comes, they were often brittle under varying water types, lighting conditions, or 
scene content. The release of benchmark datasets like underwater image enhance-
ment enchmark (UIEB) [45] enabled the development of learning-based baselines, 
where convolutional networks significantly outperformed traditional methods by 
optimizing end-to-end restoration mappings on paired training data.

b.	 Learning strategies
	 To enhance the robustness and generalization of underwater image restoration sys-

tems under limited supervision, researchers have adopted a range of learning par-
adigms that reduce dependence on large-scale paired datasets and account for the 
unique challenges of underwater environments. Supervised learning remains foun-
dational when paired ground truth is available. Models such as UWCNN [373] and 
Water-Net [374], trained on curated datasets like UIEB [45], EUVP [375] using pixel-
wise and perceptual loss functions, achieve strong quantitative and qualitative resto-
ration performance. In scenarios where clean references are difficult to obtain, unsu-
pervised and self-supervised approaches, including CycleGAN [376] and Noise2Void 
[377], enable training on unpaired or noisy data, offering practical advantages for 
real-world underwater applications. Domain adaptation methods further mitigate 
the synthetic-to-real domain gap through adversarial learning, feature alignment, 
and style transfer, allowing models trained on synthetic datasets such as those gen-
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erated by WaterGAN [319] to generalize to in  situ conditions. Additionally, phys-
ics-informed and model-based learning integrates underwater imaging models (e.g., 
light attenuation and scattering) into network architectures or loss functions, as seen 
in model-unfolding approaches [378] and hybrid frameworks incorporating physical 
priors [379], thereby improving interpretability, robustness, and physical consistency 
in restoration outcomes.

c.	 State-of-the-art models
	 The latest generation of architectures leverages powerful attention mechanisms and 

scalable model designs. Transformer-based models such as SwinIR [380], Restormer 
[381] and Uformer [382] offer long-range spatial reasoning, making them ideal for 
heterogeneous degradations and multi-modal underwater data (e.g., hyperspectral 
or polarized imaging). Their modularity allows for domain-specific adaptations, such 
as spectral or polarization-aware attention blocks. However, despite those advance-
ments, a central challenge remains: achieving generalization across diverse underwa-
ter modalities while maintaining inference efficiency on resource-constrained plat-
forms such as AUVs or submersible payloads.

d.	 Restoration meets semantics: generative and prompt-based AI
	 Beyond architectural sophistication, recent advances emphasize the role of semantic 

guidance and generative priors. Generative models like GANs and diffusion-based 
approaches enhance perceptual quality by learning to produce visually plausible tex-
tures and colors [383]. These methods are especially helpful in low-SNR modalities 
such as ghost or single-photon imaging, where conventional pixel-based training is 
not feasible. More recently, prompt-based AI has emerged as a promising direction 
for controllable and adaptive restoration. Models such as PromptIR [384], MiOIR 
[385], and DPPD [386] introduce the concept of conditioning restoration on degra-
dation type, scene content, or user input, enabling task-specific behavior. While still 
underexplored in water-related settings, these methods hold strong potential for 
complex imaging systems like hyperspectral or range-gated cameras, where degrada-
tion patterns vary dynamically with environment and depth. Prompt-driven frame-
works could enable multi-modal, interpretable, and mission-aware restoration pipe-
lines for water-related applications.

	 Water-related image restoration has progressed from physics-inspired priors to 
learning-based and physics-guided frameworks, driven by degradations unique to 
aquatic light transport and by modality diversity beyond RGB. Supervised CNN 
baselines trained on UIEB/EUVP-style datasets outperform classical priors but suf-
fer from label scarcity and domain shift, motivating unsupervised/self-supervised 
and domain-adaptation strategies as well as model-unfolding that embeds radiative-
transfer physics for interpretability and robustness. State-of-the-art transformer 
architectures extend receptive fields for heterogeneous degradations and can be 
specialized with spectral/polarization attention, while generative and prompt-based 
methods enable task-conditioned, mission-aware restoration. Persisting challenges 
include generalization across water types and depths, modality-specific IQA, and 
efficient onboard inference for AUV/ROV deployment.

	 Next-generation water-related image restoration must move beyond RGB enhance-
ment toward unified, robust, and interpretable frameworks that adapt across imag-
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ing modalities and environmental conditions. These systems should handle diverse 
sensor outputs, such as hyperspectral, polarized, and low-photon time-resolved data. 
This shift calls for hybrid methods that combine physical priors (e.g., light transport, 
attenuation) with data-driven learning. Approaches like deep unfolding, physics-
guided layers, and plug-and-play optimization show promise. Recent prompt-based 
models (e.g., DPPD [386], MiOIR [385]) further enable adaptive restoration based on 
degradation type, semantic cues, or mission context, key for dynamic water-related 
scenarios.

	 Robustness must extend to real-world deployment, with models generalizing across 
depths, water types, and camera setups without retraining. Lightweight architectures 
are crucial for onboard processing in AUV/ROV. Integrating multimodal sensing 
and feedback-driven adaptation can enhance both perceptual quality and operational 
reliability. Ultimately, achieving unified restoration requires modular, interpretable, 
and adaptive frameworks, rooted in physics and enhanced by semantic AI, to balance 
scientific accuracy with practical deployment.

Image enhancement

Water-related image enhancement plays a vital role in improving target detection and 
recognition in low-visibility water-related environments by reducing noise, correcting 
color distortions, and restoring image details. These enhancements provide essential 
support for the automatic identification and classification of potential threats, thereby 
elevating the performance and intelligence of underwater situational awareness sys-
tems. With the rapid advancement of computer vision and AI, water-related image 
enhancement techniques have evolved into a more systematic framework. Existing 
approaches are typically classified into three categories, the first of which comprises tra-
ditional color- and contrast-enhancement methods operating in the spatial or frequency 
domains, exemplified by histogram equalization, Retinex-based algorithms, and white-
balance correction. Model-based approaches that restore image quality by simulating 
physical degradation mechanisms such as light attenuation and scattering. DL-based 
approaches, which leverage the representational power of neural networks to achieve 
notable improvements in color fidelity and fine-detail reconstruction.

Traditional image enhancement methods

Traditional image enhancement methods mainly include histogram adjustment, color 
correction, sharpening enhancement, and Retinex-based approaches. Histogram adjust-
ment methods [387–389] are among the earliest techniques applied to image enhance-
ment, with the basic idea of improving image contrast and visual effect by modifying the 
grayscale distribution. Histogram equalization enhances the contrast of water-related 
images by computing the cumulative distribution function (CDF) of grayscale values 
and remapping the original pixel intensities to achieve a uniform distribution across the 
grayscale range. Color correction methods [390, 391] analyze the distribution character-
istics of image color channels and use color priors or physical models to perform gain 
adjustments or color space mapping on each channel, correcting color shifts caused by 
lighting conditions and water attenuation, and restoring the natural tone of the image. 
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Sharpening enhancement [392] enhances image clarity and visual contrast by extract-
ing and emphasizing high-frequency components such as edges and textures, typically 
using gradient or Laplacian operators. The Retinex theory [393] models an image as the 
product of illumination and reflectance, and by estimating or suppressing the illumina-
tion component, it highlights reflectance information to achieve color correction and 
enhancement under non-uniform lighting conditions. However, most of these methods 
do not deeply consider the physical mechanisms of water-related optical propagation, 
and the enhancement results are heavily dependent on the image content, lacking gener-
alization ability. As a result, they struggle to achieve consistent enhancement in diverse 
and dynamically changing water-related environments. Therefore, recent research has 
gradually shifted toward approaches that integrate underwater imaging models with 
learning strategies, achieving significant performance improvements driven by DL and 
generative models.

Model‑based methods grounded in water‑related imaging models

Water-related imaging models can accurately simulate the degradation process of images 
caused by environmental factors such as water depth, water type, and the concentration 
of suspended particles, and estimate relevant physical parameters. By applying the 
inverse process of the image degradation model, these methods restore images to 
recover clear and realistic water-related visual information. The Jaffe-McGlamery 
model [394], a representative water-related imaging model, simulates the absorption 
and scattering effects during water-related light transmission and models the water-
related imaging process as a physical degradation composed of three components: direct 
radiance, forward scattering, and backscattering. This model first establishes the image 
degradation equation and estimates key parameters required for light propagation, such 
as the medium attenuation coefficient, background light intensity, and transmittance. 
Then, it uses these parameters to reverse-calculate the true radiance of the target object. 
Finally, it applies image processing techniques such as white balance and contrast 
enhancement to further optimize image quality, thus achieving physically consistent 
restoration and enhancement of images affected by turbid water, as illustrated in Fig. 33. 

Fig. 33  Water-related imaging model diagrams
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Based on this theory, many physically modeled image restoration algorithms have been 
proposed [395], such as the DCP [396] and its various variants [397–399]. Model-based 
image restoration methods have solid theoretical foundations and practical feasibility in 
the field of water-related image enhancement, especially when imaging parameters are 
known or can be estimated, enabling effective recovery of intrinsic image information. 
However, due to the high complexity of real ocean environments and the difficulty 
of accurately acquiring imaging parameters, these methods still face limitations in 
practical applications, including poor robustness and strong dependence on parameter 
estimation.

DL‑based methods

With the development of DL technology, its powerful feature extraction and nonlinear 
modeling capabilities enable automatic learning of characteristics such as color shifts, 
detail blurring, and degradation patterns in water-related images. As a result, DL has 
been widely applied to water-related image enhancement tasks to achieve more natural 
color restoration and clearer image reconstruction. DL methods are mainly divided into 
two categories, including CNN-based approaches and GAN-based approaches. Addi-
tionally, some studies have introduced contrastive learning strategies to improve unsu-
pervised restoration performance.

a.	 CNN

	 Li et al. [400] proposed a lightweight convolutional network called Underwater CNN 
(UWCNN), which integrates water-related scene prior information and achieves 
efficient enhancement of water-related images and videos by learning the map-
ping between degraded and clear images. Li et  al. [401] further designed a multi-
branch network called WaterNet with a gated fusion structure that integrates feature 
responses from multiple enhancement branches, effectively improving color repre-
sentation and detail restoration. They also constructed the UIBE dataset, promoting 
the widespread application of DL in this field. Additionally, Li et al. [402] proposed 
the Ucolor network, which is based on medium transmission map-guided multi-
color space embedding, effectively correcting color shifts and contrast deficiencies in 
water-related images. Wang et al. [403] fuses RGB and HSV color spaces to enhance 
the network’s robustness to color distortion. Fu et al. [404] are the first to formulate 
water-related image enhancement as a problem of probabilistic distribution learning 
and consistency optimization, proposing a probabilistic model-based network archi-
tecture to address challenges caused by blurred reference images in real scenarios.

b.	 GAN
	 GAN dues to their lower dependence on paired training samples, have been widely 

applied in water-related image enhancement. Li et  al. [342] innovatively proposed 
WaterGAN, which combines deep depth estimation and color restoration subnet-
works to achieve water-related image synthesis and enhancement, significantly 
improving image realism and clarity. Guo et al. [405] developed a multi-scale dense 
GAN module with residual connections, markedly enhancing the restoration of 
structural details and textures. Hambarde et  al. [406] introduced an end-to-end 
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UW-GAN framework that employs a coarse-to-fine joint network to substantially 
improve water-related single-image depth estimation and enhancement. Liu et  al. 
[407] proposed WSDS-GAN, a weakly-strongly supervised enhancement method 
based on CycleGAN, which alleviates the dependency on paired data while signifi-
cantly boosting detail recovery and perceptual quality of water-related images. Cur-
rent DL methods extract local features through convolutional kernels but struggle 
to capture long-range dependencies or global structural information within images, 
which severely limits their practical effectiveness in handling complex water-related 
images across diverse water-related environments.

c.	 Transformer
	 With the continuous advancement of Transformer technology, its superior global 

modeling capability enables it to effectively capture long-range pixel dependencies 
in images through the self-attention mechanism, thereby overcoming the limitations 
of traditional CNN, which are constrained by local receptive fields. This advantage 
allows multimodal large models to demonstrate stronger feature extraction and rep-
resentation capabilities in water-related image enhancement tasks, particularly excel-
ling in handling complex lighting variations and restoring distant targets.

	 Alexey et al. [408] were the first to demonstrate the effectiveness of the Vision Trans-
former (ViT) in image classification tasks, showing that excellent performance can 
be achieved without convolutional structures, solely by modeling sequences of image 
patches, challenging the long-standing dominance of CNNs in visual tasks. Subse-
quently, Liu et  al. [409] proposed the Swin Transformer, which introduces sliding 
windows and cross-window connections, significantly improving computational 
efficiency while maintaining strong modeling capabilities, making it more suitable 
for high-resolution image tasks. In the field of image restoration, Zamir et al. [410] 
proposed Restormer, which optimizes the multi-head attention and feedforward net-
work structures to retain long-range dependency modeling while enhancing adapt-
ability to large-scale images. Peng et  al. [411] designed the U-shape Transformer, 
which integrates a channel multi-scale feature fusion module and a spatial global fea-
ture modeling module, significantly improving the handling of uneven color attenua-
tion and local detail restoration.

	 A representative fusion-based approach is the learning-physics framework of Liu 
et al. [412]. It combines an explicit scattering imaging model with a trainable neu-
ral prior. The forward process is encoded as differentiable constraints or unrolled 
steps. A deep network provides data-driven regularization to restore color, contrast, 
and fine detail. Temporal coherence stabilizes video under changing scatterers. This 
fusion outperforms model-only pipelines that break under parameter mismatch and 
data-only methods that generalize poorly across water types and motion. It achieves 
higher SNR and SSIM with fewer measurements. The result is greater physical fidel-
ity, better sample and compute efficiency, and improved robustness. Remaining chal-
lenges include adequate training coverage and careful calibration of model terms. 
Even so, hybrid unrolling and plug-and-play designs offer a practical path to mission-
grade enhancement in dynamic scattering.

	 Beyond visual quality, the downstream utility of enhanced imagery is now rou-
tinely benchmarked. For example, after feeding the restored range-gated frames into 
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YOLO-v3, the model achieves 83.5% mAP in object detection. In contrast, when 
using the original, unprocessed images as input, the targets are barely detectable, 
demonstrating the critical importance of image restoration for reliable perception 
[355]. This addition highlights the practical benefits of underwater image enhance-
ment beyond visual quality, directly supporting more reliable perception in subse-
quent tasks.

	 Overall, transformers for water-related image enhancement are shifting to physics-
aware, domain-specific designs. They capture long-range dependencies and cross-
channel cues, including spectral and polarization signals. Pruning, quantization, and 
distillation enable deployment on AUV/ROV edge hardware. This yields adaptive, 
mission-aware processing under changing water types and illumination. Progress 
requires efficient, uncertainty-aware models that run in real time. Evaluation must be 
modality-aware and go beyond RGB, adding spectral fidelity and task-level metrics. 
Close sensor-algorithm co-design and standardized calibration are essential. Such 
physically grounded, semantics-informed, and resource-efficient pipelines deliver 
robust performance across diverse modalities and conditions.

Application
Advances in airborne lidar bathymetry (ALB) systems

ALB employs blue/green wavelength laser pulses transmitted from a nadir-pointing 
scanner aboard a fixed-wing aircraft or rotary-UAV to simultaneously sense the water 
surface and the seafloor. By measuring the differential time-of-flight between the 

Fig. 34  Principle of ALB
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first surface return and subsequent bottom return, ALB yields depth estimates with 
decimeter-level vertical accuracy and sub-meter horizontal resolution, while seamlessly 
merging with topographic LiDAR to generate continuous “topo-bathy” digital elevation 
models across the land-sea interface. Contemporary ALB systems integrate narrow laser 
beam divergences, high pulse repetition frequencies, and waveform-digitizing receivers 
that capture the full backscatter signal, enabling sophisticated deconvolution and 
radiometric corrections that mitigate turbidity-induced pulse broadening and water-
column attenuation. These advances have expanded the effective sounding depth from 
∼10 m in turbid estuaries to > 50 m in optically clear shelf waters, supporting nautical 
charting, coastal vulnerability assessments, benthic habitat classification, and sediment-
transport studies. The principle of ALB is shown in Fig. 34.

Advances in international ALB systems

In 1969, Hickman and Hogg [413] first demonstrated laser bathymetry, confirming the 
feasibility of using blue–green laser pulses to detect submerged targets. Through the 

Fig. 35  Schematic diagram of ALB systems. a Scanning receiving field of view and photo of CZMIL 
SuperNova. b Scan pattern diagram and photo of HawkEye-5. c Detection pattern and model diagram of 
RAMMS
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1980 s, ALB prototypes such as AOL [414], LARSEN 500 [415], WRELADS [416], and 
FLASH [417] validated airborne LiDAR’s potential for hydrographic mapping, as shown 
in Fig. 35. By the late 1990 s, operational systems like SHOALS [418], HAWKEYE [419], 
and LADS [420] adopted core technologies, including dual-wavelength lasers, high-
speed scanners, full-waveform recorders, and GPS/IMU integration, meeting IHO 
standards for routine coastal surveying. Post-2010, second-generation ALB systems, 
including CZMIL [421], HAWKEYE-Ⅲ, LADS HD, and VQ-880-G, introduced major 
advances: higher pulse repetition (3 to 5 ×), multi-channel receivers with GHz waveform 
digitizers, and automated post-processing, enabling seamless topo-bathymetric 
integration and improved IHO S-44 compliance. Enhancements in adaptive signal 
processing, co-mounted imagers, and real-time quality control extended depth range 
(~ 3 × Secchi depth) and cut manual effort by up to 60%. Since 2018, leading ALB 
platforms have further evolved. CZMIL SuperNova partitions its FOV into multiple 
shallow/deep channels for denser nearshore returns and stabilized scanning via a 
wedge-mirror spinner. Leica’s HawkEye-5 adopts a dual-module design with elliptical 
scanning for mission flexibility. Fugro’s RAMMS replaces mechanical scanning with 
lightweight streak-tube imaging, offering ± 25° swath coverage suitable for UAV 
deployment and simplifying calibration [422]. Driven by rapid progress in uncrewed 

Fig. 36  Diagram of ALB systems of China. a Mapper5000 model and sea-land topographic elevation model 
of Chilianyu island. b iGreena photo and echo signals of different targets in coastal zone. c Mapper4000U 
mounted on drone and profile of measured cross-section of 3D point clouds
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aircraft technology, several dedicated UAV‑borne ALB instruments have appeared, 
including Litewave’s Edge, Amuse Oneself ’s TDOT3, and RIEGL’s VQ‑840‑G [423]. 
These systems typically achieve depth penetration up to twice the Secchi‑disk depth, 
deliver point densities exceeding 100 pts/m2, and operate at substantially lower cost 
than manned‑aircraft solutions, thereby expanding ALB coverage to smaller‑scale or 
budget‑constrained coastal survey projects.

Advances in ALB systems of China

Systematic research on ALB in China began in the late 1980 s, led by institutions such as 
Huazhong University of Science and Technology [424], Ocean University of China [425], 
SIOM [426], and the Naval Institute of Hydrographic Surveying and Charting [427], 
later joined by others including the Information Engineering University [428] and the 
First and Second Institutes of Oceanography [429, 430]. A broader academic-industrial 
network was subsequently established [431–434]. In 1998, SIOM and the Naval Institute 
developed LADM-I/II systems using dual-wavelength lasers (1064  nm/532  nm), 
achieving 4/Kd depth penetration and 0.30 m vertical accuracy, meeting IHO Order 1a 
standards for ≤ 30 m depths. China’s third-generation ALB system, Mapper5000 [435] in 
Fig. 36, launched in 2017, features a 5 kHz Nd:YAG laser and partitioned FOV receivers, 
having mapped over 1,200 km2 across over 40 missions. Recent advancements include 
iGreena [430], a 532 nm, high-pulse-rate (50 to 700 kHz) system achieving 15.9 m depth 
and 0.202 m RMSE in clear waters, and the 4.4 kg UAV-compatible Mapper4000U, which 
demonstrated 16  m penetration and 0.1268  m seabed RMSE in field trials [433]. To 
meet growing resolution demands, SIOM introduced Mapper-10 K and Mapper-20kU, 

Table 13  Comparison of ALB imaging system parameters

System Platform Laser Measurement 
rate

Max depth 
rule

Depth 
range

Scan/FOV

CZMIL 
SuperNova

Manned 
airborne

532 nm + 1064 nm 30 kHz Shallow: 
2.9/Kd 
(≥ 15%); 
Deep: 4.4/Kd

/ Circular scan; 
laser ± 20° 
from vertical

HawkEye-5 Manned 
airborne

515 nm + 1064 nm 40 kHz Shallow: 
3.2/Kd 
(≥ 15%); 
Deep: 4/Kd

/ Elliptical 
scan; ± 14° 
(fore/
aft), ± 20° 
(left/right)

RAMMS 
(Fugro)

Airborne 
and UAS-
capable

532 nm 25 kHz 4/Kd / Multibeam 
push-broom

Mapper5000 
(SIOM)

Manned 
airborne

532 nm + 1064 nm 10 kHz / Field test: 
25.97 m ≈ 
3 × Secchi

Elliptical scan 
(dual-wave-
length)

Map-
per4000U 
(SIOM)

UAV-borne 532 nm + 1064 nm 4 kHz / Field test: 
0–16 m ≈ 
1.7–
1.9 × Secchi

Rotating 
scan; ~ ± 15° 
along-track, ~ 
± 12° cross-
track

iGreena 
(Shenzhen 
Univ.)

Manned 
airborne

532 nm 50–700 kHz / Reported 
max ≈16 m 
in field

Circular scan; 
half-angle 20°; 
swath ≈ 70% 
of AGL
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offering 2 × and 5 × point density improvements over previous models, supporting fine-
scale coastal monitoring, habitat mapping, and rapid disaster response [434–436].

Table  12 compares typical ALB imaging system parameters. Dual-wavelength 
platforms, CZMIL SuperNova and HawkEye-5, combine a green bathymetric channel 
and a 1064 nm topo channel to enable seamless land–water transitions and robust 
bottom detection. Both implement split-rate operation with depth performance 
expressed by Kd-based rules, and employ stabilized, wide-angle scan patterns to balance 
swath and point density at survey altitudes typical of manned aircraft. RAMMS adopts 
a compact, green-only architecture optimized for “full water-column” waveform capture 
with a deep channel around tens of kHz. Its low SWaP allows deployment from both 
manned platforms and small UAS while maintaining useful Secchi-scaled penetration. 
Mapper5000 demonstrates practical tens-of-meters bathymetry at conventional altitudes 
with moderate point densities, whereas Mapper4000U is a UAV-borne, dual-channel 
system tuned for low-altitude operations, yielding high along-track densities and narrow 
swaths. iGreena is a single-wavelength airborne system with a wide PRF envelope and 
fast ADCs, prioritizing compact hardware and high sampling rates for shallow-water 
mapping at modest depths. In Table 13, Kd is the diffuse attenuation coefficient of water 
(higher Kd → more turbid). “ × Secchi” expresses depth as a multiple of Secchi disk depth 
used in practice by some vendors.

AUV optical guidance

Localization and guidance are one of the key components that enables the autonomy 
of AUV, which leverages the long-term, on-station vehicle launch and recovery for the 
water-related missions. The guidance workflow for AUV docking is conventionally 
divided into two phases, mid- to long-range guidance and short-range terminal 
guidance, implemented through acoustic, electromagnetic, or optical modalities, either 
individually or in hybrid form. Mid- to long-range guidance is generally accomplished 
via acoustic positioning, often augmented with inertial navigation, Doppler velocity logs 
(DVL), and other sensors in a multi-sensor fusion scheme that steers the AUV toward 
the docking station. Acoustic systems afford detection ranges on the order of 10  km, 
but they suffer from low spatial resolution, slow data refresh rates, and susceptibility to 

Fig. 37  Principle of AUV optical guidance
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multipath reflections from the seafloor or target structures. Moreover, their accuracy 
degrades markedly at close quarters, making precise localization difficult near the 
docking interface. Short-range guidance governs the final approach as the AUV enters 
the vicinity of the dock, directly determining recovery success. This phase demands 
much higher positioning accuracy and therefore typically relies on electromagnetic or 
optical techniques. Electromagnetic signals, however, attenuate rapidly in water, exhibit 
limited universality, and operate over restricted ranges. In contrast, optical guidance 
employs photodetectors to sense and identify visual fiducials on the underwater docking 
station, enabling high-precision relative pose estimation while offering inherent stealth 
[437, 438]. A schematic of the optical guidance during AUV docking is shown in Fig. 37.

To improve the reliability of terminal AUV docking, specialized optical guidance strat-
egies must be developed to address the unique constraints of underwater operations. 
Image-sensor based systems estimate the AUV’s relative pose by capturing visual data of 
active or passive fiducials mounted at the docking entrance, extracting their features, and 
solving a perspective-geometry problem [439]. However, underwater optical guidance 
using image sensors faces significant challenges. Degradation of the underwater light 
field and attenuation of beacon saliency hinder reliable visual detection. Spatially vary-
ing absorption and scattering introduce geometric distortion, contrast loss, and limited 
effective range. Additionally, the low-texture characteristics of beacons and refractive 
disturbances reduce the robustness of key point extraction and matching. Environmen-
tal variability, including changes in salinity and turbidity, further alters refractive indices, 
leading to nonlinear pose-estimation errors and limiting the generalizability of con-
ventional pose-solving algorithms in diverse underwater conditions. Recent DL-driven 
advances in underwater image enhancement have markedly improved visual detection, 
enabling robust key point extraction and accurate pose estimation by modeling com-
plex data distributions. Autonomous, resilient AUV docking demands optical guidance 
that unites lightweight deep-learning models for real-time accuracy, hybrid optical links 
for sub-meter, high-speed localization, and low-latency fusion of INS, DVL, USBL, and 
optical data through federated filters and graph neural networks. These innovations 
collectively underpin next-generation intelligent electro-optical platforms for deep-sea 
exploration and underwater security.

Conclusion
This paper has comprehensively introduced the principles, challenges, and technological 
advancements of optical imaging in water-related environments, with a particular focus 
on deep-sea exploration. We traced the physical constraints imposed by wavelength-
dependent absorption, scattering by suspended particulates, and extreme hydrostatic 
pressure, factors that collectively limit photon availability and degrade image quality in 
the mesopelagic and hadal zones. To address these barriers, the paper surveyed a range 
of advanced optical imaging modalities, including polarimetric imaging, range-gated 
imaging, single-photon imaging, streak tube imaging, GI, spectral imaging, FOD camera 
imaging and AI-driven algorithms. Each of these methods offers specific advantages 
in improving resolution, penetration depth, and operational robustness under turbid 
and ultra-low illumination conditions. The integration of AI further marks a critical 
inflection point, enabling advanced image reconstruction, denoising, and real-time 
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interpretation capabilities. These innovations not only improve the fidelity of deep-
sea optical observations but also reduce system complexity and enhance autonomous 
adaptability, which is vital for long-duration missions.

Polarization imaging reduces scattering and glare. Range-gated imaging suppresses 
near-field backscatter and isolates depth slices. Single-photon imaging provides photon-
efficient millimeter- to centimeter-scale depth in low light. Streak-camera imaging offers 
wide-swath, picosecond timing for high-fidelity bathymetry. GI leverages structured 
patterns and correlation to remain functional in heavy scatter. Spectral (hyperspectral) 
imaging enables material and biogeochemical discrimination. FOD camera imaging 
delivers reliable documentation under hadal pressures. AI-driven restoration and 
enhancement recover color, contrast, and fine detail while fusing multi-modal cues for 
robust perception.

Specifically, polarimetric imaging enhances contrast, edge saliency, and material dis-
crimination by exploiting scattering- and reflection-dependent polarization, enabling 
reliable target detection in shallow, relatively clear water. Polarimetric imaging with 
active linear or circular illumination it can deliver centimeter-scale detail over several 
ALs. Its main limitations are daylight dependence for passive operation, progressive 
depolarization under strong turbidity and multiple scattering, and sensitivity to calibra-
tion and division-of-focal-plane crosstalk, which constrain penetration and quantita-
tive accuracy relative to time-resolved LiDAR. In practice, polarimetry is a complement 
to range-gated or single-photon techniques rather than a replacement in highly turbid 
or long-range scenarios. Range-gated imaging isolates returns from a chosen depth 
slice and suppresses out-of-slice backscatter, yielding high contrast, centimeter-scale 
axial resolution, and millimeter-centimeter lateral detail at standoffs of tens of meters. 
Polarization-assisted gating and multi-gate fusion further enhance contrast and enable 
volumetric 3D reconstruction. Its limitations include residual in-gate multiple scatter-
ing in very turbid water, sensitivity to laser-detector synchronization and timing jitter/
walk-off, motion blur during scanning or platform motion, and eye-safety/energy con-
straints that impose SNR and duty-cycle trade-offs. In practice, range-gated imaging is 
well suited to mid-range infrastructure inspection, target detection or 3D mapping from 
AUV/ROV and surface platforms. Underwater single-photon imaging, time-correlated 
SPAD or Geiger-mode APD lidar, delivers millimeter- to centimeter-scale depth accu-
racy at extremely low photon counts. Fielded systems reach tens of meters, and labo-
ratory studies approach 8 to 10 ALs (or beyond), with SPAD arrays enabling real-time 
3D at short standoff. Its principal advantages are very high sensitivity and statistically 
principled, histogram-based depth inference that remains effective in photon-starved, 
scattering-limited regimes, often with eye-safe, compact laser sources. Key limitations 
include susceptibility to ambient background and bioluminescence. Pile-up and after 
pulsing distort the time histograms. Pixel-to-pixel nonuniformity and pressure- or 
temperature-induced timing drift, multipath from boundaries, and synchronization 
jitter further degrade accuracy. STIL delivers wide-swath mapping over tens of meters 
with 1 cm range accuracy and millimeter-centimeter lateral detail, leveraging picosec-
ond timing that maps time-of-flight into a spatial coordinate for dense, few-photon 3D 
profiles. Its main constraints are stringent timing and sweep-linearity calibration, cross-
slit radiometric/timing consistency, and sensitivity to platform motion, together with 
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high-voltage requirements that limit miniaturization. In practice, STIL is best suited 
for high-fidelity bathymetry and geomorphology. GI uses structured illumination and 
bucket detection to reconstructed object through scatter, offering strong robustness to 
turbidity, compatibility with flexible hardware configurations. Its principal limitations 
are the sampling burden and acquisition latency, exacerbated by calibration demands on 
SLM/DMD modulators and model mismatch. Thus, practical systems benefit from com-
pressive sensing, optimized illumination patterns, and physics-guided deep networks to 
reduce measurements and stabilize inversion. Recent DL and large-model approaches 
have improved fidelity and sampling efficiency, with demonstrations approaching on 
the order of 10 ALs. Spectral imaging delivers material discrimination from UV to NIR 
through narrowband analytics and spectral unmixing, enabling quantitative benthic 
classification, characterization, and identification under controlled illumination and cal-
ibration. Its effectiveness is depth-limited by per-band SNR, scattering-induced cross-
talk, and radiometric drift, and the acquisition/processing load scales with band count, 
making it most suitable for short-range surveys on well-lit, well-calibrated platforms. 
FOD cameras provide operational simplicity and survivability to hadal pressures with 
application-dependent spatial resolution. They are challenged by ultra-low illumination 
and window-induced aberrations, best for persistent observation, documentation, and 
situational awareness on landers and ROVs. AI-driven algorithms act as a cross-cutting 
layer that enhances all modalities through physics-aware restoration, fusion, and auton-
omy. The advantages include improved robustness, denoising, and real-time interpreta-
tion, whereas risks involve domain shift, calibration sensitivity, and onboard compute 
budgets, most effective when co-designed with sensors (e.g., polarization-assisted gat-
ing, SPAD histogram deconvolution, STIL motion compensation, GI pattern optimiza-
tion) to meet mission-specific range, resolution, and throughput targets.

Notely, while multimodal imaging can substantially enhance underwater percep-
tion, it also introduces several practical challenges. Spatial alignment between hetero-
geneous sensors is often imperfect, and even minor calibration errors may propagate 
through the processing pipeline, reducing the reliability of fused representations. 
Temporal synchronization presents an additional difficulty in dynamic underwater 
scenes, where platform motion and rapidly varying illumination require precise tim-
ing across modalities. Moreover, multimodal fusion typically increases computational 
complexity, which can constrain real-time performance on resource-limited AUV and 
ROV platforms. Addressing these issues calls for lightweight alignment techniques, 
adaptive synchronization strategies, and efficient fusion architectures, directions that 
warrant further investigation in future research.

Looking forward, future research should prioritize ultra-compact, energy-efficient 
imaging systems with multi-modal sensing that tolerate FOD pressures while 
delivering spectrally and temporally rich datasets, and should tightly couple optics 
with AI and robotics to enable adaptive decision-making, habitat classification, 
and event-triggered sampling. One of the key thrusts is complementary fusion 
across modalities. The polarimetric and spectral channels can provide material and 
surface-reflection cues that enhancing range-gated or single-photon acquisition 
for backscatter suppression and photon-efficient depth recovery. The streak-tube 
timing can anchor wide-swath bathymetry and provide ground-truth calibration. 
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GI compensates for the lack of light-field control in conventional imaging method 
by imposing known structured illumination and correlation decoding, thereby 
enhancing robustness to scattering. FOD cameras can host these active modules as 
swappable payloads for persistent hadal deployments. Realizing this fusion requires 
shared geometry, synchronized timing, and radiometric/spectral-Stokes calibration, 
together with physics constrained AI that performs joint inversion and uncertainty-
aware data fusion.  For submersible, future research is expected to advance real-
time enhancement pipelines optimized for less than 30  ms inference on embedded 
GPUs, develop adaptive generalization frameworks that sustain detection accuracy 
across unseen water types, and design lightweight, multimodal models tailored for 
AUV/ROV deployment. Together, these trends will enable reliable, mission-ready 
underwater vision systems capable of operating robustly in diverse and challenging 
marine environments. With these ingredients, multi-modal, AI-enabled systems can 
advance deep-sea biodiversity and biogeochemistry studies and support sustainable 
resource assessment, ushering in high-resolution, intelligent, and exploration across 
the full ocean column.
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