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Abstract 

Exploring the ocean’s vast, water-related environment, covering over 70% of Earth’s 

surface, remains a formidable challenge due to photon starvation, high-pressure 

extremes, and complex light-scattering effects below the photic zone. Optical imaging 

technologies have emerged as transformative tools for full ocean depth exploration, 

overcoming limitations of traditional acoustic methods through high-resolution, 

spectrally rich, and temporally precise observations. This review systematically surveys 

the physical principles, engineering constraints, and state-of-the-art developments 

in optical imaging from surface waters to the Mariana Trench. We analyze the role 

of blue-green pulsed lasers in improving imaging quality. We highlight key factors 

affecting light propagation in seawater. Advanced imaging modalities such 

as polarized imaging, range-gated imaging, single-photon imaging, streak camera 

techniques, and ghost imaging (GI) are examined for their capabilities to enhance 

visibility, resolution, and resilience in turbid, light-limited conditions. Furthermore, 

we introduce the progress achieved by deep-sea submersibles and their high-

performance camera payloads is highlighted, alongside the burgeoning integration 

of artificial-intelligence-driven image enhancement and restoration frameworks. 

Collectively, these interdisciplinary innovations chart a new path for unlocking deep-

sea frontiers, enabling ecological monitoring, resource mapping, and autonomous 

guidance in earth’s most inaccessible water-related realms.

Keywords: Optical imaging, Water-related imaging, Imaging technology, Image 

processing

Introduction

Water-related environments span a diverse range of natural systems, including clouds, 

rain, fog, snow, rivers, lakes, and oceans. Among these, the ocean stands as Earth’s larg-

est and most consequential water-related domain, covering approximately 71% of the 

planet’s surface and containing 97% of its water [1, 2]. Vertical stratification divides the 
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ocean into the photic zone (0 to 200  m), where sunlight enables photosynthesis, the 

mesopelagic or “twilight” zone (200 to 1,000 m) characterized by diminishing light, and 

the abyssopelagic and hadal zones (> 6,000 m) [3], including trenches like the Mariana 

Trench at depths near 11,000 m [4, 5]. Ocean biodiversity underpins complex trophic 

networks, supporting fisheries, nutrient cycling, and essential ecosystem services. More-

over, the deep-sea harbors significant untapped resources, hydrocarbon energy reserves, 

polymetallic nodules rich in rare minerals, and marine natural products with promising 

bioactive and pharmaceutical properties. Marine exploration has historically catalyzed 

major scientific discoveries, from elucidating plate tectonics to identifying extremo-

philes in hydrothermal vent ecosystems, while also underpinning critical economic sec-

tors such as fisheries, maritime trade, and energy infrastructure. However, despite its 

global significance, over 95% of the ocean’s volume remains unexplored, constituting a 

“scientific terra incognita” due to extreme pressures, ultra-low illumination darkness, 

and light-attenuation caused by absorption and scattering [6]. Substantial knowledge 

gaps persist, particularly regarding deep-sea biodiversity, benthic ecosystem dynamics, 

and the impacts of climate change and anthropogenic activities such as deep-sea mining. 

Addressing these challenges necessitates transformative technologies capable of probing 

ultra-low illumination environments while ensuring sustainable stewardship of marine 

ecosystems [7, 8].

Optical imaging has emerged as a paradigm-shifting approach for deep-sea 

exploration, overcoming limitations inherent to traditional acoustic methods like sonar. 

While sonar excels in long-range bathymetry, its spatial resolution constraints and 

inability to resolve fine visual or spectral details hinder biological and geological analyses 

[9, 10]. In contrast, optical systems enable high-resolution visualization, real-time 

spectral characterization, and dynamic process monitoring across marine environments. 

In addition, unlike terrestrial imaging, photons propagating through seawater encounter 

a combination of coupled degradations. First, wavelength-selective attenuation rapidly 

diminishes the red spectrum, with more than 90% of red light absorbed within the 

first 5  m, leaving only a narrow blue-green transmission window (≈ 450 to 550  nm) 

and causing pronounced color-channel imbalance. Second, suspended particulates 

induce strong backscattering, which severely reduces scene contrast and often saturates 

imaging sensors; this effect intensifies nonlinearly with both turbidity and imaging 

distance. �ird, the rapid attenuation of natural light with depth gives rise to highly non-

uniform illumination, manifested as surface caustics, volumetric shadows, and refractive 

distortions, thereby violating the Lambertian assumptions underlying most conventional 

vision algorithms. As shown in Fig. 1, modern methodologies span shallow to full ocean 

depth (FOD) applications: airborne and shipborne LiDAR exploit blue-green lasers for 

coastal bathymetry; polarization imaging suppresses scattering artifacts; and structured-

light systems paired with computational algorithms enhance 3D reconstruction in 

turbid waters [11, 12]. Furthermore, submersible-mounted optical systems, such as 

those deployed on China’s Fendouzhe (capable of reaching 11,000 m), are bridging the 

observational gap between surface and abyssal ecosystems, thereby advancing resource 

mapping, habitat assessment, and hydrodynamic research.

Nevertheless, water-related optical imaging confronts three fundamental constraints: 

wavelength-dependent absorption, scattering, and high-pressure extremes. Water strongly 



Page 3 of 89Sun et al. PhotoniX             (2026) 7:7  

absorbs red and infrared wavelengths, limiting effective penetration to blue-green spec-

tra, which are preferentially utilized in systems like LiDAR and cameras [13, 14]. In the 

epipelagic zone (0 to 200 m), abundant sunlight enables passive RGB imaging but intro-

duces strong color-channel imbalance and surface caustics that confound white-balance 

algorithms. Mesopelagic missions (200 to 1,000  m) must counteract the rapid exponen-

tial decay of natural light, compelling active illumination that in turn suffers from severe 

backscatter and power-limited laser safety margins. High-pressure environments, espe-

cially at depths exceeding 6,000 m, necessitate robust engineering innovations. Abyssal and 

hadal operations (> 6,000 m) confront near-total darkness, 110 MPa hydrostatic pressure 

that deforms optical windows and induces birefringence, and temperature-induced drift 

in sensor calibration. One critical solution involves pressure-resistant enclosures, which 

protect deep-sea imaging systems from extreme compressive forces. Scattering, caused 

Fig. 1 Extreme-depth water-related optical imaging
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by suspended particulates and turbulence, degrades image contrast and operational range 

[15]. To address this, advanced techniques have been developed to suppress scattering 

across multiple physical dimensions. Polarization imaging exploits differential polarization 

states to filter backscattered light [16]. Range-gated imaging temporally isolates photons 

reflected from targets using pulsed lasers and synchronized detectors. Single-photon imag-

ing enhances sensitivity in ultra-low illumination conditions by detecting individual pho-

tons. Streak camera imaging achieves ultrafast temporal resolution to disentangle scattered 

and direct light paths. Ghost imaging (GI) reconstructs targets by utilizing second-order 

statistical correlations of optical fields and computational algorithms, enabling noise-resil-

ient intensity correlation measurements [17–19]. By integrating spatial, temporal, spec-

tral, and polarization domains, these multidimensional strategies significantly extend the 

operational capabilities of optical imaging systems under extreme-depth water-related 

conditions. From an application viewpoint, long-range airborne lidar bathymetry battles 

wave-induced refraction and solar background within the Fraunhofer H-β absorption line, 

whereas AUV docking demands centimeter-level pose accuracy under dynamic turbidity 

and refractive-index fluctuations. Benthic habitat mapping further requires hyperspectral 

fidelity across 400–900  nm while suppressing fluorescence contamination from marine 

snow. Collectively, these depth- and mission-specific hurdles necessitate modality-tailored 

solutions rather than generic image-processing pipelines.

�is paper systematically reviews the foundational principles, inherent challenges, and 

state-of-the-art advancements in water-related optical imaging from epipelagic zone to 

Mariana Trench. First, we elucidate the physical foundations of light propagation in water-

related environment, emphasizing wavelength-dependent absorption, forward/backward 

scattering mechanisms, and pressure-resistant designs. Next, we explore imaging meth-

odologies spanning the epipelagic to hadal zones, including laser-based imaging systems, 

deep-sea submersibles and artificial intelligence (AI) driven computational imaging tech-

niques. Finally, we highlight emerging AI-based solutions for image enhancement and 

restoration, and discuss key applications in resource exploration, ecological monitoring, 

and autonomous underwater navigation. �is review provides a comprehensive review of 

water-related imaging methodologies for ultra-low-illumination environments and outlines 

promising research directions. By integrating optical physics, systems engineering, and 

computational imaging, it delineates a technology roadmap for robust sensing in ultra-low 

illumination conditions and for enabling access to the ocean’s deepest frontiers.

Principle of the water-related optical imaging

Basic principle

Optical imaging in water-related environments relies on the propagation and interaction of 

light with water and its constituents. �e medium is characterized by its inherent optical 

properties (IOPs). �e beam attenuation coefficient c(λ) represents the total loss of flux due 

to both absorption a(λ) and scattering b(λ), when Raman and fluorescence are negligible.

(1)c(�) = a(�) + b(�)
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It is operationally defined using a collimated beam and a detector with infinitesimal 

angular acceptance as the exponential loss constant for on-axis flux, i.e., the distance 

over which the beam falls to 1/e of its initial value. Residual on-axis radiance thus 

decays nearly exponentially with range. Radiance reflected from an object undergoes the 

same extinction on the outbound and return paths, so the photon flux from reflective 

surfaces can be far lower than the volumetric signal returned by scattering, depending 

on range, the angular distribution of scattering relative to absorption, and the target’s 

reflectance. �e volume-scattering function (VSF) describes the angular redistribution 

of photons, and the single-scattering albedo ω0(λ) = b/c quantifies the fraction of 

extinction due to scattering [9, 10]. Along a line of sight at range z, the direct (ballistic) 

radiance is attenuated by the Beer-Lambert transmittance, while the camera also records 

backscatter. Image contrast is further reduced by backscattered light integrated over the 

illuminated volume, which appears as a noncoherent background that adds to, and can 

overwhelm, scene radiance, especially at long integration times. In addition, forward 

scattering spreads light from each object point into a neighborhood, producing blur 

described by a characteristic point-spread function (PSF), which degrades spatial detail 

at increasing optical depth. Together, the recorded intensity combines attenuated object 

radiance, backscatter, and scatter-induced blur. �is departs from the near-linear, weak-

scatter regime typical of atmospheric imaging [20]. In addition, wavelength selectivity 

is strong in the water-related environments. �e absorption increases sharply outside 

the blue-green window, and molecular/particulate scattering decreases with wavelength 

approximately as a Rayleigh or Mie-like power law (Fig. 2). Moreover, at interfaces, Snell 

refraction and Fresnel reflection modify ray paths and throughput. �e refractive-index 

mismatch at the air-glass-water stack introduces spherical/chromatic aberrations unless 

corrected with index-matched domes or adaptive optics.

In conventional water-related optical imaging, contrast loss is the primary limitation, 

and the ballistic irradiance decays exponentially with range under the Beer-Lambert law. 

In the absence of scattering, the illuminance at 7 attenuation lengths (ALs) is reduced 

by roughly  10−5 relative to that at 1 AL, which creates a severe photon deficit. Low-

light detectors such as streak cameras and ICCDs can therefore be valuable, yet usable 

information ultimately depends on the system signal-to-noise ratio (SNR). Against this 

backdrop, two complementary paradigms are employed to manage propagation losses 

and backscatter, active and passive imaging. �e active imaging that uses controlled 

illumination, such as lasers, LEDs, or structured light, to probe a scene and record the 

returned signal with a time, polarization, phase, or intensity reference. Because the 

source is known and synchronized with the sensor, the system can gate in time, mod-

ulate patterns, or measure time-of-flight to extract depth, suppress backscatter, or 

estimate material properties [21]. �e passive imaging that relies solely on ambient illu-

mination to form images, without emitting its own probe light. �e sensor records scene 

radiance and any derived quantities (e.g., color, polarization, spectrum), with image for-

mation governed by the environment’s lighting and the medium’s transport properties 

(e.g., conventional, polarimetric, or spectral cameras) [22].
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Challenges of water-related optical imaging

Optical propagation challenges

(1) Brief introduction

 As light propagates underwater it is attenuated and redirected by wavelength-

dependent absorption and scattering from water molecules and suspended con-

stituents such as sand, plankton, and dissolved organics, yielding range-dependent 

spectral and radiometric changes. Selective absorption suppresses long wavelengths 

first, so blue-green bands dominate with depth. In clear ocean water blue penetrates 

farthest, whereas in turbid or biologically productive waters green can prevail. �e 

recorded signal combines ballistic returns from the target with forward-scattered 

light that broadens the point-spread function and backscattered path-radiance 

that veils contrast. Flow-driven particle fields and microstructure further per-

turb ray trajectories, altering intensity, spectrum, and polarization. �ese coupled 

effects remain a central challenge for modeling and recovering optical information 

in water-related environments. We attempt to summarize the challenges faced in 

Fig. 2 Absorption and scattering in ocean
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underwater optical imaging and propose the current main research directions, as 

shown in Fig. 3.

(2) Absorption

 Water selectively absorbs light depending on wavelength, governed by the   Beer-

Lambert Law   [23]:

 

 where I(z) is the irradiance at range z, I0 is the initial irradiance, and a(λ) is the total 

absorption coefficient. �is coefficient combines contributions from pure water 

(aw), chlorophyll (achl), dissolved organic matter (aCDOM), and suspended particles 

(aNAP):

 

 where, Cchl, CCDOM, and CNAP are concentrations, and a∗ denotes specific absorption 

coefficients.  aw(λ) denotes pure water absorption, achl(λ) represents chlorophyll-a 

and accessory pigments, aCDOM(λ) a quantifies colored dissolved organic mat-

ter, aNAP(λ) accounts for non-algal particles, and aMAA(λ) captures UV-absorbing 

mycosporine-like amino acids in coastal organisms. Pure water exhibits a well-

characterized absorption minimum at 420 nm (aw = 0.0064  m−1) and maximum at 

740 nm (aw = 2.8  m−1) due to O–H bond vibrational overtones. Chlorophyll-a dis-

plays twin absorption peaks at 443 nm (σ = 12 nm) and 675 nm (σ = 8 nm). �ere-

fore, blue-green wavelengths (470 to 580 nm) exhibit minimal attenuation, making 

them optimal for water-related optical imaging [24].

(3) Scattering

(2)I(z) = I0e
−a(�)z

(3)
a(�) = aw(�) + Cchl · a ·chl (�) + CCDOM · a ·CDOM (�) + CNAP · a ·NAP (�)

Fig. 3 Challenges of water-related optical imaging
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 �e propagation of light in oceanic environments is governed by complex interac-

tions between electromagnetic radiation and the constituents of seawater. As light 

traverses through water, it undergoes various processes including absorption and 

scattering, which fundamentally limit the performance of water-related optical 

sensing and imaging systems. �us, since the early days of water-related optical 

imaging, the challenges posed by light scattering in seawater have been a central 

focus of research [25].

a. Scattering Coefficient

 Forward scattering refers to the deflection of light at small angles as it propa-

gates through water, causing blurring in the image. �is occurs because light 

that should have traveled directly from the object to the camera sensor gets scat-

tered and arrives slightly off-target, diminishing the sharpness of the captured 

scene. It blurs the image and photons arrive at slightly shifted angles. Backscat-

tering, on the other hand, occurs when light is scattered by particles in the water 

and redirected toward the camera. Backscatter adds noise and lowers contrast, 

especially in turbid water. As a result, most water-related imaging techniques 

are designed to mitigate the negative impacts of backscattering. �e intensity of 

backscattered light is influenced by several factors, including the scattering coef-

ficient, the absorption coefficient, and the distance between the object and the 

camera. Quantitatively, backscatter can be modeled by integrating b(λ) along the 

path. �e scattering coefficient b(λ) represents the fraction of incident light that 

is scattered in all directions per unit distance [26]:

 

 where, bw(λ) is the scattering by pure water, predominantly Rayleigh scattering. 

bp(λ) is the scattering by particles, predominantly Mie scattering.

 �e VSF, denoted by (θ,λ), describes the angular distribution of scattered light at 

wavelength λ and scattering angle θ:

 

 where, d2I(θ,λ) is the scattered intensity in direction θ. E0(λ) is the incident irra-

diance. dV is the volume element.

 �e scattering coefficient is related to the VSF through integration over all solid 

angles:

(4)b(�) = bw(�) + bp(�)

(5)β(θ , �) =

d2I(θ , �)

E0(�)dV
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 �e scattering coefficient b(λ) and its integral relation to the β(θ,λ) provide the 

quantitative foundation for understanding water-related image degradation.

b. Rayleigh scattering

 Rayleigh scattering occurs when the scattering particles are much smaller than 

the wavelength of light (d ≪ λ). In oceanic environments, this primarily applies 

to water molecules and very small colloidal particles. In pure seawater, scatter-

ing is primarily governed by Rayleigh scattering, where the scattering intensity 

is inversely proportional to the fourth power of the wavelength. �e molecular 

scattering coefficient for pure seawater can be expressed as [27]:

 

 where, bw(λ) is the molecular (Rayleigh) scattering coefficient of pure seawater 

at wavelength λ, typically in units of m 1. λ is the target wavelength at which 

you want to evaluate the scattering coefficient. λ0 is the reference wavelength, 

at which the scattering coefficient bw(λ0) is known or empirically measured. n 

is the spectral exponent, which reflects the wavelength dependence of Rayleigh 

scattering. For pure seawater, empirical values typically use n ≈ 4.32, slightly 

higher than the theoretical Rayleigh exponent of 4, to better match measure-

ments.

 As a result, the scattering coefficient decreases with increasing wavelength, 

making longer wavelengths less prone to scattering, as shown in Fig.  4. �e 

Rayleigh-like power law is b(λ) =  b0(λ0/λ)α, where  b0 = 0.003   m−1, λ0 = 550 nm, 

α = 4.32. In the blue-green spectral range, specifically from 450 to 570 nm, both 

the absorption and scattering coefficients of seawater are relatively low, which 

makes this range the optimal transmission window for light in oceanic environ-

ments. �is spectral region’s favorable characteristics are one of the key reasons 

why the 532  nm wavelength laser is widely adopted in water-related optical 

applications, offering a balance between minimal scattering and sufficient light 

penetration for effective imaging.

c. Mie scattering

 Mie scattering applies to particles with sizes comparable to or larger than the 

wavelength of light. In oceanic environments, this includes suspended sedi-

ments, phytoplankton, and other particulate matter. �e Mie theory provides an 

exact solution to Maxwell’s equations for scattering by spherical particles. �e 

scattered field is expressed as an infinite series [28].

 

(6)b(�) = 2π
π

0

β(θ , �)sinθdθ

(7)bw(�) = bw(�0) ·

(

�0

�

)n
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 where, E₀ is the amplitude of the incident field. k is the wavenumber. r is the 

distance from the particle. a  and b  are the Mie coefficients. π  and τ  are func-

tions related to Legendre polynomials.

 �e Mie coefficients are given by:

 

 

 where, m the complex refractive index ratio. x = 2πr/λ is the size parameter, r is 

the particle radius). ψ  and ξ  are Riccati-Bessel functions. �e efficiency factors 

for scattering Qs and extinction Qe are calculated as:

 

 

(8)Es = E0
eikr

−ikr

∑∞

1

2n + 1

n(n + 1)
[anπn(cosθ) + bnτn(cosθ)]

(9)an =

m�n(mx)[x�n(x)] − �n(x)[mx�n(mx)]

mξn(mx)[xξn(x)] − ξn(x)[mxξn(mx)]

(10)bn =

�n(mx)[x�n(x)] − m�n(x)[mx�n(mx)]

ξn(mx)[xξn(x)] − mξn(x)[mxξn(mx)]

(11)Qs =
2

x2

∑∞

n=1
(2n + 1)

(

|an|
2 + |bn|

2

)

Fig. 4 The molecular scattering coefficient for pure seawater decreases sharply with increasing wavelength 

from 380 to 780 nm, following the Rayleigh-like power law
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 Equation (10) and (11) shows the wavelength dependence of the scattering effi-

ciency Qs for a single, non-absorbing. Mie theory delivers an exact, yet computa-

tionally efficient, framework for predicting the scattering and absorption of light 

by spheres of arbitrary size and refractive index. In ocean optics, it underpins 

forward models that link measured bulk optical properties to the microphysics 

of suspended particulate assemblages. By pairing observed particle-size distri-

butions and complex indices of refraction with the Mie equations, researchers 

can reproduce measured scattering phase functions and radiative-transfer coef-

ficients. �is, in turn, improves the retrieval of suspended-sediment or phyto-

plankton concentrations from remote-sensing reflectance.

 A rigorous mathematical description of underwater optics via the inherent opti-

cal properties. Together with the volume-scattering function, underpins the per-

formance limits and design choices of water-related imaging systems. �e rela-

tive contributions of absorption and scattering depend on the composition and 

concentration of suspended particles and dissolved constituents, vary strongly 

with wavelength, and exhibit systematic geographic patterns. In the open ocean, 

transmission peaks in the blue-green window, with typical ALs of ~ 20  m, 

whereas in coastal waters elevated particulate and dissolved organic matter 

shorten ALs to ~ 3 to 5 m and shift the transmission maximum toward yellow 

[29]. Enabled by advances in optical hardware, computation, and signal process-

ing, modern systems increasingly exploit these properties to operate effectively 

in more challenging regimes [30].

(4) Polarization

 Polarization, one of light’s fundamental attributes, encodes the orientation statistics 

of the transverse field and provides discriminative cues beyond intensity and color, 

enabling target detection under low SNR, cluttered backgrounds, strong scattering, 

and dim illumination. A monochromatic field propagating along the z-axis can be 

written as two orthogonal components [31]

 

 

 Here, Ex and Ey are the complex electric-field components along the sensor’s x and y 

axes. Ax and Ay are their real, non-negative amplitudes. ω = 2πf is the angular fre-

quency for optical frequency f. k = 2πn(λ)/λvac is the wavenumber in a medium of 

refractive index n(λ) at vacuum wavelength λvac. φx and φy are constant phases.

 �e Stokes vector S = [I,Q,U,V]T captures the measurable polarization state. I is 

total intensity, ⟨∣Ex∣
2 + ∣Ey∣

2⟩. Q contrasts horizontal vs. vertical linear states, 

⟨∣Ex∣
2 − ∣Ey∣

2⟩. U contrasts + 45° vs. − 45° linear states, ⟨2Re(ExEy
*)⟩. V measures 

right- vs. left-circular content, ⟨2Im(ExEy
*)⟩. Angle brackets ⟨⋅⟩ denote a time aver-

(12)Qe =
2

x2

∑∞

n=1
(2n + 1)R(an + bn)

(13)Ex(t) = Axe
i(ωt−kz+φx)

(14)Ey(t) = Aye
i(ωt−kz+φy)
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age over many optical cycles. From S, the degree of linear polarization and degree 

of polarization are

 

 with DoP ∈ [0,1] indicating the polarized fraction of the field. Within the medium, 

multiple scattering drives depolarization, often captured by an empirical polariza-

tion memory model.

 

 where z is optical path length, θ denotes viewing/scattering geometry,  DoP0 is the 

source or target polarization at z = 0, and ℓpol(λ,θ) is an effective polarization-mem-

ory length set by the medium’s single-scattering albedo and phase function. Typi-

cally, ℓpol  is longer in forward-looking configurations than in backscatter, so polari-

zation decays more slowly along near-forward paths. Air-glass-water interfaces 

and pressure windows further mix polarization via diattenuation and birefringence 

(angle and stress-dependent), introducing instrument and geometry biases that 

vary with depth and incidence angle [32].

 �ese depolarization processes have concrete imaging consequences. Reduced DoP 

weakens edge and material contrast, while range and angle-dependent Stokes mix-

ing biases quantitative estimates. Spatiotemporal variability in particle fields makes 

polarization signatures nonstationary, hindering transfer of laboratory calibrations 

to the field. Reliable polarimetric imaging in water therefore requires tight control 

of illumination and viewing geometry, full Mueller-matrix calibration of the optical 

train to remove instrumental polarization, and physics-aware inference that explic-

itly models depolarization and interface effects. When these measures are in place, 

often in conjunction with time gating or spectral selection to favor ballistic and sin-

gly scattered photons, polarimetry remains a powerful complement to intensity and 

color-based underwater vision.

 In practice, the polarization state of a wave can be robust to phase-only distortions, 

so vector-structured beams retain polarization inhomogeneity despite optical aber-

rations and modest misalignments, which is advantageous for structured-light 

sensing [33]. Underwater, however, the medium alters polarization through multi-

ple scattering, interface effects, and microbubble populations, producing range and 

geometry-dependent depolarization that varies even for identical materials, com-

plicating material inference and classifier design [34]. Polarization signatures also 

depend strongly on observation geometry at interfaces such as bubble boundaries, 

and forward versus backward propagation channels diverge with distance, leading 

to decreased degree of polarization and reduced contrast at longer paths [35]. �e 

polarimetric imaging can enhance edge saliency and target discrimination in clean 

(15)DoP =

√
Q2 + U2 + V 2

I

(16)DoP(z, θ) = DoP0exp

[

−

z

ℓpol(�, θ)

]
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water, but requires careful control of illumination and viewing geometry, rigorous 

instrument polarization calibration, and models that account for medium-induced 

polarization changes to remain reliable in turbid, range-extended scenarios.

(5) Particles and turbulence

 Underwater turbulence, driven by temperature-salinity microstructure, internal 

waves, and shear, introduces refractive-index fluctuations. �ese fluctuations act 

as a random, anisotropic phase screen along the optical path. For optical imag-

ing, beam wander and angle-of-arrival jitter reduce coupling efficiency. �ey also 

induce motion-like blur. Scintillation broadens the irradiance distribution and low-

ers SNR. Phase-front corrugation degrades the optical transfer function and creates 

a space and time-variant point-spread function. Path-length fluctuations broaden 

photon time-of-flight and erode axial resolution in gated, SPAD, and streak-tube 

systems. �ese effects decorrelate structured illumination, diminish polarization 

purity, and impair phase/coherence-dependent modalities, with severity set by tur-

bulence strength, inner/outer scales, stratification, and anisotropy [36, 37].

 Furthermore, underwater turbulence modeling and measurement remain limited. 

Most forward models adopt isotropic, stationary spectra and Rytov-variance sur-

rogates that only partially capture oceanic reality. �ey under-represent salinity-

driven anisotropy, depth-dependent inner/outer scales, and non-stationarity across 

range. As a result, predicted scintillation, crosstalk among OAM states, and beam-

array correlations often misalign with field performance, hindering robust algo-

rithm design [38]. For imaging, this translates into calibration drift, PSF mismatch, 

and domain shift for learned restorers, particularly when in-air intrinsics or static 

underwater intrinsics are applied without refractive/turbulence correction.

(6) Inelastic processes

 Inelastic processes impose several challenges for underwater optical imaging. Raman 

scattering adds a broad, Stokes-shifted background that rides on the elastic return 

and lowers contrast and SNR across wide spectral bands. �is background varies 

with path length, illumination spectrum, and water chemistry, which breaks the 

assumptions of elastic-only image formation and biases color correction and reflec-

tance retrieval. Fluorescence introduces narrow but intense emissions, most prom-

inently near the chlorophyll-a band, that contaminate red and near-red channels 

and create spectral cross-talk for multispectral and hyperspectral sensors. Fluores-

cent lifetimes sit in the nanosecond range, so delayed photons leak into late gates 

and broaden photon arrival histograms, which degrades axial resolution for range-

gated, SPAD, and streak-tube systems and complicates time-of-flight calibration. 

Both Raman and fluorescence are partially depolarized, which depresses the degree 

of polarization and corrupts polarimetric cues used for de-scattering and material 

inference. �eir magnitudes are scene dependent and nonstationary in space and 

time, which undermines radiometric stability and hinders transfer of laboratory 

calibrations to the field. Together these effects produce additive backgrounds, tem-

poral tails, and polarization dilution that, if unmodeled, lead to systematic errors in 

restoration, classification, and 3D reconstruction [39–41].

(7) Artificial intelligence (AI) enhanced signal processing
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 AI methods for water-related optical imaging face severe, space and time-varying 

degradations. �e medium imposes wavelength-dependent absorption, forward 

scatter, and backscatter. �en, the images exhibit color cast, blur, and low visibility. 

�ese factors shift the image distribution away from terrestrial data and vary with 

site, season, depth, water type, and platform, making learned models brittle when 

deployed outside the conditions seen during training [42].

 First, data and supervision compound these physics-driven difficulties. Public under-

water corpora are heterogeneous in sensors, optics, lighting, water types, and 

annotation protocols. Many data are partial or no longer accessible, and evaluation 

practices vary issues that frustrate reproducible training and fair comparison of 

enhancement or restoration models. For imaging, an added challenge is the scarcity 

of paired “clean” ground truth, which pushes practitioners toward unpaired, self-

supervised, or synthetic supervision; this, in turn, raises concerns about domain 

fidelity and generalization when models trained on one site or simulator are 

deployed elsewhere [43, 44].

 Second, objective mismatch further limits progress. Improvements in perceptual 

quality delivered by conventional underwater image enhancement are not reli-

ably predictive of downstream utility, because the losses and metrics used to train 

enhancement networks are only loosely related to task- or physics-faithful fidel-

ity. �us, it is really necessary to incorporate measurement models, priors on light 

transport, or end-use awareness rather than relying solely on generic perceptual 

scores [45].

 �ird, generalization and domain shift remain central. Methods transferred from 

generic vision often underperform in underwater settings because they implicitly 

assume stable illumination, neutral color statistics, and haze-free edges, assump-

tions violated underwater. Models must therefore learn features and normalizations 

that are robust to medium-induced distortions and platform variability and should 

be stress-tested across diverse sites rather than a single dataset [46, 47].

 Finally, deployment imposes stringent efficiency and reliability constraints. Long-

range missions on AUV/ROV platforms operate under tight energy budgets and 

limited on-board computer [48]. Maintaining real-time throughput with physically 

grounded, uncertainty-aware processing is non-trivial. �e challenge therefore lies 

in the co-design of compact models, quantization, and algorithm hardware tailored 

for marine platforms.

System-level and operational challenges

(1) Optical imaging system aberrations

 Underwater optical systems inherit lens-design residuals and acquire additional 

errors at the air-glass-water interfaces. Refraction shifts the effective entrance pupil, 

alters focal length, and induces field- and depth-dependent distortions and chro-

matic dispersion, degrading inference when in-air intrinsics are applied underwa-

ter. Hydrostatic pressure and temperature induce elastic deformations and wedge in 
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windows, mounts, and barrels. In addition, stress birefringence in thick viewports 

and angle-dependent Fresnel coefficients introduce polarization diattenuation and 

retardance. �ese factors produce a space-variant, wavelength-dependent wave-

front error that differs fundamentally from in-air calibration [49].

 Monochromatic aberrations (spherical, coma, astigmatism, field curvature, dis-

tortion) reduce the modulation transfer function and yield PSF that broaden and 

rotate across the sensor. Chromatic aberrations are amplified because glass and 

water disperse differently. �e longitudinal chromatic shift defocuses bands, and 

lateral chromatic error misregisters color channels and biases stereo, mosaicking, 

and hyperspectral unmixing. Polarization aberrations contaminate Stokes meas-

urements and degrade division-of-focal-plane polarimeters. Stray light and ghost 

reflections at high-index interfaces add veiling flare, compounding contrast loss 

from backscatter. Biofouling, window contamination, and micro-bubbles further 

perturb the PSF and radiometry.

 Because underwater aberrations vary with field angle, depth, wavelength, pressure, 

and temperature, they are nonstationary. �is invalidates fixed PSF assumptions 

and degrades blind deconvolution. It also complicates transfer of laboratory cali-

brations to the field. Robust evaluation therefore requires in-water metrics, field-

resolved MTF/PSF maps, spectral radiometry, time-of-flight impulse responses, 

and Mueller-matrix stability, acquired over operating depths and temperatures. 

Meeting these requirements is difficult on submersible payloads and during long 

missions [50].

 Addressing underwater imaging aberrations requires a system-level approach that 

co-optimizes optics, calibration, and computation under realistic mission and envi-

ronmental constraints. At the hardware layer, designs should manage the air-glass-

water interface, minimize depth-induced deformation, and suppress stray light and 

polarization artifacts. Calibration must move beyond in-air intrinsics to ray-traced 

intrinsics that encode interface geometry and indices, augmented by field-resolved 

PSF/MTF and Mueller-matrix measurements across depth, temperature, and wave-

length. Computational correction should then apply deblurring and denoising, with 

adaptive optics or computational wavefront sensing used where feasible to reduce 

residual phase error. Finally, physics-guided AI-unrolled deconvolution, domain-

adaptive or self-supervised training from in situ constraints, can close residual gaps 

[42].

 Imaging through the air-glass-water stack introduces refraction at each inter-

face. Snell refraction changes effective focal length, shifts the principal point, and 

induces field- and depth-dependent distortions and chromatic dispersion, degrad-

ing inference when in-air intrinsics are applied underwater [35]. Robust operation 

therefore requires refractive calibration that accounts for interface geometry and 

refractive indices, or hardware designs that preserve central projection. In situ cali-
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bration with underwater targets and wavelength-aware radiometric checks further 

stabilizes downstream algorithms [36].

(2) Storage and transmission

 High-resolution HD and 4  K imaging substantially raise scientific yield in under-

water inspection, mapping, and ecology, but they also multiply data rates, storage 

needs, and compute loads. Frame sizes and frame rates escalate linearly into multi-

Gb/s streams for uncompressed video, stressing the size-weight-power budgets of 

submersible payloads and the reliability of long-duration deployments. Algorithms 

that are now standard, dehazing, stabilization, mosaicking, stereo/SLAM, and AI 

inference, must operate at higher pixel counts and tighter latencies, which increases 

onboard power draw and thermal load and complicates real-time operation.

 Local storage is the simplest acquisition path but has practical drawbacks under-

water. Storage capacity, file system limits, and write-speed ceilings cap recordable 

duration and frame quality, and the risk of single-point failure argues for redun-

dancy. Where feasible, live export to an external recorder is preferred to decou-

ple acquisition from storage and to enable immediate monitoring and quality con-

trol. For tethered platforms, live transmission typically rides fiber using established 

interfaces. Gigabit Ethernet supports IP streaming and control, while HDMI and 

HD-SDI transports carry high-resolution video, up to HD and 4 K at frame rates on 

the order of 60 fps, over deterministic links. Even so, bandwidth and latency budg-

ets force trade-offs among compression, resolution, and frame rate. Uncompressed 

links simplify processing but demand higher link margin, whereas compressed 

delivery reduces bitrate at the cost of codec latency and potential artifacts.

(3) Pressure-tolerant sealing

 Underwater environments impose stringent operational constraints, optical imag-

ing device access is limited by depth, currents, visibility, and safety windows. Chi-

na’s deep-sea exploration technology achieved a milestone breakthrough in 2020 

with the manned submersible Fendouzhe successfully reaching the depths of the 

Mariana Trench Challenger Deep [51]. Its indigenously developed titanium-alloy 

pressure hull received international certification, signifying China’s attainment of 

world-leading capabilities in FOD pressure resistance technology. �is manned 

cabin, manufactured via electron beam welding, features a 2.1 m diameter spherical 

structure. Remarkably, the weld strength achieved exceeds 95% of the base mate-

rial strength, ensuring exceptional sealing and structural integrity even under the 

extreme pressures at FOD, thereby demonstrating the robustness of fundamental 

industrial processes. However, the sustained advancement of deep-sea equipment 

continues to face multifaceted technical challenges. Cameras intended for FOD 

operation (depths beyond 11,000 m, ~ 110 MPa hydrostatic pressure) require care-

fully engineered sealing solutions to remain leak-tight under extreme conditions. 

At these hadal pressures, traditional sealing methods face several challenges. Elas-

tomeric O-rings, the most common seals, experience hydrostatic compression and 

material shrinkage that alter their sealing interference. High ambient pressure can 

reduce an O-ring’s volume and diametral compression, potentially leading to seal 

leakage if the initial squeeze was insufficient. Moreover, long-term stress-relaxation 

and creep of polymer seals are further accelerated by high pressure and the 2 to 4 °C 
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ambient temperatures typical of deep water [52]. Continuous immersion in salt-

water, and occasional exposure to hydraulic oils, requires sealing compounds that 

resist swelling, hydrolysis, and corrosion. At the optical port, adhesives and encap-

sulants around the lens window must also remain transparent and dimensionally 

stable to avoid distorting the transmitted wavefront [53]. Reliable imaging in the 

hadal realm therefore requires a holistic sealing strategy that couples mechanical 

robustness with optical integrity.

 Recent advances in deep-ocean optical housings have crystallized around three syn-

ergistic strategies. First, high-performance thermoplastics such as PTFE and PEEK 

retain dimensional stability, extremely low permeation and chemical inertness at 

static pressures approaching 110 to 120  MPa, while carbon- or glass-fiber rein-

forcements halve long-term creep strain and suppress cold-flow without degrad-

ing machinability [54, 55]. Second, flooding the housing with an optically clear, 

dielectric oil and coupling it to ambient seawater via a bellows, bladder or piston 

equalizes internal and external pressures, thereby eliminating radial loads on seal 

lips and viewports [56]. �ird, Kovar-to-glass feed-throughs joined by radial metal 

C-ring seals routinely achieve helium leak rates below 1 ×  10–9 mbar·L/s and offer 

coefficients of thermal expansion of about 4 to 6 ppm/K, closely matching boro-

silicate or sapphire and thus mitigating stress-induced birefringence and focus drift 

over ± 50  °C thermal excursions. Finite-element models of 25 mm-thick sapphire 

windows loaded to 110 MPa predict peak von Mises stresses at least 25% below the 

yield strength of reinforced-PEEK seats and transmitted-wavefront error under λ⁄10 

across 400 to 700 nm [57, 58]. Hyperbaric-chamber dwell tests of identical assem-

blies for 72 h at the same pressure confirm leak-free operation and optical through-

put within 1% of atmospheric benchmarks. �ese pressure-tolerant sealing systems 

now underpin abyssal imaging sensors, including cameras rated to 11,000 m and 

emerging deep-sea lidar modules, enabling month-long deployments for benthic 

biodiversity surveys, geomorphological change detection and in-situ calibration of 

satellite ocean-color algorithms.

(4) Imaging payload platform

 Underwater optical imaging places stringent demands on the deployment platform 

because platform dynamics directly govern image sharpness, exposure stability, and 

targeting. Diver-operated cameras are effective in shallow water but are unsuitable 

for continuous or deep (> 30 m) surveys. Fixed landers provide the highest stability, 

ideal for long, unblurred time series of stills and video, at the cost of spatial cov-

erage. ROVs offer good station-keeping and allow detailed imaging with moderate 

mobility, while AUVs trade precise station-keeping for extended range, endurance, 

and fully autonomous operation. Towed systems enable wide-area, cost-effective 

surveys with large payloads but introduce motion, altitude, and heading variability 

that can blur imagery and complicate focus, especially over rough terrain. Across 

all platforms, residual motion, vibration, and hydrodynamic disturbances remain 

primary risks for blur and misregistration [59].

 �ese engineering constraints degrade the performance of underwater reconstruc-

tion systems, and in-air optical designs and algorithms rarely satisfy operational 

requirements in water. Meeting practical needs therefore demands domain-specific 



Page 18 of 89Sun et al. PhotoniX             (2026) 7:7 

advances in optics (e.g., pressure-tolerant, blue-green, low-scatter illumination, 

refractive-interface correction) and algorithms (e.g., physics-based restoration, 

robust calibration, uncertainty modeling), with particular emphasis on ultra-low-

illumination regimes.

Water-related optical imaging from epipelagic zone to Mariana Trench

Light source

In 1963, Duntley identified an optical attenuation window in the blue-green wave-

length region, demonstrating the feasibility of water-related detection and communica-

tion using blue-green light [60]. Subsequent studies by Smith and Baker revealed that 

pure and clear seawater exhibits minimal attenuation of blue light, particularly within 

the deep-blue spectral range (450 to 485 nm), where transmission loss is only about 1% 

of that in other wavelength bands [61]. �is characteristic significantly enhances laser 

transmission efficiency and provides a practical basis for water-related laser-based detec-

tion and communication. However, laser attenuation in seawater still varies considerably 

depending on water quality. According to the water type classification described by Jer-

lov [62] and subsequent optical measurements of Jerlov water types [63], the optimal 

transmission wavelength differs across various types of seawater. In coastal and shallow 

sea areas, the optimal optical transmission window is around 510 to 550 nm, whereas 

in open ocean and deep-sea waters, it shifts toward shorter wavelengths, with peak 

transmission occurring in the blue range of 450 to 490 nm [62, 63]. �e existence of this 

blue-green window opens new possibilities for marine applications. When combined 

with the high brightness, strong directionality, narrow linewidth and high-peak-power 

of pulsed lasers, blue-green light enables cross-medium ocean remote sensing and sup-

ports high-capacity, high-data-rate underwater optical communication [64].

�e most representative methods and sources for generating blue and green lasers 

are illustrated in Fig.  5. In the context of oceanic lidar systems, the development 

of high-performance pulsed lasers has prioritized high peak power and spectral 

Fig. 5 Typical blue/green laser generation methods and sources
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stability [65]. Among these, the predominant and technologically mature solution 

employs neodymium-doped yttrium aluminum garnet (Nd:YAG) lasers as the gain 

medium. Specifically, a semiconductor laser diode-pumped Nd:YAG crystal emits 

at the fundamental wavelength of 1064  nm in the near-infrared regime. �is output 

is subsequently converted to 532  nm green pulses via second-harmonic generation 

(SHG), leveraging nonlinear optical crystals such as potassium titanyl phosphate (KTP) 

or lithium triborate (LBO) [66–70]. �is approach dominates current applications due 

to its proven reliability, conversion efficiencies exceeding 50%, and compatibility with 

high-repetition-rate operation, critical for airborne and shipborne lidar deployments.  In 

contrast, there are multiple technical routes for generating high-peak-power blue pulsed 

lasers. One common approach involves using a quasi-three-level Q-switched laser 

doped with  Nd3+ ions, pumped by a semiconductor diode to produce a fundamental 

laser pulse at ~ 0.9 μm, which is then frequency-doubled to obtain blue laser pulses. �e 

advantage of this method lies in its relatively high energy conversion efficiency due to the 

requirement of only a single frequency-doubling process. However, the major challenge 

is the efficient generation of the ~ 0.9 μm fundamental pulse [71]. Another mainstream 

method involves using pulsed laser-pumped optical parametric oscillators (OPO), and 

third-harmonic generation to obtain blue laser output [72–74]. �ese approaches allow 

for cascaded amplification to boost pulse energy, but their energy conversion efficiency 

is relatively low, ranging from 0.4% to approximately 30%. While THG offers tunability 

and broader spectral coverage, its complexity and reduced efficiency present trade-offs 

compared to direct frequency-doubling methods. In practice, SHG dominates for green 

(532 nm) in airborne/shipborne systems, whereas blue generation trades off THG/OPO 

flexibility against added complexity and reduced conversion efficiency, chosen according 

to the platform’s power, stability, and spectral requirements.

Currently, the effective suppression of solar background noise is key to achieving sta-

ble, all-day performance of water-related laser systems. Within the blue-light transmis-

sion window of seawater, a notable Fraunhofer absorption line (the H-β line) exists at a 

central wavelength of 486.13 nm [75]. It is evident that aligning the laser source’s cen-

tral wavelength with the solar spectral dark line markedly suppresses solar background 

radiation at the receiver. Moreover, both the laser linewidth and the photodetector filter 

bandwidth should be kept narrower than the H-β line’s spectral width of about 0.1 nm, 

as demonstrated in single-frequency OPO systems at 486.1 nm [76, 77]. Together, these 

measures greatly enhance the photodetection SNR. For deep-sea applications, even 

shorter wavelengths in the deep-blue region are required. Deep-blue laser output at 

473 nm with high repetition frequency can be achieved through direct generation using 

GaN-based laser diodes or by frequency doubling vertical-cavity surface-emitting lasers 

(VCSELs), though these methods are limited in peak power [78, 79]. Alternatively, fiber-

laser-based frequency doubling can also produce high-repetition-rate 473  nm output, 

but the low damage threshold of optical fibers restricts their ability to handle high-peak-

power pulses and increases susceptibility to strong nonlinear effects, leading to laser 

degradation [80]. �erefore, the most promising solution is to use solid-state lasers to 

generate high-peak-power, high-repetition-rate 473 nm deep-blue laser pulses [81, 82].

With the continuous expansion of laser applications in ocean science, there is grow-

ing demand for all-solid-state blue-green lasers capable of high repetition rate with high 
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pulse energy. �e increasing application of hyperspectral technologies in marine explora-

tion further drives the need for single-frequency, frequency-stabilized blue-green lasers 

with high pulse energy output. Current nonlinear harmonic generation techniques, 

particularly parametric oscillation/amplification schemes seeded by single-frequency 

sources, can produce narrow-linewidth, high energy blue laser pulses with peak powers 

over the megawatt level, which are suitable for marine lidar applications. However, these 

systems are often limited by the complexity of frequency conversion processes, low effi-

ciency, and susceptibility to wavelength drift. One of the most critical challenges is that 

high-peak-power ultraviolet laser irradiation can cause optical damage to components 

and nonlinear crystals, which can seriously affect the stability and reliability of the sys-

tem. Additionally, at high peak power densities, the spontaneous emission effect of the 

laser gain medium becomes prominent, further impacting performance [83, 84]. �ere-

fore, identifying high-quality gain media capable of directly emitting in the blue spectral 

region or achieving blue light output through a single-stage harmonic conversion pro-

cess, along with the development of efficient laser modules, is expected to be a key direc-

tion for the future development of high-energy, high-repetition-rate blue pulsed lasers.

Polarimetric imaging

Principle

Polarimetric imaging technology leverages the polarization properties of light to 

enhance image quality in water-related environments, particularly in highly scattering 

conditions [85–88]. Its core principle relies on the partial polarization of scattered 

Fig. 6 a Water-related polarimetric imaging (PD) model. (b-1) Selection of the light source. (b-2) Selection of 

utilized polarization information. c Applications of polarimetric imaging
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light and the distinct polarization characteristics between targets and water-related 

medium [85]. By capturing and processing the polarization information of a scene, this 

technique suppresses scattered light and extracts the light reflected from the target, 

thereby improving image contrast and clarity [89–91]. �e typical system setup for 

water-related polarimetric imaging, as illustrated in Fig. 6 (a), consists of a light source, 

polarization filter, and imaging device. �e light source can be natural light, unpolarized 

light, or polarized light, which illuminates the water-related scene. �e polarization filter 

selectively captures light based on its polarization state, allowing differentiation between 

back-scattered light and directly transmitted light from the target. �e imaging device, 

such as a polarization-sensitive camera, then records the filtered light to produce images 

that can be further processed to reveal detailed information about the scene, such as 

target structure, depth, or material properties [92].

Polarimetric imaging methods

Typical water-related polarimetric imaging systems fall into three main categories, as 

illustrated in Fig. 6 (b). Polarization difference imaging employs two orthogonally polar-

ized sub-images to estimate transmittance via the degree of linear polarization [91–93]. 

Stokes polarimetric imaging, particularly full-Stokes approaches, leverages the stability 

of polarization angles or circular polarization “memory effect” to suppress backscat-

ter [94, 95]. Mueller matrix imaging provides a complete characterization of polariza-

tion behavior through matrix decomposition [96–98]. �ese methods rely on distinct 

optical architectures, offering versatile solutions for varying water-related applications. 

Additionally, integrating polarization data into computer vision and learning-based 

frameworks can further enhance image quality, expanding use cases in target detection, 

environmental monitoring, and water-related archaeology, as illustrated in Fig. 6 (c).

Schechner et al. [85] pioneered a descattering model for turbid water using polarized 

illumination in Fig.  7 (a-1), demonstrating effective contrast and color recovery for 

submerged objects like an iron box in Fig. 7 (a-2) [91]. However, their model assumes 

object radiance is unpolarized, which breaks down for low-depolarizing materials, 

leading to inaccurate transmittance estimation. Huang et al. [99] highlighted this issue, 

noting negative transmittance values (Fig. 7 (b-1)), and addressed it by fitting the target’s 

polarization difference image within a feasible region, successfully restoring details in 

both high- and low-depolarizing scenes (Fig. 7 (b-5)). Liu et al. [100] further advanced 

the field by proposing a red-light-based polarization imaging method optimized for 

turbid water, enabling visibility of previously undetectable targets while balancing 

imaging range and clarity (Fig. 7 (c)).

Recent advancements in deep learning (DL) have significantly enhanced polarimetric 

imaging, focusing on polarization information processing [101–103]. Hu et  al. 

introduced a polarimetric dense network (PDN) for water-related polarimetric image 

restoration, as shown in Fig.  8 (a). �e PDN, comprising shallow feature extraction, a 

residual dense block, and dense feature fusion, extracts and fuses features from three 

polarization images, yielding detailed results compared to intensity-only methods. Yang 

et al. [103] developed an end-to-end unsupervised generative network using adversarial 

loss to remove backscattered light. By modifying the water-related imaging model 

with physical priors, such as matching the Degree of Polarization of backscatter to 
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background light, this method adapts to non-uniform optical fields. Similarly, Zhu et al. 

[104] proposed a non-GAN unsupervised method combining polarization physics and 

DL (Fig. 8 (b-1)). Using U-Net, they processed polarimetric hazy images and computed 

loss between generated and captured images. Figure  8 (b-2) shows this method 

effectively removes homogeneous scattering in background areas while preserving 

object details, eliminating the need for paired or haze-free datasets.

Data-driven techniques are increasingly merged with physical models to direct 

network training, tackling the constraints of traditional techniques [32, 105]. �ey 

enable the extraction of more extensive features, adapt to complex scattering media, 

Fig. 7 (a-1) Imaging system. (a-2) Imaging result based on Schechner’s model [91]. (b-1) Raw image. The 

deduced (b-2) transmittance and the recovered (b-3) radiance of the objects when the light emanating from 

objects in the scene is unpolarized. The retrieved (b-4) transmittance and (b-5) radiance of the objects by 

Huang’s method [99]. (c-1) Synoptic diagram; FT denotes Fourier transform. (c-2) Experimental arrangement 

for imaging in highly turbid water. (c-3) Detection results with blue light illumination, and from the proposed 

method in water with gradually varied turbidity [100]
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and enhance training efficiency via self-supervised, closed-loop optimization [106, 

107]. However, obtaining suitable datasets for training remains a key challenge. While 

synthetic and generative approaches offer potential solutions, they continue to present 

significant obstacles for future progress.

Table 1 summarizes recent active and passive polarimetric imaging architectures for 

water-related vision. Current water-related polarimetric imaging bifurcates into active 

and passive paradigms with distinct operating envelopes and trade-offs. Active systems 

couple controlled linear or circular laser illumination with time-gating or time-of-flight 

detection to reject multiply scattered photons, thereby extending range in turbid media 

and achieving centimeter-scale resolution over several ALs despite predominantly pro-

totype-level maturity. �eir advantages in penetration and depth accuracy are balanced 

by higher system complexity, power and eye-safety constraints, and stringent calibration 

needs, with ongoing work on circular polarization, polarization-enhanced backscatter 

suppression, and improved radiometric/Stokes calibration. Passive systems rely on nat-

ural downwelling irradiance and acquire Stokes information either sequentially (rotat-

ing analyzer) or instantaneously via division-of-focal-plane sensors; they are compact 

Fig. 8 (a-1) The architecture of PDN and (a-2) recovered image [103]. (b-1) The architecture of untrained 

network and (b-2) visual comparison among different de-scattering methods [104]

Table 1 Representative water-related polarimetric imaging systems [108–114]

System Institution Depth range Device Type

Polarimetric De-scatter-
ing Camera

Tianjin Univ. & Xiamen 
Univ

 ~ 0.6 m tank, high 
turbidity

12 MP DSLR + rotating 
pol. filter

Passive

Auto Stokes Imaging Northwestern Polytech-
nical Univ

 ~ Lab tank tests (various 
turbidities)

CCD with rotating 
polarizer

Passive

One-Shot Polarization 
Camera System

Ocean Univ. of China 
& CAS

 ~ 1 m tank, moderate 
turbidity (milk or sedi-
ment)

Division-of-focal-plane 
polarimeter

Passive

Passive Polarization 
Image Dataset

Dalian Maritime Univ Shallow coastal 
waters, ~ 1–2 m visibility

GoPro-based rig + linear 
polarizers

Passive

Polarization-Enhanced 
Range-Gated Camera

SUSTech & SIAT, CAS  ~ 0.5–0.6 m (lab) Gated camera Active

Laser Pol. Backscatter 
Suppression System

Institute of Oceanology, 
CAS

Up to 10 m (lab) CMOS polarimetric 
camera

Active

Circular-Polarization 
LiDAR Prototype

Xi’an Inst. of Optics & 
Precision Mech., CAS

 ~ 2 m (lab) CMOS camera + polar-
izers

Active
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and low power, consistently improving contrast and feature visibility in mildly to mod-

erately turbid, shallow waters (visibility ≈ 1 to 2 m), yet are limited to daylight opera-

tion, reduced penetration, and potential temporal misregistration in sequential capture. 

Across both paradigms, contemporary research increasingly integrates polarimetry with 

deep-learning restoration and advanced optics to elevate image fidelity while reducing 

size, weight, and power, with the field trending toward compact snapshot polarimeters 

plus physics-aware algorithms for passive use cases and polarization-augmented gated 

LiDAR for active deployments in turbid waters.

Range-gated imaging

Principle

Range-gated imaging isolates a chosen depth slice by synchronizing short laser pulses 

with an ultrafast electronic shutter at the detector. �e transmitter emits a brief burst of 

light into the water column; the receiver opens its gate after a programmable delay that 

corresponds to the two-way travel time to the desired range, then closes within a few 

hundred picoseconds to a few nanoseconds. Photons returning from shallower ranges 

arrive earlier and are rejected, while photons from the target slice, primarily ballistic and 

singly scattered, are admitted (Fig. 9). Because only a thin axial layer contributes during 

the open interval, near-field path radiance and multiply scattered foreground light are 

strongly suppressed, yielding higher contrast and improved signal-to-noise ratio under 

turbidity. �e temporal width of the gate determines the thickness of the imaged slice. 

Shorter gates produce finer depth separation but admit fewer photons, whereas longer 

gates increase photon counts at the cost of more residual in-gate backscatter [115].

Fig. 9 Principle of range-gated imaging
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Practical systems pair blue-green sources, where seawater attenuation is lower, with fast 

shutters such as gated image intensifiers, Pockels cells, or single-photon avalanche detector 

arrays operated in gated mode. Key timing parameters include the laser pulse width, the gate 

rise and fall times that set slice sharpness, and timing jitter between the source and sensor 

that broadens the effective slice. Spectral and polarization filters are commonly integrated 

to reject out-of-band glow, bioluminescence, and cross-polarized backscatter, further 

improving SNR. Performance reflects several coupled trade-offs. Narrow gates and precise 

synchronization maximize axial resolution and minimize in-gate haze but reduce photon 

budgets and increase sensitivity to timing drift. Wider gates improve throughput but admit 

more multiply scattered light. Residual errors arise from in-gate multiple scattering in very 

turbid water, platform motion during the open interval, speckle from coherent illumination, 

and calibration drift of the instrument response [116].

First proposed by Gillespie et al. [117] in the 1960 s, range-gated imaging remained 

impractical for decades due to optoelectronic limitations. In the 1990 s, Canada’s 

DRDC achieved notable progress with the LUCIE series systems [118–120]. RGI 

enables time–space mapping by establishing precise delays between laser pulses 

and sensor gating, allowing selective capture of spatial “slices” at specific ranges. 

Two 3D imaging approaches have since evolved. On the one hand, time-slice 

scanning acquires sequential gated images via fine delay stepping for volumetric 

reconstruction, but suffers from high data loads and limited real-time performance 

[121]. On the other hand, energy-versus-range correlation imaging reconstructs 

depth from only two gated frames, enabling video-rate acquisition [122, 123]. A 

typical range-gated imaging system includes a pulsed laser, a gated sensor, and a 

timing control unit (TCU). �e TCU synchronizes laser emission with sensor gating, 

adjusting delay, pulse width, and repetition rate. As depicted in Fig. 10, the laser pulse 

propagates through the medium, reflects off the target, and the gate opens just as the 

return photons arrive. A CCD or CMOS focal-plane array then records the gated 

signal, yielding a high-contrast image confined to the target range.

When the temporal offset between the laser-emission pulse and the gating pulse is 

τ, the standoff range R of the gated slice is [124]:

Fig. 10 Representative gated imaging system
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When the gate width is tg and the laser pulse width is tL, the depth of field d of the 

gated slice is:

where, c is the speed of light in vacuum, and n is the refractive index of the transmission 

medium. �eoretically, laser range-gated imaging is achieved by convolution of the laser 

pulse function P(t) and the gated pulse function G(t). �e target echo signal energy I(r) 

at distance r is:

Here, ηr and ηL are the transmittances of the imaging and illumination optics, 

respectively, M × N is the pixel count of the ICCD/ICMOS sensor, ρ is the target 

reflectance, Ar is the clear-aperture area of the receiving lens, and σ denotes the 

attenuation coefficient of the medium. Equation  (19), commonly referred to as the 

lidar range equation for gated imaging, explicitly couples the characteristics of the 

laser pulse, medium propagation, target reflectance, optical throughput, and detector 

response in a single multiplicative framework.

Range-gated imaging system

After decades of development, 2D laser range-gated imaging has reached commercial 

maturity. Notable systems include the ARGC series from Obzerv (Canada) [125], the 

GLASS series by Sinotech Sensing (China) [126], and the SeaLVi platform developed by 

the Franco-German Saint-Louis Institute [127]. A key innovation is the UTOFIA pro-

ject [128], which produced a compact water-related range-gated camera integrating a 

pulsed laser and a fast-gated CMOS sensor into a single unit. UTOFIA delivers both 2D 

video and 3D depth maps with operational ranges up to ~ 5 ALs, achieving 2–3 × range 

enhancement in turbid waters compared to conventional cameras, and centimeter-level 

depth accuracy within 5 m. Crucially, it is the first water-related range-gated system to 

adopt CMOS rather than ICCD technology, reducing cost and complexity while ena-

bling higher frame rates.

In parallel, Wang et al. [128] developed a series of gated imaging prototypes, “Lvtong”, 

“Fengyan” and “Longjing”. Representative gated imaging system is shown in Fig. 10. �ese 

systems employ high-power 532 nm pulsed lasers and gated image intensifiers to enable 

long-range 3D imaging in coastal waters. Laboratory and field tests demonstrated their 

ability to detect targets beyond visibility limits and generate reliable 3D point clouds in 

turbid conditions. Primarily deployed for marine surveillance, these systems also exhibit 

robust performance under fog, rain, and snow [129]. Range-gated imaging’s capability 

to deliver high-resolution reflectance and dense 3D data is accelerating its adoption in 

pilot applications such as security monitoring, ecological observation, and autonomous 

navigation, with several nearing practical deployment [130]. Representative systems are 
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summarized in Table 2. Across scattering environments, range-gated imaging now spans 

mature atmospheric systems and rapidly advancing water-related variants, with clear 

modality, wavelength, and sensor trade-offs. In air, commercial NIR solutions achieve 

surveillance-grade standoff performance. Underwater, green gating leverages the blue-

green transmission window to extend operation to several ALs, research prototypes 

such as SeaLVi, UTOFIA, and CAS “Dragon Eye” and related platforms deliver high-

contrast reflectance and dense depth at short-to-medium ranges. ICCD detectors 

provide high gain for weak returns at the cost of size/power and blooming risk, whereas 

modern gated CMOS favors compactness, frame rate, and integration [131]. Ongoing 

work, polarization control to suppress backscatter, multi-gate fusion for SNR and depth 

linearity, and tighter laser-sensor synchronization, continues to raise performance 

ceilings.

Range-gated imaging has become a versatile tool for extending optical vision in 

scattering media. Operational atmospheric systems already deliver surveillance-grade 

imagery that passive sensors cannot match, while water-related variants, powered by 

improved lasers, modern sensors, and sophisticated algorithms, now provide high-

contrast, high-resolution scenes at standoff ranges of several ALs. �is capability is 

Table 2 Representative range-gated imaging systems [129–134]

Manufacturer
/Institute

System Distance Resolution Primary 
application

Status

Obzerv Technolo-
gies

ARGC-2400 6.4 km in air 40 cm @ 6 km Coastal/border 
long-range sur-
veillance
808 nm 
laser, > 10 km 
imaging

Commercial

Sinotech Sensing GLASS Series Under the 
condition of 
20 km range, the 
distance measure-
ment to a target 
of 2.3 m × 2.3 m 
is ≥ 12 km

/ All-weather secu-
rity monitoring
NIR laser, gated 
ICCD

Commercial

BrightWay Vision VISDOM  ≤ 300 m in air 0.8–9 cm Automotive night 
vision and ADAS
805 nm NIR laser 
diodes, gated 
CMOS

Commercial

Fr.-Ger. Inst. Saint-
Louis

SeaLVi / cm level Detection and 
ecological survey
532 nm laser, 
dual-gate 3D 
imaging

Research 
Prototype
Sea trials

UTOFIA Consor-
tium

UTOFIA Camera Typical scanning 
distance: 1–9 m; 
Sea trials can 
observe up to 
4.5–5 ALs; > 20 m 
visibility in clear 
water

/ Underwater 
inspection and 
mapping
532 nm laser, 
gated CMOS

Research 
Prototype

CAS Inst. of Semi-
conductors

Dragon Eye
& others

/ mm—cm level High-resolution 
3D imaging
532 nm laser, 
gated ICCD

Research 
Prototype
Sea trials
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transforming oceanographic surveys, industrial inspections, and naval defense, enabling 

tasks such as object detection and 3D mapping in conditions where conventional 

cameras fail. Although challenges remain, ongoing work on polarization control and 

multi-gate data fusion continues to raise performance ceilings, positioning range-gated 

imaging as an indispensable technology for future water-related vision applications.

Single-photon imaging

Principle

Water-related single-photon imaging operates by detecting and time-tagging individual 

photons returned from a pulsed light source, thereby reconstructing range-resolved 

reflectivity profiles with subcentimeter accuracy even in highly scattering media. In this 

approach, the system emits ultra-short laser pulses and detects individual backscattered 

photons with single-photon avalanche diodes (SPAD) rather than integrating intensity 

over a gated exposure. Each emitted photon that survives absorption and multiple scat-

tering is registered by a SPAD array or superconducting nanowire detector [135]. Time-

correlated single-photon counting (TCSPC) based lidar offers picosecond-scale timing 

resolution for range measurement, translating to millimeter-scale depth precision in 

principle. Notably, this method was pioneered in early work on point-by-point single-

photon ranging and demonstrated sub-centimeter accuracy using picosecond timing 

electronics. Unlike traditional laser line scanning (LLS) systems that rely on continuous-

wave illumination and camera integration, a TCSPC lidar detects and time-tags each 

photon return. �is per-photon time-stamping approach inherently gates against long-

lasting backscatter and is highly photon-efficient, enabling operation at much lower 

laser power levels for a given range compared to analog or intensifier-based techniques. 

By utilizing single-photon detection, the need for high laser pulse energy and large aper-

tures is significantly reduced [18, 136–139], enabling system miniaturization and making 

water-related deployment feasible [140–142].

Fig. 11 Principal of single-photon imaging lidar
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Single-photon imaging lidar

Figure  11 illustrates a single-photon imaging lidar system. A single-photon imaging 

LiDAR emits ultrashort laser pulses into the scene and measures the time of arrival of 

individual backscattered photons relative to a synchronized clock, using Geiger-mode 

detectors such as SPAD arrays or superconducting nanowire single-photon detectors. 

For each pixel or scan position, the system accumulates a time-of-arrival histogram 

whose earliest, highest-confidence peak corresponds to the ballistic or minimally 

scattered return from the target surface. �e peak time yields range via time-of-flight, 

while the peak area estimates reflectivity. Because detection is event-driven at the single-

photon level, the method discriminates against delayed, multiply scattered background 

and operates with low pulse energies. It delivers range-resolved reflectivity with 

picosecond timing, yielding millimeter to centimeter-scale depth precision underwater, 

and extends imaging distance to roughly 10 ALs.

Consequently, single-photon imaging lidar has been proposed and successfully dem-

onstrated for water-related imaging [143, 144]. �e picosecond temporal resolution of 

modern SPAD arrays allows photon-efficient acquisition, often below one photon per 

pixel on average, so that high-contrast 3D imagery can be recovered at depths exceeding 

100 m where conventional intensity imaging fails. Crucially, photon-by-photon statistics 

enable adaptive gating and quasi-Bayesian deconvolution, suppressing backscatter and 

enhancing the SNR in turbid water, thus extending the operational envelope of active 

optical sensing in oceanographic exploration, submerged archaeology, and autonomous 

vehicle navigation. However, water-related single-photon imaging lidar still faces techni-

cal challenges, including achieving efficient scanning to acquire underwater target infor-

mation and mitigating interference from strong water column backscatter. To achieve 

fast imaging, detector arrays [143] or multibeam technology [145] are commonly 

employed. �ese require independent time-to-digital converters (TDCs) for each pixel, 

demanding high-performance computing for real-time processing [143]. To address this, 

multiplexing technologies like time-division multiplexing (TDM) [144–146], frequency-

division multiplexing [147] and spectro-temporal encoding technology [148] have been 

proposed for simultaneous multi-pixel detection with a single-pixel detector. TDM 

scheme based on optical fiber arrays offers a notable advantage by enabling multi-pixel 

detection with a simple fiber array addition to a traditional lidar, greatly simplifying the 

architecture.

�e lidar prototype (Fig. 12) comprises four subsystems, including a 532 nm pulsed laser, 

a transceiver, a TDM module and a data-acquisition unit. A fiber-coupled 532 nm source 

is selected because this wavelength lies in the blue-green optical window of water and 

benefits from mature, commercially available technology. �e laser delivers picosecond/

nanosecond pulses at MHz with user-selectable energies up to microjoule. On return, a 

large-aperture achromatic fiber collimator collects the signal through a band-pass filter. �e 

lidar prototype was evaluated in a swimming-pool test tank at Xiamen University.

Recent breakthroughs in single-photon imaging lidar for water-related environments 

provide the cornerstone for centimeter-scale target detection by uniting photon-

efficient optical ranging with complementary acoustic sensing in a tightly coupled, 

multi-modal framework. Table  3 summarizes the key parameters and performance 

metrics of representative water-related single-photon lidar systems in recent years. 
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Fielded and near-fielded systems span airborne bathymetry in clear water and industrial 

subsea mapping, while laboratory and sea-trial prototypes demonstrate photon-efficient 

ranging over several ALs (up to ~ 8 to 10 AL) with decimeter-to-sub-millimeter vertical 

precision. Detector choices map to use cases: time-correlated SPADs enable sub-

millimeter depth discrimination, SPAD arrays support real-time millimeter-scale 3D, 

Geiger-mode APDs offer rugged, wide-area coverage, and emerging SNSPD prototypes 

resolve centimeter-scale targets at short range. Blue-green operation and histogram-

level inference suppress backscatter and recover depth at low photon counts, and tightly 

coupled optical–acoustic fusion improves coverage and robustness for AUV deployment. 

Remaining challenges include ambient-light resilience, backscatter/multipath rejection 

in highly turbid water, array calibration, and the latency–throughput balance for dense 

point clouds. Overall, the evidence indicates a transition from specialized prototypes to 

application-ready, photon-efficient, acoustically aided lidar capable of centimeter-scale 

detection and high-throughput 3D mapping across diverse marine conditions. �is 

optical-acoustic fusion sharply elevates the situational awareness and autonomy of next-

generation sub-sea platforms, most notably autonomous underwater vehicle (AUV) 

and thereby ushers in a new era of high-throughput, high-resolution marine surveying. 

�e resulting gains in depth penetration, spatial coverage, and measurement fidelity 

are poised to accelerate fundamental oceanographic discovery, refine bathymetric 

and habitat mapping, and enable more responsible exploitation of marine resources, 

collectively heralding a transformative chapter in deep-sea exploration and sustainable 

blue-economy development.

Streak tube imaging

Principle

Streak tube imaging, a variant of LLS technology, synchronizes a collimated linear laser 

array with a receiver that has a narrow instantaneous field of view. It is characterized 

by picosecond-level temporal slicing, making it a powerful approach for high-precision 

Fig. 12 a Schematic diagram of the water-related single-photon imaging lidar. b Enlarged cross-sectional 

images of the fiber interfaces at positions A, B, and C as marked in (a). c Internal view of the lidar. d External 

appearance of the lidar. e Photo of the lidar experiment in the pool
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imaging in water-related environments. Such systems employ high-speed streak tubes 

and implement a spatial decoupling strategy that transforms imaging into efficient 

1D scanning. By combining the ultrafast temporal resolution of the streak tube with 

the spatial line-scan capability of the laser, this technique enables accurate target 

reconstruction in scattering media. Its key strength lies in the streak tube’s ability to 

convert photon arrival times directly into spatial positions, forming a natural distance-

intensity mapping. �e line laser contributes spatial information through sequential 

scanning, collectively boosting SNR in particle-laden water. Streak tube imaging 

systems also feature wide fields of view, high spatial resolution, and excellent sensitivity. 

However, the inherent one-dimensional nature of the streak tube restricts illumination 

options to linear scanning, posing challenges in practical deployment. �ese include 

light attenuation in complex water-related media, real-time processing constraints, and 

limits in photoelectric conversion efficiency [154, 155].

Table 3 Representative water-related single-photon lidar systems [140, 143, 149–153]

System Institution Depth range Resolution Detector

EAARL-B NASA & USGS  ~ 0–40 m in clear 
water

 ~ 0.3 m laser foot-
print
 ~ 2 m shot spacing
 ~ 0.2 m depth 
accuracy

SPAD

Underwater Single-
Photon Bathymetric 
Lidar

Xiamen Univ  ~ 0–54 m (10 AL) 
(lab)

Decimeter-scale 
vertical accuracy
High point density

SPAD

Heriot-Watt Under-
water Lidar Prototype

Heriot-Watt Univ. & 
Univ. of Edinburgh

up to 8 AL (lab) Sub-millimeter depth 
resolution (TCSPC)

SPAD

Heriot-Watt Under-
water Lidar Sensor

Heriot-Watt Univ. & 
Univ. of Edinburgh

 ~ 4 m in turbid water 
(lab)

Millimeter-level 
detail in real-time 3D 
images

SPAD array

3D at Depth Single-
Photon Lidar

3D at Depth, Inc  ~ 2–45 m under-
water

 ~ 6 mm depth 
accuracy
 ~ 30° × 30° field of 
view

Geiger-mode APDs

Dual-Band SNSPD 
Lidar Prototype

KTH & Nanjing Univ  ~ 0.5 m (lab) Resolved cm-sized 
submerged objects

SPAD

System Institution Depth Range Resolution Detector

EAARL-B NASA & USGS  ~ 0–40 m in clear 
water

 ~ 0.3 m laser foot-
print
 ~ 2 m shot spacing
 ~ 0.2 m depth 
accuracy

SPAD

Shipborne Single-
Photon Bathymetric 
Lidar

Xiamen Univ  ~ 0–10 m (shallow 
coastal)

Decimeter-scale 
vertical accuracy
High point density

SPAD

Heriot-Watt Under-
water Lidar Prototype

Heriot-Watt Univ. & 
Univ. of Edinburgh

up to 8 AL (lab) Sub-millimeter depth 
resolution (TCSPC)

SPAD

Heriot-Watt Under-
water Lidar Sensor

Heriot-Watt Univ. & 
Univ. of Edinburgh

 ~ 4 m in turbid water 
(lab)

Millimeter-level 
detail in real-time 3D 
images

SPAD array

3D at Depth Single-
Photon Lidar

3D at Depth, Inc  ~ 2–45 m under-
water

 ~ 6 mm depth 
accuracy
 ~ 30° × 30° field of 
view

Geiger-mode APDs

Dual-Band SNSPD 
Lidar Prototype

KTH & Nanjing Univ  ~ 0.5 m (lab) Resolved cm-sized 
submerged objects

SPAD
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�e streak tube itself comprises a photocathode, acceleration electrodes, deflection 

plates, a microchannel plate (MCP), and a phosphor screen, as illustrated in Fig.  13. 

Unlike conventional cameras that capture 2D spatial images, it maps light intensity as 

a function of time and wavelength. Incoming light passes through a slit to form a one-

dimensional spatial profile, which hits the photocathode and emits electrons via the 

photoelectric effect. �ese electrons are accelerated and deflected by time-varying 

electric fields, spatially encoding their arrival time. �e electrons then strike a phosphor 

screen, producing a streak image where time is mapped along the horizontal axis, and 

spatial or spectral information along the vertical. �is image is finally captured by a CCD 

or CMOS sensor, achieving femtosecond-to-picosecond temporal resolution [156].

Streak tube imaging lidar (STIL)

Streak cameras have become a transformative tool in water-related STIL applications, 

offering robust solutions to challenges posed by scattering, absorption, and turbidity 

in water-related environments. �eir capacity to simultaneously capture temporal 

and spatial information enables precise 3D imaging under low-visibility conditions. 

In 1988, S. Williamson first proposed a streak-tube-based laser radar, demonstrating 

that synchronizing a pulsed laser with a streak camera could yield accurate time-of-

flight measurements while recording a one-dimensional intensity profile of the target 

[157]. Building upon this, F. K. Knight et  al. [158, 159] introduced an angle-angle-

range STIL system in 1989, where echo photons were mapped by the photocathode 

and, through fiber-optic reordering, produced a 16 × 16 pixel field with 4  cm depth 

resolution. With support from the U.S. Office of Naval Research, Areté Associates 

initiated the development of a high-resolution littoral-sensing STIL prototype in 1994. 

�is system integrated streak tube imaging with flash lidar capabilities, advancing 

mine-countermeasure sensing. By 2003, it had been mounted on a towed water-related 

platform for 3D seabed imaging in the Gulf of Mexico. Using motorized scanning, it 

mapped spatial variations in seafloor morphology, including sand ripples, achieving 

a working range of ~ 3.4  m and 1  mm resolution, establishing its viability for detailed 

water-related target imaging [160, 161]. In parallel, Areté launched the Multiple-Slit 

STIL program to evaluate autonomous missile-borne target recognition. Phase-I trials 

yielded offline 3D range-intensity reconstructions of static targets [162]. Subsequent 

work by McLean et  al. [163] validated centimeter-scale water-related 3D imaging, 

detailing system design and ocean-monitoring performance. Airborne MS-STIL 

experiments later confirmed the feasibility of autonomous seeker-based detection and 

Fig. 13 Principle of streak camera
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classification [164]. A 2008 internal study further demonstrated the capability of STIL 

to capture the 3D morphology of short-scale sea-surface waves. Meanwhile, Mitsubishi 

Corporation developed a compact water-related topographic LLS system, utilizing a 

microchannel plate photomultiplier tube (MCP-PMT) for detection [165], as illustrated 

in Fig. 14.

Zhao et  al. [166] at Xi’an Institute of Optics and Precision Mechanics (XIOPM) 

presented the first analytical design of a multi-slit STIL system, establishing trade-

offs between time resolution and deflection sensitivity, and optimizing the electron-

optical layout. In 2007, Harbin Institute of Technology enhanced spatial resolution by 

narrowing laser divergence, capturing 3D images of building façades at 700 m [167]. 

Within a linear systems framework, Lei et  al. [168] analyzed STIL signal-to-noise 

characteristics, identifying detector-limited noise as the dominant constraint. Gao 

et al. [169] applied high-resolution single-slit STIL of ocean-surface capillary waves, 

serving anti-submarine applications. Ye et  al. [170] developed a theoretical signal-

distribution model for streak-array detectors, identified sources of ranging error, and 

proposed slot-width optimization combined with an iterative weighted-centroid algo-

rithm to improve 3D imaging quality.

To further enhance depth precision, Chen et  al. [171] addressed accuracy degra-

dation under high-dynamic-range echoes by integrating streak-array detection with 

time-correlated single-photon counting. Luo et al. [172] applied Wiener deconvolu-

tion to reduce edge error and double spatial resolution from 9 mm to 4.5 mm. Li et al. 

[173] implemented a modulated sub-nanosecond laser in conjunction with a streak 

tube, achieving 9  mm depth resolution at 20  m underwater. Guo et  al. [174] intro-

duced a dual-mode multispectral-polarization STIL system, capturing depth, inten-

sity, and polarization in a single or dual exposure, significantly improving contrast 

over single-wavelength systems.

To accelerate target recognition, Li et  al. [175] combined ResNet classification with 

a beam-splitting fiber design that mitigates the trade-off between depth resolution and 

depth of field. Deep in-painting techniques with MS-STIL restored occluded regions, 

refining depth resolution from 0.4 to 0.1 m. Yan et al. [176] devised a hybrid k-nearest-

neighbor and Gaussian-weighted voting framework to extract suburban buildings 

from airborne STIL datasets, effectively suppressing noise. Follow-up implementations 

confirmed that single-echo, single-source data suffices for rapid ground target extraction 

Fig. 14 Mitsubishi corporation’s water-related 3D imaging system
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[177]. Fang et  al. [178] introduced a STIL system achieving sub-centimeter resolution 

in both clear and turbid conditions, supported by an ADMM-based denoising and 

deblurring framework [179] that simultaneously suppresses noise, corrects blur, 

and enhances echo localization even under low SNR. Feng et  al. [180–182] recently 

addressed frame-rate limitations in water-related LiDAR by combining LLS illumination 

with streak-camera reception. In 2024, their team developed China’s first long-range, 

Fig. 15 The LLS system and imaging experiment

Fig. 16 Overview of the StreakNet-Arch based UCLR system
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deep-sea-capable LLS 3D imaging system in Fig.  15, achieving 27 frames per second 

or 6.48 ×  106 points per second, while maintaining ≤ 5 cm resolution across a 34° field 

of view. �e system operates at pressures equivalent to 6,000 m depth and reaches 5.2 

ALs in seawater. Compared to existing systems, it achieves over 73 × the point density 

of Sweden’s LSV-W at similar range, and surpasses Canada’s 2G Robotics system in both 

depth rating and attenuation-limited range, establishing new benchmarks in deep-sea 

optical 3D imaging.

Li et  al. [183] introduced StreakNet-Arch, an anti-scattering, end-to-end binary 

classification network for underwater carrier LiDAR-Radar (UCLR) systems in Fig. 16. 

�e architecture embeds streak-tube imagery into a self-attention backbone with 

a novel double-branch cross-attention block, delivering real-time acquisition and 

superior scatter rejection. On an NVIDIA RTX 3060 GPU, StreakNet-Arch achieves a 

constant average imaging time (AIT) of 54 to 84  ms across up to 64 frames, whereas 

traditional methods’ AIT grows linearly from 58  ms to 1,257  ms, confirming its real-

time advantage. Finally, to validate deep-sea performance, we conducted a South China 

Sea trial, reaching an error of 46 mm for 3D target at 1,000 m depth and 20 m range.

Table 4 summarizes recent water-related STIL systems spanning laboratory prototypes 

to fielded bathymetric mappers. STIL combines the picosecond temporal precision of 

streak tubes with modern pulsed lasers to deliver centimeter-accurate depth and mil-

limeter to centimeter lateral resolution over tens of meters underwater. In a streak tube, 

photons are converted at a photocathode, accelerated and deflected by tailored electric 

fields, and recorded on a position-sensitive anode, enabling sub-nanosecond timing and 

sub-millimeter spatial sampling. Advances in photocathode quantum efficiency, micro-

channel-plate gain/linearity, electron-optical design, and compact DPSS/fiber lasers 

have reduced temporal jitter, extended range, and lowered size-weight-power. Architec-

tural choices trade throughput for detail: single-slit, high-frame-rate designs prioritize 

spatial fidelity and timing stability, whereas multi-slit geometries increase throughput at 

the cost of coarser lateral resolution. Large-FOV implementations achieve < 9 mm lateral 

error at 20 m with ~ 1 cm range accuracy, and few-photon variants report ~ 0.5 mm depth 

Table 4 Representative water-related STIL systems [178, 184–187]

System Institution Depth range Resolution Device

High Frame-Rate 
STIL

Harbin Institute of 
Technology (HIT)

31 m  ~ 3 mm lateral 
at 22 m (range 
res. ~ 1 cm)

Single-slit streak tube

Multi-Slit STIL Beijing Institute of 
Technology (BIT)

 ~ 10 m 22 mm at 10 m Multi-slit streak tube

Large-FOV STIL XIOPM 20 m in clear water; 
10 m in turbid water

 < 9 mm at 20 m 
range; range accu-
racy ~ 1 cm

Streak tube with 60 ps 
temporal resolution, 
12 lp/mm spatial 
resolution

Few-Photon STIL XIOPM Weak-signal imaging 
in scattering media

 ~ 0.5 mm depth 
resolution

Streak tube enabling 
few-photon detection

PILLS/RAMMS 
Bathymetric STIL

Areté Associates & 
Fugro

 ~ 42 m (~ 3 × Secchi 
depth)

 ~ 1 m horizontal 
spot size

high-dynamic-range 
streak camera
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precision under weak returns. At the system level, high-dynamic-range airborne pro-

grams emphasize wide-area coverage and standoff operation, mapping to ~ 42 m depth 

with ~ 1 m spot size from crewed and UAV platforms. Persistent challenges include radi-

ometric/timing calibration across slits, motion compensation under platform dynamics, 

suppression of backscatter and multipath in turbid water, and low-latency inversion for 

dense 3D products. With continued miniaturization, tighter integration with electro-

optic and inertial sensors, and real-time learning-based reconstruction, STIL is poised 

to become a core element of next-generation multimodal marine sensing. Notably, all 

systems listed in Table 4 demonstrate effective operation in water-related environments 

and achieve better spatial resolution.

Ghost imaging

Principle

GI is an active imaging technique that leverages high-order statistical correlations 

within light fields. By concurrently recording one-dimensional intensity signals after 

light interacts with an object and capturing two-dimensional light field distributions, GI 

reconstructs images based on the correlations between these datasets. GI reconstructs 

scenes from second-order intensity correlations rather than direct irradiance maps, 

allowing high-fidelity images to be recovered even when fewer than one photon per 

pixel is detected, an essential advantage in the photon-starved hadal zone. Moreover, 

because the random speckle patterns used in GI are spatially incoherent with the diffuse 

backscatter field, uncorrelated veiling glare is statistically averaged out, yielding superior 

contrast in highly turbid water where conventional cameras saturate. �is method 

transcends the traditional one-to-one mapping between objects and detectors inherent 

in conventional imaging systems, thereby offering superior resilience in ultra-low 

illumination and scattering environments [188–194], as shown in Fig. 17.

Early demonstrations of GI employed entangled photon pairs, yielding high SNR 

images and sparking significant interest in computational imaging. However, practical 

applications of quantum GI are hindered by challenges in generating entangled photons 

Fig. 17 Principle of computational GI
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at specific wavelengths and inherent photon flux limitations. To address these issues, 

researchers introduced GI schemes based on classical light sources. While this approach 

entails a reduction in SNR, it eliminates the reliance on entanglement. Subsequent 

efforts demonstrated GI using pseudo-thermal light sources. With the advancement 

of liquid crystal technology, micro-electro-mechanical systems, and high-speed digital 

control, spatial light modulators (SLMs) and digital micromirror devices (DMDs) have 

been widely adopted to generate pre-modulated optical fields, enabling single-arm 

correlation imaging, commonly referred to as computational GI (CGI). �is technique 

evolved from the conventional two-arm configuration, which required a reference path 

to measure random light fields, into a simplified single-arm system based on known 

modulation patterns. Nevertheless, due to the intrinsic incoherence of pseudo-thermal 

light, the theoretical visibility of CGI is limited to 33% of that achieved by quantum 

GI. Furthermore, CGI typically requires a large number of single-pixel measurements, 

as each measurement provides only limited information about the object. By the way, 

there are some studies have tried to combine single-photon imaging technology with GI 

technology to further integrate the advantages of the two in underwater imaging [195]. 

Consequently, enhancing sampling efficiency and image contrast has become a central 

challenge in the field. �ese demands have driven the development of techniques such 

as compressed sensing and nonlinear correlation extraction, aiming to improve image 

quality while reducing the number of required measurements [188, 196, 197].

GI methods

a. Classical GI

 Classical GI algorithms reconstruct images by second-order intensity correlations 

between a known pattern sequence and bucket measurements. �e baseline linear 

correlator forms the image from the covariance between the reference pattern and 

the bucket signal; Its variants, including Differential GI (DGI) [198] and normal-

ized GI (NGI) [199], stabilize against illumination drift and suppress background 

by differencing or normalization of reference and bucket totals, improving SNR 

and robustness for pseudo-thermal and computational GI setups. �ese operations 

are the canonical classical baselines on which later methods build, and they remain 

attractive for their simplicity and physical interpretability. Yet they typically require 

many measurements because each bucket sample carries limited information, and 

their visibility/SNR are bounded under partially coherent illumination, which con-

strains performance in scattering media.

b. Compressive-sensing (CS) GI

 Motivated by the measurement burden of classical correlators, CS formulations of 

GI reconstruct the object under sparsity priors via convex optimization [200]. Total-

variation regularization solved with augmented-Lagrangian schemes is a widely used 

choice for edge-preserving recovery at sub-Nyquist sampling [201]. Pioneering sin-

gle-pixel/CGI work by Duarte et al. [202] and extensions to pseudo-thermal GI by 

Katz et al. [203] demonstrated that an image with N pixels can be recovered from far 

fewer than N measurements, thereby reducing sampling demands, improving noise 
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tolerance, and enhancing system flexibility. However, performance remains contin-

gent on a faithful sparsity model and accurate forward operators; when the scene is 

not sufficiently sparse in the chosen transform or when noise/statistics deviate from 

assumptions (e.g., Poisson counts, speckle non-idealities), reconstruction quality 

degrades and the computational cost of large-scale optimization becomes nontrivial. 

�ese limitations helped catalyze DL for GI, while the explicit forward model and 

priors from CS continue to inform physics-guided learning that embeds measure-

ment physics to improve robustness and interpretability [191, 204, 205].

c. DLGI

 With the continuous advancement of DL, its powerful capabilities in feature extrac-

tion and nonlinear modeling have enabled significant improvements in image recon-

struction quality. As a result, DL has been introduced into the field of CGI to achieve 

high-quality imaging. Depending on the training paradigm, DL-based CGI methods 

can be categorized into data-driven supervised approaches and physics-driven self-

supervised approaches. �e frameworks of DL-based CGI method under these two-

training paradigm are illustrated in Fig. 18.

 In recent years, data-driven supervised DL techniques have advanced rapidly, dem-

onstrating outstanding performance in computer vision and related domains. �ese 

methods rely on large volumes of labeled training data to optimize a loss function, 

enabling models to learn complex mappings between inputs and outputs for accu-

rate predictions on previously unseen data. Motivated by these successes, research-

ers have begun incorporating DL into GI [206–208]. Lyu et al. [209] first introduced 

DL into computational GI (GIDL). �ey employed traditional computational GI 

techniques to reconstruct a series of noisy, low-quality images under low sampling 

conditions, which were then paired with corresponding high-quality ground truth 

images to form a training dataset. Once trained, the deep neural network successfully 

mapped noisy reconstructions to high-fidelity outputs. Subsequently, He et al. [210] 

proposed a convolutional neural network (CNN) architecture tailored for computa-

tional GI. Both simulations and experimental results verified its effectiveness in sig-

nificantly enhancing reconstruction quality at low sampling rates. Shimobaba et al. 

[211] also conducted additional experimental studies, further confirming the poten-

tial of DL in this field. Despite these advancements, data-driven supervised learn-

ing approaches typically require large amounts of labeled data, which is often need 

Fig. 18 Classification of CGI methods in DL
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high costs and time-consuming data preparation. Moreover, such models frequently 

exhibit limited generalization to novel or unseen scenarios, leading to suboptimal 

reconstruction performance.

 Self-supervised learning enables models to autonomously learn deep and robust fea-

ture representations from large volumes of unlabeled data, thereby maintaining high 

reconstruction quality under varying imaging conditions and in previously unseen 

scenarios[212]. Owing to these advantages, self-supervised learning has been widely 

applied to CGI, effectively reducing the cost of training data acquisition while sig-

nificantly enhancing the generalization capability of imaging systems in complex 

environments. Liu et al. [213] introduced a self-supervised DL framework into the 

field of CGI by integrating the physical model of GI with an untrained neural net-

work. �is method achieved high-quality image reconstruction without requiring 

any pre-training. �e model takes the measured one-dimensional intensity sequence 

as input and predicts the corresponding reconstructed image. By using the experi-

mentally collected intensity sequence as the supervisory signal, the network is opti-

mized to ensure that the predicted intensity fluctuations match those of the actual 

object, thereby improving the fidelity of the reconstructed image. Extensive experi-

ments [214–216] conducted in long-range outdoor scenarios validated the effective-

ness and generalization ability of the self-supervised approach, further broadening 

the application scope of computational GI. However, existing DL-based GI methods 

still face underfitting issues when reconstructing images of complex objects. �is is 

primarily due to limitations in model architecture and parameter capacity, which 

hinder the effective mapping between single-pixel measurements and intricate object 

features, ultimately reducing image visibility. Moreover, self-supervised algorithms 

solve a scene-specific inverse problem by alternating a physics-consistency step and 

a prior step. �e per-frame cost grows with the number of iterations, the number of 

channels, and the number of pixels. In practice, tens to hundreds of iterations are 

common. Latency on edge hardware ranges from about 1/10 s to more than 1 s. �at 

is acceptable for mapping or inspection at one to 5 Hz. It is not acceptable for closed-

loop navigation, tracking, or manipulation at ten to thirty hertz. Feasibility improves 

with amortized inference or meta-learned initializers that reduce warm-start time. 

Unrolled optimization with learned proximal operators or learned denoisers fixes 

a small depth while keeping the physics. Multi-resolution pyramids and region-of-

interest scheduling reduce work. Temporal warm starts and early stopping based 

on residual tests cut iterations. Mixed precision, quantization, fused operators, and 

kernel specialization raise throughput on vehicle processors. A hybrid pipeline is 

practical, with a light model online for control and a slower self-supervised module 

updating maps at a lower rate. Task-aware objectives and uncertainty-aware budgets 

further trim cost. Fast surrogates for the physics model, such as Fourier-based solv-

ers or low-rank approximations, also help. �ese measures preserve the key benefit 

of self-supervision, label-free scene adaptation, while closing the compute gap that 

blocks real-time use.

 In order to further improve the reconstruction ability of complex objects, the arrival 

of foundation-scale vision models, such as SDXL [217] and GPT-4 vision [218], has 

removed many of the parameter-count and architectural ceilings that once con-
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strained conventional DL, allowing networks to reason over long-range dependencies 

throughout an entire feature sequence. �is capability is especially valuable for GI, 

where the signal is both noisy and highly undersampled. Building on these insights, 

Chen et al. [219] introduce what is, to the best of our knowledge, the first large-scale 

imaging model tailored to GI, comprising 1.4 billion parameters and dubbed large 

model GI (GILM) in Fig.  19. Figure  19 (a) and (b) illustrates the principle of the 

GILM. GILM embeds a differentiable physical forward model of GI directly into its 

reconstruction pipeline, so that learning is guided not only by data supervision but 

also by the governing imaging physics. Deep skip connections span the full depth 

of the network to alleviate vanishing-/exploding-gradient issues, preserving high-fre-

quency details while enabling the very large expressive capacity needed to model the 

subtle correlations hidden in single-pixel measurements. A multi-head self-attention 

block further captures global spatial dependencies, permitting the network to infer 

Fig. 19 Large model enhanced computational GI
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object features even when local measurements are severely corrupted. Chen et  al. 

benchmark GILM on a demanding water-related scenario in which reflective objects 

are positioned 52  m from the transmitter–receiver unit in Fig.  19 (c). Preliminary 

assessments suggest that, prior to quantization and compression, the model’s com-

putational requirements necessitate high-performance GPUs such as the NVIDIA 

A100 or Ascend 910B. Nevertheless, following quantization and compression, the 

model has been successfully deployed on a portable computing platform, the Jetson 

AGX Orin NX. Compared with state-of-the-art GI approaches, including compres-

sive sensing, UNet-based reconstructions, and transformer baselines, GILM deliv-

ers substantial gains. It raises the peak SNR (PSNR) by up to 5.8 dB and halves the 

required sampling ratio. At the same time, it faithfully recovers fine structural details 

that competing techniques lose. �e model’s ability to track the temporal fluctuations 

of bucket signals under strong scattering proves essential to this performance gain.

 To assess real-world deployability, Chen et al. ported the trained network to an edge 

computing device (NVIDIA Jetson AGX Orin). �anks to mixed-precision quantiza-

tion and kernel fusion, GILM achieves a 43 ms per-frame inference time, sufficient 

for live video at ~ 23 fps, without sacrificing accuracy, thereby validating its suitability 

for field deployments such as AUV/ROV. �ese results demonstrate that scaling DL 

models, when coupled tightly with the underlying physics of GI, offers a powerful 

path toward robust, noise-tolerant imaging in highly scattering environments.

d. AI-driven GI and AI-driven image restoration & enhancement

 AI provides a common framework for both underwater image restoration/enhance-

ment and AI-driven GI by casting them as physics-constrained inverse problems. In 

each case, the forward model of light transport through scattering media acts as a 

structural prior that guides learning. Restoration pipelines increasingly embed this 

physics via model-unfolding, plug-and-play denoisers, or self-supervised losses that 

enforce consistency between predicted clean images and the formation model of 

the observed data. AI-driven GI adopts the same paradigm but at the sensing stage. 

�e structured illumination or speckle modulation, bucket detection, and correla-

tion or compressive decoding, is made differentiable and integrated into the training 

loop, allowing networks to co-optimize reconstruction with illumination design or 

sampling policy. Across both areas, the trend is toward physics constrained AI that 

blends inductive priors with learned representations, leverages temporal coherence, 

quantifies uncertainty, and targets edge deployment through pruning, quantization, 

and unrolled architectures.

 Key differences stem from where the intelligence is applied in the imaging 

chain and from the measurement geometry. AI restoration is post-capture and 

operates on full-frame measurements from conventional cameras. It aims to undo 

degradations while preserving real-time throughput and compatibility with existing 

payloads. Its dominant risks are model mismatch to water type and illumination, 

and generalization across scenes. AI-driven GI is an imaging modality. It actively 

controls illumination patterns and must reconstruct scenes from low-dimensional 

bucket signals. �is yields strong resilience to scattering and high photon efficiency 

but introduces sampling latency, tight calibration of modulators and detectors, and 
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hardware-coupled failure modes. Restoration typically favors operational simplicity 

and higher frame rates, whereas AI-GI trades complexity for robustness and depth 

reach.

 In summary, GI has progressed from entangled-photon demonstrations to practical 

classical and CGI using pseudo-thermal/SLM/DMD modulation that eliminates 

the reference arm via known patterns. While scalable, classical GI incurs a lower 

theoretical visibility (≈33%) and heavy sampling demand, motivating compressed-

sensing reconstructions that reduce measurements but degrade when object sparsity 

is weak. DL now underpins two complementary tracks: data-driven supervised 

models that markedly improve low-sample reconstructions yet require costly labels 

and generalize poorly, and physics-driven self-supervised frameworks that embed the 

GI forward model to fit measured bucket sequences, delivering label-free robustness 

in challenging, long-range scenes. Foundation-scale, physics-integrated architectures 

further raise PSNR, halve sampling ratios, and reach real-time edge inference, 

enabling field deployment. Emerging trends include fusion with single-photon 

detection and acoustic sensing for underwater operation. Key open issues span 

backscatter/multipath suppression, underfitting for complex targets, and rigorous 

radiometric/temporal calibration to ensure photon-efficient, reliable imaging in 

turbid environments. In future, Field-ready GI payloads remain limited by motion-

induced speckle decorrelation during AUV/ROV drift or surge, which degrades 

correlation fidelity. �ey also experience SLM calibration drift under ~ 110  MPa 

hydrostatic pressure and 2 to 4  °C thermal gradients, necessitating periodic in situ 

self-referencing on extended missions.

Spectral imaging

Principle

Conventional cameras that record only red, green, and blue (RGB) channels frequently 

generate bluish, low-contrast imagery [220, 221]. �is degradation arises from two 

coupled phenomena [222–224]. First, there is rapid, depth-dependent absorption of 

longer wavelengths, particularly red light. Second, multiple scattering by suspended 

particulates further attenuates direct light and obscures scene details. Water-related 

spectral imaging circumvents these limitations by sampling the full optical spectrum 

at every pixel, thereby enabling pixel-wise reconstruction of the scene’s spectral 

reflectance [225, 226]. Spectral imaging measures spatially resolved spectra to form a 

3D data cube, enabling material discrimination from the wavelength dependence of 

reflectance and emission. In passive systems, the scene’s spectral radiance is imaged and 

spectrally separated by a dispersive or filtering element, so that each pixel is associated 

with a narrow spectral response. Active variants illuminate with controlled spectra 

or narrowband laser lines and record the returned spectrum. Radiometric calibration 

maps raw digital counts to spectral radiance via flat-fielding and instrument response, 

while spectral calibration ties detector pixels to wavelength and corrects instrument 

line shape, smile/keystone, and stray light. Calibrated radiance is converted to apparent 

reflectance by normalizing the incident irradiance and correcting water-column path 

radiance and transmittance to counter wavelength-dependent absorption and scattering. 
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Subsequent analysis exploits the high spectral resolution and contiguous bands to 

separate materials with similar colors but distinct spectra, yielding quantitative maps of 

composition and condition that exceed the capabilities of broadband RGB imaging. As 

illustrated in Fig.  20, the resulting data cubes provide an additional, information-rich 

dimension of observation, exposing subtle inter-object differences that remain invisible 

to the naked eye or to conventional RGB sensors.

Recent advances in compact image sensors, miniaturized dispersive optics, and pres-

sure-tolerant housings have markedly reduced the size, weight, and power budget of 

spectral imagers, accelerating their deployment in the marine environment. At the same 

time, demand for higher-fidelity visual tools has surged across disciplines such as marine 

ecology, archaeology, and ocean conservation. Current use cases span coral-reef health 

assessment, benthic habitat mapping, shipwreck documentation, and the detection of 

ecological change or deep-sea megafauna [227–232]. Central to these applications is the 

concept of optical “fingerprinting,” whereby each material is distinguished by its unique 

spectral signature even when shape, color, or texture cues are degraded or ambiguous.

Spectral imaging method

Water-related spectral imaging currently embraces two primary modalities. Multispec-

tral systems acquire a limited set of discrete wavelength bands, selected with optical 

filters, filter wheels, or bandpass-segmented cameras, yielding compact, cost-effective 

solutions that are amenable to real-time or resource-constrained missions [233, 234]. 

Hyperspectral imaging (HSI), in contrast, records tens to hundreds of contiguous nar-

row bands, producing a 3D (x, y, λ) data cube that supports fine-grained material dis-

crimination, precise water-column correction, and detailed extraction of environmental 

features [230–235].

Fig. 20 Schematic diagram of water-related spectral imaging technology
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Water-related spectral imaging first emerged in the late twentieth century, but its 

early adoption was hampered by limited detector sensitivity and poor in-water illu-

mination. Initial efforts therefore concentrated on multispectral approaches. In 2002, 

Zawada introduced one of the earliest examples, the low-light-level underwater mul-

tispectral imager (LUMIS), which recorded four narrow bands centered at approxi-

mately 460, 522, 582, and 678 nm without beam splitters, enabling the documentation 

of natural fluorescence in marine organisms to depths of 20 m [236]. Building on this 

concept, Gleason et al. [237] developed a six-band multispectral camera (MSCAM) 

that employed a mechanical filter wheel to acquire sequential exposures; despite the 

multi-shot acquisition, its staring-mode design furnished high spatial resolution suit-

able for diver-operated coral-reef surveys. Wu et al. [238] subsequently introduced 

the Underwater Multispectral Imaging System (UMIS), a dual-filter-wheel apparatus 

capable of acquiring 31 spectral bands across the 400–700  nm range with approxi-

mately 10  nm resolution.  Encased in a pressure-tight housing, the system supports 

deployment via remotely operated vehicle (ROV) or manual operation by divers.   Its 

design enables targeted applications in coastal and archaeological investigations, 

ensuring robustness in water-related environments.  More recently, Liu et al. [239] 

introduced TuLUMIS, a tunable, LED-based imager that illuminates scenes with 16 

LEDs across eight discrete wavelengths, thereby reducing mechanical complexity by 

modulating the illumination rather than filtering the detected light. Collectively, these 

systems established the foundational architecture for modern water-related spectral 

imaging and underscored its superiority over conventional RGB observation.

By the early 2010 s, gains in detector quantum efficiency, onboard processing, 

and storage made hyperspectral imaging (HSI), the capture of tens to hundreds 

of contiguous narrow bands, feasible underwater. �e dominant push-broom 

architecture disperses slit light spectrally while vehicle motion (ROV/AUV) sweeps 

Fig. 21 UHI underwater spectral camera. a The prototype of UHI and set up of an UHI prototype seafloor 

mapping system. b UHI deployed on ROV equipped with artificial light sources for illumination. c 

Identification and area coverage of different biogeochemical objects based on specific optical fingerprints. d, 

e Pseudo-RGB and classification image of manganese nodules and a stalked sponge
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successive lines to assemble an (x, y, λ) cube. NTNU’s 2009 patent established the first 

operational underwater system [240]. Diver-towed prototypes soon demonstrated 

shallow-water spectral mapping [241], leading to Ecotone A/S’s commercial 

underwater hyperspectral imager (UHI) [242]. �e UHI Ocean Vision (380 to 750 nm, 

≈ 2.2  nm resolution, 150 to 200 bands, 60° FOV, 6000  m rating) now supports 

missions from millimeter-scale coral surveys at 80 m to manganese-nodule mapping 

at 4200 m and hydrothermal-vent or massive-sulfide reconnaissance on landers and 

AUVs [230]. Operating ~ 2 m above the seabed, it delivers sub-centimeter pixels and 

reliably discriminates substrates, biota, and geological resources, as shown in Fig. 21.

From the mid-2010s onward, water-related spectral imagers rapidly diversified, 

spanning miniature scanners, low-cost modular units, and diver-carried rigs. A prime 

example is HyperDiver, a push-broom hyperspectral system introduced in 2017 

by Chennu et  al. [243], as shown in Fig.  22. Centered on a Resonon Pika II camera 

and augmented with attitude, illumination, and water-quality sensors, HyperDiver 

logs hyperspectral cubes alongside RGB, depth, irradiance, and GPS data, allowing 

automated 3D benthic mapping while surveying roughly 15 to 30  m2/min on shallow 

reefs.

Parallel efforts in cost-reduction have demonstrated that hyperspectral sensing can 

be both effective and affordable. Nevala et  al. [244] constructed a low-cost system 

using off-the-shelf components, a rotating-mirror scanner, miniature spectrometer, 

and consumer-grade sensor, which successfully produced credible water-related 

spectral maps. Simultaneously, “internal-scan” architectures, wherein lenses or 

mirrors move within a sealed housing, eliminated the need for external motion, 

making them ideal for AUVs or stationary observatories with strict navigational 

constraints. Snapshot hyperspectral cameras have expanded into water-related 

applications, capturing full (x, y, λ) data cubes in a single exposure via optical 

multiplexing. For example, Cubert’s FireflEYE V185 encodes 50 × 50 spectral images 

Fig. 22 HyperDiver underwater hyperspectral imager. a HyperDiver system operated by a diver to survey 

a shallow coral reef. b, c Intensity and reflectance of specific benthic targets. (d) Three-channel color image 

derived from the hyperspectral data
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into a 1000 × 1000 panchromatic frame at up to 15 cubes per second. Rated to 60 m 

depth, it suits diver and shallow ROV use, though it sacrifices spatial resolution and 

optical throughput. �e 2020 s have seen a trend toward more compact, intelligent, 

and versatile instruments. Bai et  al. introduced a dual-mode scanner with an 

internally actuated objective lens, enabling both fixed and mobile operation with 

high-fidelity classification [245]. Xue et al. [246] developed a compact prism-grating-

prism system that combines high spectral resolution with mechanical robustness. 

Song et  al. [247] proposed a six-channel staring camera using k-nearest-neighbor 

spectral reconstruction, offering a balance between optical simplicity and spectral 

fidelity. Most recently, the XIOPM unveiled the underwater spectral imaging system 

(USIS). USIS-1 is a push-broom hyperspectral sensor (360 to 1000  nm, 128 bands, 

5  nm interval) featuring internal mechanical scanning to decouple acquisition 

from vehicle motion, facilitating deployment on AUVs and fixed platforms. USIS-

2, a snapshot multispectral variant (32 bands), captures data cubes instantaneously, 

mitigating motion blur and excelling at transient event capture, such as fast-moving 

fauna or dynamic plumes. Both systems eliminate external moving parts, enhancing 

reliability in turbid or high-flow environments. Representative results are shown in 

Fig. 23.

Table  5 summarizes the key parameters of the water-related spectral imaging 

systems discussed in this section. Water-related spectral imaging is coalescing around 

two complementary design lines, high-fidelity push-broom hyperspectral scanners 

and agile snapshot spectral imagers, each tuned to the constraints of underwater 

light transport and mobile platforms. Push-broom systems such as UHI Ocean Vision 

Fig. 23 Representative data obtained using the USIS-1 and USIS-2 systems (a) Three-channel composite 

image reconstructed from hyperspectral data acquired by USIS-1. b Spectral curves of selected objects 

captured by USIS-1. c Classification results of USIS-1 (d) Single-band image of the moving targets captured by 

USIS-2. e Sixteen feature maps of different bands derived from USIS-2multispectral data
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and USIS-1 maximize spectral resolving power and band count for detailed material 

discrimination, but require controlled platform motion and stable illumination. At 

the extreme of spectral granularity, HyperDiver exemplifies laboratory/field mapping 

with fine chemotaxonomic sensitivity, trading scan logistics and data volume for 

accuracy. In contrast, snapshot architectures prioritize scene dynamics and platform 

agility, while USIS-2, LUMIS, MSCAM, UMSI, and TuLUMIS illustrate multispectral 

designs that reduce size–weight–power and ease real-time deployment on AUV/ROV. 

Overall trends favor broader spectral envelopes with emphasis on the blue-green 

window for penetration, on-board calibration for radiometric/spectral drift, and tight 

coupling to navigation and learning-based analytics for adaptive surveys.

Collectively, these next-generation systems support agile, high-resolution hyper-

spectral mapping for mobile AUVs and intelligent robotic platforms. �e ongoing 

shift toward mobility, real-time processing, and adaptive mission execution reflects 

a broader trend in underwater sensing. With continued progress in sensor miniaturi-

zation, energy efficiency, and pressure-resistant design, future hyperspectral systems 

are poised to operate deeper, longer, and with increasing autonomy.

FOD imaging

Deep-sea submersibles

a. Overview of the deep-sea submersibles

 Deep-sea technology is widely recognized as a hallmark of a nation’s comprehen-

sive strength. Achieving independent mastery of deep-sea submersible technol-

ogy significantly enhances a country’s capabilities in resource exploration, main-

tenance of water-related military infrastructure, and maritime rescue operations. 

As early as the twentieth century, countries such as the United States, Russia, and 

Table 5 Representative water-related spectral imaging systems [236–245]

System Institution Imaging mode Spectral range Bands Spectral resolution

LUMIS University of Califor-
nia San Diego

Multispectral
snapshot

460, 522, 582, 
678 nm

4 /

MSCAM University of Miami Multispectral
Staring

400–700 nm 6 /

UMSI Zhejiang University Multispectral
Staring

400–700 nm 31 10 nm

TuLUMIS Zhejiang University Multispectral 400–700 nm 8 /

UHI Ocean Vision Norwegian Univer-
sity of Science and 
Technology

Hyperspectral
push-broom

380–750 nm 150–200 2.2–5.5 nm

HyperDiver Max Planck Institute 
for Marine Microbi-
ology

Hyperspectral
push-broom

400–900 nm 480 1.5 nm

Cubert UHD Cubert GmbH Hyperspectral
snapshot

450–950 nm 125 8 nm

USIS-1 XIOPM Hyperspectral
push-broom

360–1000 nm 128 5 nm

USIS-2 Multispectral
snapshot

360–1000 nm 32 /
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France had already developed manned deep-diving technologies capable of reaching 

depths between 4,500 and 6,500 m [248]. �e successful development of the Jiaolong 

manned submersible in the early twenty-first century marked a major milestone in 

China’s advancement in deep-sea exploration [249]. Ocean exploration plays a vital 

role in expanding humanity’s understanding of the Earth, and submersibles, being 

the cornerstone of marine research, are not only indispensable tools for addressing 

resource challenges and conducting scientific investigations, but also a strategic asset 

in strengthening national maritime capabilities.

 Submersibles, or underwater vehicles (UVs), can be classified based on various cri-

teria, including manning method, power source, and operational mode. Different 

types of submersibles are suited to distinct applications such as deep-sea exploration, 

resource extraction, and military reconnaissance. Based on the manning method, 

submersibles are generally categorized into manned submersibles, also known as 

human-occupied vehicles (HOVs), and unmanned submersibles, or unmanned 

underwater vehicles (UUVs) [250]. �is section provides a detailed review of sub-

mersibles following this classification. Based on their power systems, submersibles 

can be classified into electric, hydraulic, and nuclear-powered types [251]. Electric 

submersibles typically use lithium or silver-zinc batteries, offering clean and low-

noise operation. However, their limited energy capacity restricts them to short-dura-

tion scientific missions [252]. Hydraulic submersibles, powered by hydraulic systems, 

provide greater power output, making them well-suited for tasks involving robotic 

arms on ROVs and for deep-sea engineering maintenance [253]. Nuclear-powered 

submersibles, which are still under development [254], rely on compact nuclear reac-

tors and offer exceptionally long operational endurance, potentially lasting several 

years. Despite their promise for long-term monitoring and military applications, 

they also pose significant safety and regulatory challenges. Based on operating depth, 

submersibles can be categorized into three types: shallow-water (less than 300 m), 

medium-deep (300 to 6,000 m), and FOD (deeper than 6,000 m). Shallow-water sub-

mersibles, such as commercial ROVs, are typically used in offshore engineering, rec-

reational diving, and other nearshore applications [255]. Medium-depth submersi-

bles, such as Alvin [256], are widely employed in marine scientific research. FOD 

submersibles, such as the Struggler [51], are designed for abyssal exploration, deep-

sea resource surveys, and other extreme environments. Surface and shallow-water 

submersibles generally involve lower technical complexity and prioritize cost-effec-

tiveness and operational practicality. In contrast, medium-deep and FOD submersi-

bles require advanced high-strength materials and intelligent technologies, serving as 

key indicators of a nation’s comprehensive scientific and technological capabilities. 

Although FOD operations have now become technically feasible, challenges remain 

in enhancing the endurance and real-time control of unmanned submersibles oper-

ating below 6,000 m.

b. HOV

 Based on operational depth, manned submersibles can be classified into three 

categories, including shallow-water, deep-sea, and FOD types. Shallow-water 

submersibles (operating at depths of less than 1,000 m) typically feature a relatively 
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simple structural design with lower pressure-resistance requirements and high 

maneuverability. �ey are well-suited for short-duration missions such as early-stage 

test dives, tourism, basic scientific research, and rescue training. Representative 

examples include early prototypes of China’s Jiaolong, as well as sightseeing 

submersibles operating in the Maldives and Hawaii [257]. Deep-sea submersibles 

(operating at depths between 1,000 and 6,000 m) require robust pressure-resistant 

structures and are typically equipped with high-precision sensors and robotic 

manipulators to support extended underwater operations. Notable examples 

include China’s Jiaolong (maximum depth: 7,062 m) [258], the United States’ Alvin 

(maximum depth: 6,500  m) [259], and Japan’s Shinkai 6500 (maximum depth: 

6,527  m) [260]. �ese vehicles are widely used for deep-sea biological surveys, 

geological investigations, and resource exploration. FOD submersibles (operating 

beyond 6,000  m) are engineered with advanced pressure-resistant technologies, 

often including titanium-alloy spherical cabins, and equipped with high-definition 

imaging systems and high-speed communication capabilities. Prominent examples 

include China’s Fendouzhe (maximum depth: 10,909 m) [261] and the U.S. Trieste, 

which famously completed the first crewed dive to the bottom of the Mariana 

Trench (10,916 m) [262]. Fendouzhe represents a milestone in Chinese submersible 

Fig. 24 Representative deep-sea HOVs

Table 6 Comparison of structure parameters and equipment performance of HOVs [257–262]

Submersible Max depth (m) Crew 
capacity

Dive duration (h) Key features

Trieste I (Italy/US) 10,916 2 / Record-breaking depth

Alvin (US) 6500 3 8–10 High-res imaging and sonar

Shinkai 6500 (Japan) 6527 3 8 High operability; > 1300 dives

MIR-1/2 (Russia) 6000 3 17–20 High endurance; high operability

Nautile (France) 6000 3 8–10 Lightweight; multi-dimensional 
tasks

Jiaolong (China) 7062 3 10–12 Deep-sea research in multiple 
trenches

Shenhai Yongshi (China) 4500 3 6–8 Indigenous deep-sea tech; reduced 
cost

Fendouzhe (China) 10,909 3 10–12 96.5% localization
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engineering, reaching 10,909  m and achieving a 96.5% localization rate of core 

components, integrated with high-resolution imaging, autonomous navigation, and 

FOD operational capabilities. Figure 24 shows the representative deep-sea HOVs.

 Table  6 presents a comparative overview of representative deep-sea HOVs. �ese 

submersibles are essential for probing the deepest parts of the ocean and conducting 

research on extreme marine environments, including deep biospheres and abyssal 

geology. Looking ahead, international competition in HOV development is expected 

to concentrate on innovations in energy efficiency, advanced pressure-tolerant 

materials, and commercial applications, signaling a new era of human presence and 

activity in the deep-sea.

c. ROV

 ROVs are tethered unmanned underwater systems widely employed in deep-sea 

research, subsea engineering, and defense. Enabled by umbilical cables, ROVs offer 

real-time control with continuous power and data transmission, allowing for low-

latency maneuvering and high-precision task execution. Key features include robust 

stability under hydrodynamic stress and the capacity to carry modular payloads such 

as manipulators, sonar systems, and sampling devices. Representative platforms 

Fig. 25 Representative deep-sea ROVs

Table 7 Comparison of structure parameters and equipment performance of ROVs [269–276]

Type Max depth (m) Dive duration (h) Key features Representative applications

MROV  < 100 1–3 Lightweight (< 15 kg), fully 
electric, easy to deploy

Tank inspection, aquaculture 
monitoring

EROV  < 300 2–6 Onboard camera and lighting, 
basic maneuverability

Diver support, hazardous 
inspection

IROV Up to 1,000 4–8 Cost-effective, modular, 
increasingly electric powered

Offshore wind, infrastructure 
monitoring, environmental 
surveys

ROTV Varies (Towed) Continuous (towed) High-resolution sonar, towed 
operation

Cable/pipeline survey, military 
detection

WROV 3,000–6,000 8–12 Dual hydraulic manipulators, 
high lifting capacity

Oil/gas intervention, salvage, 
construction

TROV 1,000–4,000 6–24 Crawler-based mobility, sea-
bed contact, long-duration 
endurance

Deep-sea mining, polar explo-
ration, cable laying

Plough Up to 6,000 6–12 Integrated trenching systems, 
large and heavy

Pipeline burial, subsea trench-
ing, environmental mitigation



Page 51 of 89Sun et al. PhotoniX             (2026) 7:7  

include Seahorse, Sea Dou, Nereus, and Odyssey [263–267]. Douglas-Westwood 

further classifies ROVs into seven functional types [268]. Miniature ROVs (MROVs) 

[269], compact and fully electric, are suited for confined-space inspection. Eyeball 

ROVs (EROVs) [270] offer basic imaging capabilities for diver support. Inspection 

ROVs (IROVs) [271] provide mid-range performance for infrastructure monitoring, 

increasingly shifting from hydraulic to electric propulsion [272]. Remotely Operated 

Towed Vehicles (ROTVs) [273] conduct wide-area seabed surveys using towed sonar 

arrays. Work-Class ROVs (WROVs) [274], equipped with hydraulic manipulators, 

enable intervention tasks at depths up to 6,000  m. Tracked ROVs (TROVs) [275] 

employ crawler systems for long-duration seabed operations, while Excavation ROVs 

(Ploughs) [276] integrate trenching tools for pipeline burial and environmental miti-

gation. Figure 25 shows the representative deep-sea ROVs.

 Table  7 presents a comparative overview of representative deep-sea ROVs. �is 

typology reflects the evolving spectrum of ROV applications, from lightweight visual 

inspection to heavy-duty subsea operations. Current trends emphasize increased 

autonomy, localization, and intelligent control in work-class systems, while micro 

and observation-class ROVs are gaining momentum in environmental monitoring 

and scientific research due to their affordability and deployment flexibility [268].

d. AUV

 AUVs are untethered submersible platforms designed to perform complex under-

water missions autonomously, without the need for surface-vessel control. Unlike 

ROVs, AUVs are powered by onboard energy storage systems and utilize pre-pro-

grammed or adaptive control algorithms for navigation, sensing, and task execution. 

Core advantages of AUVs include their fully autonomous operation [277], onboard 

decision-making capability [278], extended endurance, and adaptability for large-

area, long-duration missions [279]. �ese characteristics make them ideal for appli-

cations in oceanography, seabed mapping, infrastructure inspection, and deep-sea 

exploration.

 AUVs are generally classified based on operational depth and propulsion mecha-

nisms. Depth-based categories include shallow-water AUVs, commonly used in 

nearshore surveys and pipeline monitoring [280, 281]. Deep-water AUVs, such as 

the Qianlong series, which are used for bathymetric mapping and mineral pros-

pecting [282], and FOD AUVs exemplified by Wukong, developed for missions in 

the Mariana Trench and other hadal zones [283]. From a propulsion perspective, 

electric AUVs, such as Bluefin-12, are powered by lithium-ion batteries and repre-

sent the most prevalent configuration[284, 285]. Fuel-cell AUVs, including Japan’s 

URASHIMA, leverage hydrogen fuel cells to significantly increase range and endur-

ance [286]. Hybrid AUVs, such as China’s Haiyan-X, combine buoyancy-driven glid-

ing and propeller propulsion to optimize energy use and maneuverability across mis-

sion profiles [287].

 Underwater Gliders (UGs) represent a specialized subclass of AUVs that achieve 

horizontal propulsion through periodic buoyancy changes and hydrodynamic lift. 

Distinguished by their exceptional energy efficiency, gliders are designed for long-

duration missions across vast ocean regions [288]. Depending on their propulsion 

method, gliders are categorized into traditional gliders (e.g., Slocum), which use 



Page 52 of 89Sun et al. PhotoniX             (2026) 7:7 

mechanical actuators to adjust volume and buoyancy [289]. �ermal gliders (e.g., 

Seaglider), which exploit oceanic thermal gradients to generate motion [290]. Hybrid 

gliders (e.g., Haiyan series), which combine gliding with powered propulsion for 

enhanced maneuverability. Application-based classification includes environmen-

tal monitoring gliders [291], military reconnaissance gliders such as the U.S. Navy’s 

Liberdade [292], and polar observation gliders (e.g., Norway’s Alba), tailored for 

extended deployments in high-latitude, cold-water environments [293]. Figure  26 

shows the representative AUVs and UGs.

 Table 8 summaries the representative AUV and UG classifications with key perfor-

mance metrics. Collectively, AUVs and UGs constitute essential tools in modern 

oceanography, offering complementary capabilities for high-resolution seabed analy-

sis and sustained, large-scale data acquisition.

e. Special-Purpose Submersibles

 Special-purpose submersibles, particularly bionic and hybrid platforms, represent 

significant advancements in underwater robotics by integrating biomimetic 

principles with multifunctional control architectures. Bionic submersibles draw 

inspiration from marine organisms in morphology, propulsion, and functional 

adaptation, enhancing hydrodynamic efficiency, maneuverability, and environmental 

compatibility [294]. Design strategies include morphological biomimicry, locomotive 

biomimicry, and functional biomimicry, enabling low-noise, agile operation in 

complex environments. �ese platforms offer notable advantages over conventional 

systems in ecological monitoring, covert operations, and precision infrastructure 

inspection [295, 296]. Globally, various prototypes exemplify bionic design. Northrop 

Fig. 26 Representative deep-sea AUVs and UGs
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Grumman’s “Manta” UUV replicates ray-like gliding for stealth in turbulent waters 

[297]. Norway’s “Eelume” employs a flexible eel-inspired body for confined-space 

inspection [298]. Japan’s “Medusa” and “OctoBot” integrate cephalopod-inspired 

designs for high-mobility tasks [299]. China’s “RobDact” and “West Valley I” feature 

biologically driven propulsion and composite structures for agile and deep-sea 

operations [300, 301]. �ese developments signal a shift toward swarm-capable, 

intelligent bionic systems, with China leading efforts in control optimization and 

material innovation.

 Hybrid submersibles combine the advantages of AUVs and ROVs, enabling seamless 

transitions between autonomous mapping and tethered precision control. �e two 

main classes, Autonomous and Remotely Operated Vehicles (ARVs) and Hybrid 

Remotely Operated Vehicles (HROVs), support operational flexibility across depth 

ranges and mission profiles. �e U.S. Nereus reached the Mariana Trench as the 

Table 8 AUV and UG classifications with key performance metrics [282–293]

Type Max depth (m) Dive duration 
(h)

Propulsion type Key features Representative 
models

Shallow-water 
AUV

 < 500 6–24 Electric Compact, 
nearshore survey 
and inspection

/

Deep-water AUV 500–6,000 10–40 Electric/Hybrid High-resolution 
seabed mapping, 
exploration

Qianlong series

FOD AUV  > 6,000 12–48 Electric/Hybrid Abyssal explora-
tion, high-pres-
sure endurance

Wukong

Electric AUV Up to ~ 6,000 
(varies)

8–30 Lithium-ion 
battery

Versatile, com-
mon for many 
mission types

Bluefin-12

Fuel-cell AUV Up to ~ 6,000 40–60 + Hydrogen fuel 
cells

Extended range, 
energy-dense 
propulsion

URASHIMA

Hybrid AUV Up to ~ 6,000 30–72 Buoyancy + pro-
peller

Energy-efficient 
with better navi-
gation control

Haiyan-X

Traditional Glider  ~ 1,000–2,000 Weeks to 
Months

Buoyancy-driven 
(electric)

Minimal energy 
consumption, 
large-area obser-
vation

Slocum

Thermal Glider  ~ 1,000–2,000 Weeks to 
Months

Thermal 
gradient-driven

Exploits envi-
ronmental heat 
differentials

Seaglider

Hybrid Glider  ~ 2,000–4,000 Weeks to 
Months

Buoyancy + pro-
peller

Combines glid-
ing endurance 
with improved 
mobility

Haiyan series

Environmental 
UG

 ~ 1,000–2,000 Long-duration Buoyancy-driven Multi-parameter 
sensing

/

Military Recon 
UG

 ~ 1,000–3,000 Long-duration Buoyancy-driven Covert opera-
tion, long-range 
intelligence 
gathering

Liberdade

Polar Observa-
tion UG

 ~ 1,000–2,000 Long-duration Buoyancy-driven Cold-resistant 
design, high-lati-
tude resilience

Alba
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Fig. 27 Representative special-purpose submersibles

Table 9 Representative special-purpose submersibles’ performance [297–306]

Platform Type Max depth (m) Dive duration (h) Key features

Manta UUV (USA) Bionic  ~ 500–1,000 10–20 Manta ray-inspired gliding, stealth recon, 
turbulence adaptation

Eelume, (Norway) Bionic  ~ 500–1,000 Long-endurance Snake-like body, flexible inspection of pipe-
lines and structures

Medusa/OctoBot
(Japan)

Bionic  ~ 500 5–10 Squid/octopus-inspired rapid maneuvering 
and manipulation

RobDact
(China)

Bionic  ~ 100–200 Short-mission Fish-inspired with pectoral fin oscillation for 
agile motion

West Valley I
(China)

Bionic 2,000 8–12 Rigid-flexible structure, manta ray morphol-
ogy, pressure-resistant design

Nereus HROV
(USA)

HROV 10,902 6–10 FOD, hybrid control, lost in Mariana Trench 
mission

Ariane HROV
(France)

HROV  ~ 2,500–3,000 8–12 Coral reef and canyon exploration, biodiversity 
assessment

MR-X11
Japan)

HROV 4,200 6–10 Three operational modes, resource explora-
tion, infrastructure inspection

Polar-ARV
(China)

ARV  ~ 1,000 6–12 Airborne deployment, under-ice missions, 
fiber-optic comms

Haidou
(China)

ARV 10,767 8–12 Third in world to reach > 10,000 m, Mariana 
Trench survey

Haidou-1
(China)

ARV 10,907 10–14 China’s first FOD ARV, national depth record



Page 55 of 89Sun et al. PhotoniX             (2026) 7:7  

first FOD HROV before its loss in 2014 [302]. France’s Ariane HROV specializes 

in complex benthic terrain surveys [303], while Japan’s MR-X11 supports three 

operational modes up to 4,200  m [304]. �e Shenyang Institute of Automation 

pioneered Polar-ARV for polar missions [305], followed by Haidou and Haidou-1, 

which achieved dives of 10,767 m and 10,907 m respectively, positioning China at the 

forefront of hybrid deep-sea exploration [306]. Figure  27 shows the representative 

special-purpose submersibles.

 Table 9 summaries the representative special-purpose submersibles with key perfor-

mance metrics. Future developments are expected to focus on swarm intelligence, 

advanced materials, and energy autonomy. Intelligent cooperative control, bioin-

spired actuation, and adaptive autonomy will further extend the functionality and 

deployment range of these systems. Collectively, these trajectories will accelerate the 

formation of an intelligent, resilient, and ecologically adaptive underwater robotic 

infrastructure.

 Submersible systems, including HOVs, ROVs, AUVs, UGs, and emerging bionic 

and hybrid platforms, offer complementary capabilities across diverse underwater 

missions. HOVs enable real-time human decision-making but are limited by cost and 

endurance. ROVs support high-power, remote operations yet rely on tethered control. 

AUVs allow untethered, long-range surveys but face constraints in adaptability and 

energy. UGs provide ultra-long endurance for environmental monitoring, though 

with limited speed and payload. Bionic and hybrid systems enhance maneuverability 

and flexibility but remain technically complex and less mature. Future advancements 

will integrate AI-driven autonomy, next-generation energy systems, and adaptive 

materials to improve endurance, resilience, and operational intelligence. �ese 

innovations will support the deployment of intelligent, full-depth, and networked 

submersible fleets, forming the foundation for digital ocean twins and enabling 

transformative progress in ocean exploration, resource management, and climate sci

ence.

Full-depth camera and application

a. �e evolution of water-related imaging technology

 �e development of water-related imaging technologies represents a significant 

chapter in the history of both photography and oceanic exploration. From rudimen-

tary beginnings to sophisticated FOD imaging systems, this field has progressed 

through remarkable technological innovations that have expanded our understand-

ing of marine environments.

 As shown in Fig. 28, in the mid-nineteenth century, William �ompson pioneered 

water-related photography by capturing the first images using a camera mounted 

on a pole. Later, in 1893, French biologist Louis Boutan significantly advanced the 

field by developing specialized equipment for water-related photography, including 

an underwater flash and a remote-control mechanism utilizing an electromagnet. 
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�e early twentieth century saw further milestones. In 1914, John Ernest William-

son utilized a device called the “Photosphere” to shoot “�irty Leagues Under the 

Sea”, one of the first underwater motion pictures, filmed in the Bahamas. In 1926, 

William Harding Longley and Charles Martin achieved a breakthrough by captur-

ing the first underwater color photographs using a magnesium-powered flash. 

Advancements continued with the introduction of specialized equipment. In the 

1950s, Beuchat debuted “Tarzan”, the first commercially available underwater camera 

housing, designed by French photographer Henry Broussard for the Foca camera. 

Subsequently, the CALYPSO-PHOT camera, conceived by Jean de Wouters and pro-

moted by Jacques-Yves Cousteau, was introduced. Initially released in 1960, it was 

later marketed by Nikon as the Nikonos in 1963, featuring a maximum shutter speed 

of 1/1000 s. Deep-sea exploration also marked significant achievements. On January 

23, 1960, U.S. Navy Lieutenant Don Walsh and Swiss oceanographer Jacques Piccard 

reached the Challenger Deep in the Mariana Trench aboard the submersible Trieste, 

descending to a depth of 10,916 m. In 2012, filmmaker James Cameron made a his-

toric solo dive to the same location in the Deepsea Challenger submersible, reach-

ing a depth of approximately 10,908 m. �is expedition was documented in the film 

“Deepsea Challenge 3D”.

Fig. 28 History of underwater camera
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 Recent years have seen remarkable progress in water-related imaging technology. In 

2017, the FOD HD camera Haitong was deployed aboard the research vessel Tan-

suo-1 during a Mariana Trench expedition. Additionally, the Canghai lander plat-

form was equipped with the world’s first 4  K ultra-HD binocular 3D camera, and 

the Lingyun ROV integrated a FOD mini-HD camera. �ese systems collaborated 

with the Fendouzhe to achieve the globally unique accomplishment of live HD video 

broadcast during deep-sea exploration at a depth of 10,909 m.

b. FOD imaging

 �e FOD imaging system functions as a critical deep-sea periscope and represents 

a cornerstone strategic technology for China’s national oceanographic endeavors. 

Its development constitutes not merely a declaration of technological capability 

in conquering the abyssal depths exceeding 10,000  m, but a fundamental require-

ment for safeguarding national resource security and maritime sovereignty. Detailed 

exploration of strategic seabed resources, such as methane hydrates (clathrates) and 

polymetallic nodules, demands millimeter-scale imaging to resolve micro-fractures 

within ore bodies. Likewise, in-situ observation of extremophiles inhabiting deep-sea 

hydrothermal vents is essential, yet more than 80% of these organisms cannot sur-

vive the pressure changes imposed by traditional sampling. Both endeavors require 

FOD optical systems that remain stable under hydrostatic pressures exceeding 

110  MPa and in ultra-low illumination environments.   Concerted co-development 

efforts between FOD cameras and their carrier platforms will catalyze generational 

advancements in domestic specialty materials, advanced sealing technologies, and 

ultra-high-pressure system integration. �is synergy is anticipated to establish an 

autonomous, end-to-end sensing capability spanning from shallow coastal waters to 

the deepest hadal trenches, ultimately securing a proactive technological position for 

China within the strategic competition shaping access to and utilization of the deep-

ocean frontier.

 �e development of deep-sea imaging systems traces its origins to the United 

States in the early 1950 s, with the pioneering NEL Type III deep-sea camera, as 

shown in Fig. 29. �is film-based system, operational at depths of 6,000 m, captured 

sequential pairs of photographs to document microtopographic features of seabed 

sediments [307]. A decade later in 1963, the Edgerton deep-tow camera system 

revolutionized seafloor exploration by enabling systematic bathymetric mapping 

Fig. 29 Landmark research achievements in deep-sea cameras abroad
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[308]. �e subsequent technological progression saw the Soviet Union’s Hydrorusa 

deep-tow apparatus during the 1970 s, equipped with ultra-low illumination level 

cameras and wide-angle lenses, which delivered the first documented biological 

observations from the Mariana Trench [309]. By the late 1990 s, the field underwent 

a fundamental transition from photographic film to digital imaging. �e Woods 

Hole Oceanographic Institution (WHOI) engineered the electronic still camera, 

recognized as the first FOD digital imaging system [310]. Further innovations 

emerged in 2002 with Kevin Hardy’s DOV Michelle camera, a 9,000-m-rated system 

incorporating synchronized strobes to facilitate biological specimen collection for 

Scripps Institution of Oceanography [311]. Concurrently, the National Geographic 

Society sponsored a decade-long deep-sea exploration initiative based on its 

dedicated camera system, culminating in 2015 with autonomous lander deployments 

featuring real-time 4  K video transmission [312, 313]. Technological maturation 

continued in 2016 when the GEOMAR Helmholtz Centre for Ocean Research Kiel 

introduced a modular pressure-tolerant imaging module for AUV [314].

 In 2017, China achieved a significant milestone with the successful development of 

the Haitong camera system, the nation’s first domestically engineered FOD high-def-

inition imaging platform. �en, the Haitong camera was deployed aboard the Tianya 

lander, completing multiple dives exceeding 10,000  m. Its record-setting descent 

to 10,909  m yielded unprecedented video documentation of the Mariana Trench 

hadal environment. Haitong executed multiple dives, achieving a maximum depth 

of 10,909 m and capturing 12 h of HD footage, including the first recorded observa-

tions of the species Pseudoliparis swirei at 8,152 m. �ese visual archives provided 

essential primary data for multidisciplinary research, including deep-sea biology and 

physical oceanography, resulting in the acquisition of numerous invaluable observa-

Fig. 30 Haitong camera and FOD ultra-high-definition 3D camera

Table 10 Full depth subsea HD camera systems on the market [316–319]

Manufacturer Model Diagonal FOV (◦) Optical zoom Depth (m)

DeepSea Power & Light Optim 86 15.5 11,000

DeepSea Power & Light Super Wide-i 185 Fixed 11,000

DeepSea Power & Light Vertex 86 10 × 11,000

SULIS Z70 93 12 × 11,000
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tional datasets that filled critical knowledge gaps in marine science. Further advanc-

ing deep-sea exploration capabilities, China developed an ultra-high-definition FOD 

camera in 2020. Serving as the core technical component for deep-sea livestream-

ing, this system achieved the world’s first real-time video transmission from depths 

exceeding 10,000 m in Fig. 30. Subsequent iterations, encompassing FOD high-def-

inition cameras and 3D imaging systems, demonstrated exceptional performance in 

image enhancement, like high spatial resolution with minimal optical distortion and 

smooth continuous zoom functionality [315].

 Currently, the main deep-sea cameras available on the international market are pro-

vided by the American company Deepsea. �e camera models that meet the require-

ments for FOD operations are listed in Table 10.

 Contemporary FOD imaging has evolved from early film systems through first-

generation digital platforms to modular AUV/lander payloads and 4 K binocular rigs 

capable of live transmission from the hadal zone, reflecting a steady consolidation 

of pressure-tolerant optomechanics, low-illumination photometrics, and platform 

integration. �e evolutionary trajectory of water-related imaging technology 

is fundamentally driven by the tripartite imperative of achieving enhanced 

clarity, extended range, and comprehensive panoramic coverage. Across today’s 

landscape, research-grade systems emphasize millimeter-scale fidelity, endurance, 

and miniaturization, while commercial offerings deliver 11,000  m ratings with 

differentiated field-of-view/zoom trade-offs that balance situational awareness 

against resolution and light throughput. Future research directions will concentrate 

on paradigm-shifting innovations: Embedded optical designs that eliminate 

conventional protective windows and enable direct lens-water contact promise to 

eradicate refractive distortion at the fundamental physical level, establishing the 

optical foundation requisite for high-definition imaging. Concurrently, DL-based 

dehazing algorithms, rigorously grounded in the Jaffe-McGlamery radiative transfer 

model, offer transformative potential to overcome limitations imposed by water 

column scattering. �ese intelligent computational frameworks would empower 

imaging systems with unprecedented interpretative capabilities in turbid, low-

illumination environments. �e integration of multi-dimensional sensing modalities 

is advancing rapidly. In particular, the synergistic fusion of laser-line scanning with 

multibeam-sonar measurements enables high-fidelity 3D reconstruction of the 

seafloor. �is progress marks a decisive shift from stand-alone optical imaging to 

an integrated, intelligence-driven sensing paradigm that unites acoustic, optical, 

and electronic resources. �ese synergistic advancements collectively converge 

toward a next-generation water-related observatory framework. �is emergent 

paradigm seamlessly integrates the precision inherent in windowless optical 

architectures, the adaptive intelligence of AI-enhanced image processing, and the 

comprehensive contextual awareness enabled by heterogeneous data fusion. �e 

ultimate manifestation of this integrated capability will be the transformation of the 

enigmatic deep-sea realm. Its intricate structures, intrinsic spectral signatures, and 

immersive 3D panoramas will be rendered with unparalleled fidelity and accessibility 

within the operational and cognitive domains of human endeavor. �is paradigm 
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shift promises to fundamentally expand the informational dimensions accessible for 

marine exploration, ushering in a new era of discovery.

AI-driven water-related optical imaging technology

Brief introduction

Image restoration and enhancement comprise a family of inverse problems that seek 

to recover perceptually and physically faithful imagery from data degraded by noise, 

blur, downsampling, compression artifacts, and, in aquatic settings, wavelength-

dependent absorption, scattering, and backscatter. Restoration aims to reconstruct the 

latent scene by explicitly modeling image formation and solving a regularized inverse 

problem, whereas enhancement improves visual utility without requiring a full physical 

inversion. Classical methods combine degradation specific forward models with priors 

or constraints, solved via variational optimization or plug-and-play proximal algorithms. 

Learning-based approaches include supervised CNN/Transformer restorers trained 

on paired data, self/unsupervised schemes when ground truth is unavailable, and 

physics-guided unrolling that embeds the forward model within the network [320]. �e 

Overview of representative image restoration and enhancement methods are shown in 

Fig. 31.

Image restoration

As the water-related environments described above pose significant challenges to imag-

ing, such as low visibility, scattering, and spectral distortion, the acquired images are 

often severely degraded and cannot be used directly [342]. Consequently, image restora-

tion is essential to recover high-quality visual information and enable accurate percep-

tion, analysis, and decision-making in such conditions [343].

Fig. 31 Overview of representative image restoration and enhancement methods, include image denoising 

[321–325], color correction [326–330], image deblurring [331–334], and image dehazing [335–341]
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In standard scenarios, restoration techniques are typically applied to RGB images 

corrupted by noise, blur, compression artifacts, or exposure issues, often assuming 

relatively stable environmental conditions [344]. In contrast, water-related optical 

imaging faces unique challenges due to the complex light propagation in water-related 

environments, including wavelength-dependent absorption [345], scattering [346], 

and backscatter [347]. �erefore, although image restoration has achieved remarkable 

progress in addressing generic degradations, such as Gaussian noise, motion blur, and 

low resolution, extending these advancements to water-related environments introduces 

significant challenges. Moreover, images captured in deep-sea or extremely water-related 

conditions frequently extend beyond standard RGB formats, incorporating specialized 

optical modalities such as hyperspectral, polarimetric, or single-photon imaging. �ese 

modalities are characterized by unique degradation patterns and high-dimensional data 

structures, necessitating restoration strategies that are tailored to both the physical 

imaging process and the modality-specific noise [348]. As a result, water-related image 

restoration must not only pursue the objectives of conventional enhancement but also 

account for the complex physics of light propagation in water-related environments and 

the distinctive features of advanced optical sensing systems [349].

Task-level taxonomy and comparisons

Generally, RGB-only image restoration tasks, such as deblurring, denoising, dehazing, 

and super-resolution, target distinct forms of degradation in terrestrial settings [344]. 

Each task addresses a specific aspect of visual quality degradation under the assumption 

of relatively stable imaging conditions with different image quality assessment (IQA) 

considerations. However, when these tasks are applied to water-related domains, their 

applicability must be re-evaluated in light of the unique characteristics of image data 

acquired under extremely water-related conditions.

a. Characteristic sensitive restoration considerations

 Water-related optical imaging spans a wide range of depths and environmental con-

ditions, from the epipelagic zone to the hadal trenches, where image reconstruc-

tion is severely affected by light propagation, combining exponential, distance and 

wavelength-dependent attenuation with forward scatter and backscatter. �ese char-

Fig. 32 Comparison of raw (noisy) and restored (proceed) outputs across various water-related imaging 

modalities, including RGB, polarized, range-gated, single-photon, streak camera, ghost, and hyperspectral 

imaging
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acteristics significantly degrade image quality and challenge standard, linear restora-

tion models. To address these limitations, researchers have developed a range of spe-

cialized imaging modalities tailored to water-related environments. As outlined in 

the previous section, these include polarized imaging for surface reflection analysis, 

hyperspectral systems for recovering spectral signatures, and single-photon imaging 

for ultra-low illumination conditions, among others. Examples of different modality 

proceed data is shown in Fig. 32.

 Each imaging modality introduces unique data structures and degradation 

patterns. Restoration techniques that succeed in standard RGB domains may fail 

or underperform when applied directly to these high-dimensional, low-SNR, or 

Table 11 Imaging types and restoration considerations

Imaging type Description Restoration Related works

RGB image Standard 3-channel optical 
image

Denoising, color correc-
tion, contrast enhance-
ment, dehazing

WaterGAN [319], WaterMono 
[350], HCMPE-Net [351]

Polarized imaging Captures light polarization 
states

Depolarization correction, 
reflection suppression

UCRNet [352], CPDCNN 
[353], Schechner [354]

Range-gated imaging Time-gated optical capture Gated signal refinement, 
low SNR compensation, 
motion deblurring

U-Net [355], Multi-PSF [356], 
Reconstruction [357]

Single-photon imaging Photon-counting under 
ultra-low illumination

Poisson-distributed noise 
handling, sparse signal 
recovery, denoising

Physics-informed DL [358], 
Reconstruction [359], PICK-
3D [360]

Streak camera imaging Captures time–space slices 
of light intensity

Spatiotemporal interpola-
tion, motion deblurring, 
slice reconstruction

N-CUP [361], 2D reconstruc-
tion from streak camera 
[362], Data decomposition 
[363]

GI Reconstruction using 
intensity correlations

Denoising Lightweight-CNN[364], 
CGAN [365], FUIGN [366]

Spectral imaging Captures reflectance across 
many spectral bands

Band-wise denoising, 
spectral misalignment 
correction

NSCT-based fusion [367], 
JURTD [368], Hyperspectral 
3D mapping [369]

Table 12 Imaging modalities vs. restoration tasks

Imaging 
modality

Deblurring Denoising Dehazing Resolution IQA 
considerations

RGB image Common Common Common Common PSNR, SSIM, LPIPS

Polarized imag-
ing

Rarely needed Polarization 
noise

Backscatter
removal

Uncommon Polarization aware 
metrics

Range-gated 
imaging

Ultra-low illumi-
nation motion 
blur

Gate-specific
noise

Residual haze 
remains

Temporal fusion 
possible

SNR, gating 
accuracy

Single-photon 
Imaging

Photon spread 
blur

Poisson/sparse
noise

Not typical Limited due to 
sparsity

Photon efficiency, 
edge clarity

Streak camera 
imaging

Temporal blur Slice noise Not applicable Possible post 
reconstruction

Time consistency, 
motion IQA

GI Indirect blur Structured noise Not applicable Achievable via 
inversion

Fidelity to correla-
tion

Spectral imaging Spectral
misalignment

Band-specific
noise

Wavelength
sensitive haze

Spatial + spec-
tral SR

SAM, PSNR per 
band
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physics-constrained modalities. For example, range-gated imaging suppresses 

backscatter physically but may still require temporal deblurring, while hyperspectral 

imaging introduces challenges such as spectral band misalignment and wavelength-

dependent noise. Addressing these issues requires restoration methods that are 

not only data-driven but also sensitive to the physical characteristics of each 

imaging process. Table 11 summarizes these modalities along with their distinctive 

restoration considerations.

b. Task Mapping Across Modalities

 To further illustrate how traditional image restoration tasks map onto these 

modalities, Table 12 provides a concise taxonomy of the applicability of deblurring, 

denoising, dehazing, super-resolution, and image quality assessment (IQA) across 

different imaging types.

Network architecture evolution

�e evolution of water-related image restoration architectures has closely followed 

advancements in computer vision, progressing from physically inspired heuristics to 

DL-based frameworks capable of learning complex degradations directly from data. In 

this section, we trace this progression through three phases: foundational models, learn-

ing strategies, and cutting-edge architectures.

a. Baseline models

 Early water-related restoration efforts were driven by physically inspired priors such 

as the dark channel prior (DCP) [370], red channel enhancement [371], and wave-

length compensation [372]. While these techniques provided interpretable out-

comes, they were often brittle under varying water types, lighting conditions, or 

scene content. �e release of benchmark datasets like underwater image enhance-

ment enchmark (UIEB) [45] enabled the development of learning-based baselines, 

where convolutional networks significantly outperformed traditional methods by 

optimizing end-to-end restoration mappings on paired training data.

b. Learning strategies

 To enhance the robustness and generalization of underwater image restoration sys-

tems under limited supervision, researchers have adopted a range of learning par-

adigms that reduce dependence on large-scale paired datasets and account for the 

unique challenges of underwater environments. Supervised learning remains foun-

dational when paired ground truth is available. Models such as UWCNN [373] and 

Water-Net [374], trained on curated datasets like UIEB [45], EUVP [375] using pixel-

wise and perceptual loss functions, achieve strong quantitative and qualitative resto-

ration performance. In scenarios where clean references are difficult to obtain, unsu-

pervised and self-supervised approaches, including CycleGAN [376] and Noise2Void 

[377], enable training on unpaired or noisy data, offering practical advantages for 

real-world underwater applications. Domain adaptation methods further mitigate 

the synthetic-to-real domain gap through adversarial learning, feature alignment, 

and style transfer, allowing models trained on synthetic datasets such as those gen-
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erated by WaterGAN [319] to generalize to in  situ conditions. Additionally, phys-

ics-informed and model-based learning integrates underwater imaging models (e.g., 

light attenuation and scattering) into network architectures or loss functions, as seen 

in model-unfolding approaches [378] and hybrid frameworks incorporating physical 

priors [379], thereby improving interpretability, robustness, and physical consistency 

in restoration outcomes.

c. State-of-the-art models

 �e latest generation of architectures leverages powerful attention mechanisms and 

scalable model designs. Transformer-based models such as SwinIR [380], Restormer 

[381] and Uformer [382] offer long-range spatial reasoning, making them ideal for 

heterogeneous degradations and multi-modal underwater data (e.g., hyperspectral 

or polarized imaging). �eir modularity allows for domain-specific adaptations, such 

as spectral or polarization-aware attention blocks. However, despite those advance-

ments, a central challenge remains: achieving generalization across diverse underwa-

ter modalities while maintaining inference efficiency on resource-constrained plat-

forms such as AUVs or submersible payloads.

d. Restoration meets semantics: generative and prompt-based AI

 Beyond architectural sophistication, recent advances emphasize the role of semantic 

guidance and generative priors. Generative models like GANs and diffusion-based 

approaches enhance perceptual quality by learning to produce visually plausible tex-

tures and colors [383]. �ese methods are especially helpful in low-SNR modalities 

such as ghost or single-photon imaging, where conventional pixel-based training is 

not feasible. More recently, prompt-based AI has emerged as a promising direction 

for controllable and adaptive restoration. Models such as PromptIR [384], MiOIR 

[385], and DPPD [386] introduce the concept of conditioning restoration on degra-

dation type, scene content, or user input, enabling task-specific behavior. While still 

underexplored in water-related settings, these methods hold strong potential for 

complex imaging systems like hyperspectral or range-gated cameras, where degrada-

tion patterns vary dynamically with environment and depth. Prompt-driven frame-

works could enable multi-modal, interpretable, and mission-aware restoration pipe-

lines for water-related applications.

 Water-related image restoration has progressed from physics-inspired priors to 

learning-based and physics-guided frameworks, driven by degradations unique to 

aquatic light transport and by modality diversity beyond RGB. Supervised CNN 

baselines trained on UIEB/EUVP-style datasets outperform classical priors but suf-

fer from label scarcity and domain shift, motivating unsupervised/self-supervised 

and domain-adaptation strategies as well as model-unfolding that embeds radiative-

transfer physics for interpretability and robustness. State-of-the-art transformer 

architectures extend receptive fields for heterogeneous degradations and can be 

specialized with spectral/polarization attention, while generative and prompt-based 

methods enable task-conditioned, mission-aware restoration. Persisting challenges 

include generalization across water types and depths, modality-specific IQA, and 

efficient onboard inference for AUV/ROV deployment.

 Next-generation water-related image restoration must move beyond RGB enhance-

ment toward unified, robust, and interpretable frameworks that adapt across imag-
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ing modalities and environmental conditions. �ese systems should handle diverse 

sensor outputs, such as hyperspectral, polarized, and low-photon time-resolved data. 

�is shift calls for hybrid methods that combine physical priors (e.g., light transport, 

attenuation) with data-driven learning. Approaches like deep unfolding, physics-

guided layers, and plug-and-play optimization show promise. Recent prompt-based 

models (e.g., DPPD [386], MiOIR [385]) further enable adaptive restoration based on 

degradation type, semantic cues, or mission context, key for dynamic water-related 

scenarios.

 Robustness must extend to real-world deployment, with models generalizing across 

depths, water types, and camera setups without retraining. Lightweight architectures 

are crucial for onboard processing in AUV/ROV. Integrating multimodal sensing 

and feedback-driven adaptation can enhance both perceptual quality and operational 

reliability. Ultimately, achieving unified restoration requires modular, interpretable, 

and adaptive frameworks, rooted in physics and enhanced by semantic AI, to balance 

scientific accuracy with practical deployment.

Image enhancement

Water-related image enhancement plays a vital role in improving target detection and 

recognition in low-visibility water-related environments by reducing noise, correcting 

color distortions, and restoring image details. �ese enhancements provide essential 

support for the automatic identification and classification of potential threats, thereby 

elevating the performance and intelligence of underwater situational awareness sys-

tems. With the rapid advancement of computer vision and AI, water-related image 

enhancement techniques have evolved into a more systematic framework. Existing 

approaches are typically classified into three categories, the first of which comprises tra-

ditional color- and contrast-enhancement methods operating in the spatial or frequency 

domains, exemplified by histogram equalization, Retinex-based algorithms, and white-

balance correction. Model-based approaches that restore image quality by simulating 

physical degradation mechanisms such as light attenuation and scattering. DL-based 

approaches, which leverage the representational power of neural networks to achieve 

notable improvements in color fidelity and fine-detail reconstruction.

Traditional image enhancement methods

Traditional image enhancement methods mainly include histogram adjustment, color 

correction, sharpening enhancement, and Retinex-based approaches. Histogram adjust-

ment methods [387–389] are among the earliest techniques applied to image enhance-

ment, with the basic idea of improving image contrast and visual effect by modifying the 

grayscale distribution. Histogram equalization enhances the contrast of water-related 

images by computing the cumulative distribution function (CDF) of grayscale values 

and remapping the original pixel intensities to achieve a uniform distribution across the 

grayscale range. Color correction methods [390, 391] analyze the distribution character-

istics of image color channels and use color priors or physical models to perform gain 

adjustments or color space mapping on each channel, correcting color shifts caused by 

lighting conditions and water attenuation, and restoring the natural tone of the image. 
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Sharpening enhancement [392] enhances image clarity and visual contrast by extract-

ing and emphasizing high-frequency components such as edges and textures, typically 

using gradient or Laplacian operators. �e Retinex theory [393] models an image as the 

product of illumination and reflectance, and by estimating or suppressing the illumina-

tion component, it highlights reflectance information to achieve color correction and 

enhancement under non-uniform lighting conditions. However, most of these methods 

do not deeply consider the physical mechanisms of water-related optical propagation, 

and the enhancement results are heavily dependent on the image content, lacking gener-

alization ability. As a result, they struggle to achieve consistent enhancement in diverse 

and dynamically changing water-related environments. �erefore, recent research has 

gradually shifted toward approaches that integrate underwater imaging models with 

learning strategies, achieving significant performance improvements driven by DL and 

generative models.

Model-based methods grounded in water-related imaging models

Water-related imaging models can accurately simulate the degradation process of images 

caused by environmental factors such as water depth, water type, and the concentration 

of suspended particles, and estimate relevant physical parameters. By applying the 

inverse process of the image degradation model, these methods restore images to 

recover clear and realistic water-related visual information. �e Jaffe-McGlamery 

model [394], a representative water-related imaging model, simulates the absorption 

and scattering effects during water-related light transmission and models the water-

related imaging process as a physical degradation composed of three components: direct 

radiance, forward scattering, and backscattering. �is model first establishes the image 

degradation equation and estimates key parameters required for light propagation, such 

as the medium attenuation coefficient, background light intensity, and transmittance. 

�en, it uses these parameters to reverse-calculate the true radiance of the target object. 

Finally, it applies image processing techniques such as white balance and contrast 

enhancement to further optimize image quality, thus achieving physically consistent 

restoration and enhancement of images affected by turbid water, as illustrated in Fig. 33. 

Fig. 33 Water-related imaging model diagrams
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Based on this theory, many physically modeled image restoration algorithms have been 

proposed [395], such as the DCP [396] and its various variants [397–399]. Model-based 

image restoration methods have solid theoretical foundations and practical feasibility in 

the field of water-related image enhancement, especially when imaging parameters are 

known or can be estimated, enabling effective recovery of intrinsic image information. 

However, due to the high complexity of real ocean environments and the difficulty 

of accurately acquiring imaging parameters, these methods still face limitations in 

practical applications, including poor robustness and strong dependence on parameter 

estimation.

DL-based methods

With the development of DL technology, its powerful feature extraction and nonlinear 

modeling capabilities enable automatic learning of characteristics such as color shifts, 

detail blurring, and degradation patterns in water-related images. As a result, DL has 

been widely applied to water-related image enhancement tasks to achieve more natural 

color restoration and clearer image reconstruction. DL methods are mainly divided into 

two categories, including CNN-based approaches and GAN-based approaches. Addi-

tionally, some studies have introduced contrastive learning strategies to improve unsu-

pervised restoration performance.

a. CNN

 Li et al. [400] proposed a lightweight convolutional network called Underwater CNN 

(UWCNN), which integrates water-related scene prior information and achieves 

efficient enhancement of water-related images and videos by learning the map-

ping between degraded and clear images. Li et  al. [401] further designed a multi-

branch network called WaterNet with a gated fusion structure that integrates feature 

responses from multiple enhancement branches, effectively improving color repre-

sentation and detail restoration. �ey also constructed the UIBE dataset, promoting 

the widespread application of DL in this field. Additionally, Li et al. [402] proposed 

the Ucolor network, which is based on medium transmission map-guided multi-

color space embedding, effectively correcting color shifts and contrast deficiencies in 

water-related images. Wang et al. [403] fuses RGB and HSV color spaces to enhance 

the network’s robustness to color distortion. Fu et al. [404] are the first to formulate 

water-related image enhancement as a problem of probabilistic distribution learning 

and consistency optimization, proposing a probabilistic model-based network archi-

tecture to address challenges caused by blurred reference images in real scenarios.

b. GAN

 GAN dues to their lower dependence on paired training samples, have been widely 

applied in water-related image enhancement. Li et  al. [342] innovatively proposed 

WaterGAN, which combines deep depth estimation and color restoration subnet-

works to achieve water-related image synthesis and enhancement, significantly 

improving image realism and clarity. Guo et al. [405] developed a multi-scale dense 

GAN module with residual connections, markedly enhancing the restoration of 

structural details and textures. Hambarde et  al. [406] introduced an end-to-end 
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UW-GAN framework that employs a coarse-to-fine joint network to substantially 

improve water-related single-image depth estimation and enhancement. Liu et  al. 

[407] proposed WSDS-GAN, a weakly-strongly supervised enhancement method 

based on CycleGAN, which alleviates the dependency on paired data while signifi-

cantly boosting detail recovery and perceptual quality of water-related images. Cur-

rent DL methods extract local features through convolutional kernels but struggle 

to capture long-range dependencies or global structural information within images, 

which severely limits their practical effectiveness in handling complex water-related 

images across diverse water-related environments.

c. Transformer

 With the continuous advancement of Transformer technology, its superior global 

modeling capability enables it to effectively capture long-range pixel dependencies 

in images through the self-attention mechanism, thereby overcoming the limitations 

of traditional CNN, which are constrained by local receptive fields. �is advantage 

allows multimodal large models to demonstrate stronger feature extraction and rep-

resentation capabilities in water-related image enhancement tasks, particularly excel-

ling in handling complex lighting variations and restoring distant targets.

 Alexey et al. [408] were the first to demonstrate the effectiveness of the Vision Trans-

former (ViT) in image classification tasks, showing that excellent performance can 

be achieved without convolutional structures, solely by modeling sequences of image 

patches, challenging the long-standing dominance of CNNs in visual tasks. Subse-

quently, Liu et  al. [409] proposed the Swin Transformer, which introduces sliding 

windows and cross-window connections, significantly improving computational 

efficiency while maintaining strong modeling capabilities, making it more suitable 

for high-resolution image tasks. In the field of image restoration, Zamir et al. [410] 

proposed Restormer, which optimizes the multi-head attention and feedforward net-

work structures to retain long-range dependency modeling while enhancing adapt-

ability to large-scale images. Peng et  al. [411] designed the U-shape Transformer, 

which integrates a channel multi-scale feature fusion module and a spatial global fea-

ture modeling module, significantly improving the handling of uneven color attenua-

tion and local detail restoration.

 A representative fusion-based approach is the learning-physics framework of Liu 

et al. [412]. It combines an explicit scattering imaging model with a trainable neu-

ral prior. �e forward process is encoded as differentiable constraints or unrolled 

steps. A deep network provides data-driven regularization to restore color, contrast, 

and fine detail. Temporal coherence stabilizes video under changing scatterers. �is 

fusion outperforms model-only pipelines that break under parameter mismatch and 

data-only methods that generalize poorly across water types and motion. It achieves 

higher SNR and SSIM with fewer measurements. �e result is greater physical fidel-

ity, better sample and compute efficiency, and improved robustness. Remaining chal-

lenges include adequate training coverage and careful calibration of model terms. 

Even so, hybrid unrolling and plug-and-play designs offer a practical path to mission-

grade enhancement in dynamic scattering.

 Beyond visual quality, the downstream utility of enhanced imagery is now rou-

tinely benchmarked. For example, after feeding the restored range-gated frames into 
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YOLO-v3, the model achieves 83.5% mAP in object detection. In contrast, when 

using the original, unprocessed images as input, the targets are barely detectable, 

demonstrating the critical importance of image restoration for reliable perception 

[355]. �is addition highlights the practical benefits of underwater image enhance-

ment beyond visual quality, directly supporting more reliable perception in subse-

quent tasks.

 Overall, transformers for water-related image enhancement are shifting to physics-

aware, domain-specific designs. �ey capture long-range dependencies and cross-

channel cues, including spectral and polarization signals. Pruning, quantization, and 

distillation enable deployment on AUV/ROV edge hardware. �is yields adaptive, 

mission-aware processing under changing water types and illumination. Progress 

requires efficient, uncertainty-aware models that run in real time. Evaluation must be 

modality-aware and go beyond RGB, adding spectral fidelity and task-level metrics. 

Close sensor-algorithm co-design and standardized calibration are essential. Such 

physically grounded, semantics-informed, and resource-efficient pipelines deliver 

robust performance across diverse modalities and conditions.

Application

Advances in airborne lidar bathymetry (ALB) systems

ALB employs blue/green wavelength laser pulses transmitted from a nadir-pointing 

scanner aboard a fixed-wing aircraft or rotary-UAV to simultaneously sense the water 

surface and the seafloor. By measuring the differential time-of-flight between the 

Fig. 34 Principle of ALB
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first surface return and subsequent bottom return, ALB yields depth estimates with 

decimeter-level vertical accuracy and sub-meter horizontal resolution, while seamlessly 

merging with topographic LiDAR to generate continuous “topo-bathy” digital elevation 

models across the land-sea interface. Contemporary ALB systems integrate narrow laser 

beam divergences, high pulse repetition frequencies, and waveform-digitizing receivers 

that capture the full backscatter signal, enabling sophisticated deconvolution and 

radiometric corrections that mitigate turbidity-induced pulse broadening and water-

column attenuation. �ese advances have expanded the effective sounding depth from 

∼10 m in turbid estuaries to > 50 m in optically clear shelf waters, supporting nautical 

charting, coastal vulnerability assessments, benthic habitat classification, and sediment-

transport studies. �e principle of ALB is shown in Fig. 34.

Advances in international ALB systems

In 1969, Hickman and Hogg [413] first demonstrated laser bathymetry, confirming the 

feasibility of using blue–green laser pulses to detect submerged targets. �rough the 

Fig. 35 Schematic diagram of ALB systems. a Scanning receiving field of view and photo of CZMIL 

SuperNova. b Scan pattern diagram and photo of HawkEye-5. c Detection pattern and model diagram of 

RAMMS
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1980 s, ALB prototypes such as AOL [414], LARSEN 500 [415], WRELADS [416], and 

FLASH [417] validated airborne LiDAR’s potential for hydrographic mapping, as shown 

in Fig. 35. By the late 1990 s, operational systems like SHOALS [418], HAWKEYE [419], 

and LADS [420] adopted core technologies, including dual-wavelength lasers, high-

speed scanners, full-waveform recorders, and GPS/IMU integration, meeting IHO 

standards for routine coastal surveying. Post-2010, second-generation ALB systems, 

including CZMIL [421], HAWKEYE- , LADS HD, and VQ-880-G, introduced major 

advances: higher pulse repetition (3 to 5 ×), multi-channel receivers with GHz waveform 

digitizers, and automated post-processing, enabling seamless topo-bathymetric 

integration and improved IHO S-44 compliance. Enhancements in adaptive signal 

processing, co-mounted imagers, and real-time quality control extended depth range 

(~ 3 × Secchi depth) and cut manual effort by up to 60%. Since 2018, leading ALB 

platforms have further evolved. CZMIL SuperNova partitions its FOV into multiple 

shallow/deep channels for denser nearshore returns and stabilized scanning via a 

wedge-mirror spinner. Leica’s HawkEye-5 adopts a dual-module design with elliptical 

scanning for mission flexibility. Fugro’s RAMMS replaces mechanical scanning with 

lightweight streak-tube imaging, offering ± 25° swath coverage suitable for UAV 

deployment and simplifying calibration [422]. Driven by rapid progress in uncrewed 

Fig. 36 Diagram of ALB systems of China. a Mapper5000 model and sea-land topographic elevation model 

of Chilianyu island. b iGreena photo and echo signals of different targets in coastal zone. c Mapper4000U 

mounted on drone and profile of measured cross-section of 3D point clouds
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aircraft technology, several dedicated UAV-borne ALB instruments have appeared, 

including Litewave’s Edge, Amuse Oneself ’s TDOT3, and RIEGL’s VQ-840-G [423]. 

�ese systems typically achieve depth penetration up to twice the Secchi-disk depth, 

deliver point densities exceeding 100 pts/m2, and operate at substantially lower cost 

than manned-aircraft solutions, thereby expanding ALB coverage to smaller-scale or 

budget-constrained coastal survey projects.

Advances in ALB systems of China

Systematic research on ALB in China began in the late 1980 s, led by institutions such as 

Huazhong University of Science and Technology [424], Ocean University of China [425], 

SIOM [426], and the Naval Institute of Hydrographic Surveying and Charting [427], 

later joined by others including the Information Engineering University [428] and the 

First and Second Institutes of Oceanography [429, 430]. A broader academic-industrial 

network was subsequently established [431–434]. In 1998, SIOM and the Naval Institute 

developed LADM-I/II systems using dual-wavelength lasers (1064  nm/532  nm), 

achieving 4/Kd depth penetration and 0.30 m vertical accuracy, meeting IHO Order 1a 

standards for ≤ 30 m depths. China’s third-generation ALB system, Mapper5000 [435] in 

Fig. 36, launched in 2017, features a 5 kHz Nd:YAG laser and partitioned FOV receivers, 

having mapped over 1,200  km2 across over 40 missions. Recent advancements include 

iGreena [430], a 532 nm, high-pulse-rate (50 to 700 kHz) system achieving 15.9 m depth 

and 0.202 m RMSE in clear waters, and the 4.4 kg UAV-compatible Mapper4000U, which 

demonstrated 16  m penetration and 0.1268  m seabed RMSE in field trials [433]. To 

meet growing resolution demands, SIOM introduced Mapper-10 K and Mapper-20kU, 

Table 13 Comparison of ALB imaging system parameters

System Platform Laser Measurement 
rate

Max depth 
rule

Depth 
range

Scan/FOV

CZMIL 
SuperNova

Manned 
airborne

532 nm + 1064 nm 30 kHz Shallow: 
2.9/Kd 
(≥ 15%); 
Deep: 4.4/Kd

/ Circular scan; 
laser ± 20° 
from vertical

HawkEye-5 Manned 
airborne

515 nm + 1064 nm 40 kHz Shallow: 
3.2/Kd 
(≥ 15%); 
Deep: 4/Kd

/ Elliptical 
scan; ± 14° 
(fore/
aft), ± 20° 
(left/right)

RAMMS 
(Fugro)

Airborne 
and UAS-
capable

532 nm 25 kHz 4/Kd / Multibeam 
push-broom

Mapper5000 
(SIOM)

Manned 
airborne

532 nm + 1064 nm 10 kHz / Field test: 
25.97 m ≈ 
3 × Secchi

Elliptical scan 
(dual-wave-
length)

Map-
per4000U 
(SIOM)

UAV-borne 532 nm + 1064 nm 4 kHz / Field test: 
0–16 m ≈ 
1.7–
1.9 × Secchi

Rotating 
scan; ~ ± 15° 
along-track, ~ 
± 12° cross-
track

iGreena 
(Shenzhen 
Univ.)

Manned 
airborne

532 nm 50–700 kHz / Reported 
max ≈16 m 
in field

Circular scan; 
half-angle 20°; 
swath ≈ 70% 
of AGL
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offering 2 × and 5 × point density improvements over previous models, supporting fine-

scale coastal monitoring, habitat mapping, and rapid disaster response [434–436].

Table  12 compares typical ALB imaging system parameters. Dual-wavelength 

platforms, CZMIL SuperNova and HawkEye-5, combine a green bathymetric channel 

and a 1064 nm topo channel to enable seamless land–water transitions and robust 

bottom detection. Both implement split-rate operation with depth performance 

expressed by Kd-based rules, and employ stabilized, wide-angle scan patterns to balance 

swath and point density at survey altitudes typical of manned aircraft. RAMMS adopts 

a compact, green-only architecture optimized for “full water-column” waveform capture 

with a deep channel around tens of kHz. Its low SWaP allows deployment from both 

manned platforms and small UAS while maintaining useful Secchi-scaled penetration. 

Mapper5000 demonstrates practical tens-of-meters bathymetry at conventional altitudes 

with moderate point densities, whereas Mapper4000U is a UAV-borne, dual-channel 

system tuned for low-altitude operations, yielding high along-track densities and narrow 

swaths. iGreena is a single-wavelength airborne system with a wide PRF envelope and 

fast ADCs, prioritizing compact hardware and high sampling rates for shallow-water 

mapping at modest depths. In Table 13, Kd is the diffuse attenuation coefficient of water 

(higher Kd → more turbid). “ × Secchi” expresses depth as a multiple of Secchi disk depth 

used in practice by some vendors.

AUV optical guidance

Localization and guidance are one of the key components that enables the autonomy 

of AUV, which leverages the long-term, on-station vehicle launch and recovery for the 

water-related missions. �e guidance workflow for AUV docking is conventionally 

divided into two phases, mid- to long-range guidance and short-range terminal 

guidance, implemented through acoustic, electromagnetic, or optical modalities, either 

individually or in hybrid form. Mid- to long-range guidance is generally accomplished 

via acoustic positioning, often augmented with inertial navigation, Doppler velocity logs 

(DVL), and other sensors in a multi-sensor fusion scheme that steers the AUV toward 

the docking station. Acoustic systems afford detection ranges on the order of 10  km, 

but they suffer from low spatial resolution, slow data refresh rates, and susceptibility to 

Fig. 37 Principle of AUV optical guidance
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multipath reflections from the seafloor or target structures. Moreover, their accuracy 

degrades markedly at close quarters, making precise localization difficult near the 

docking interface. Short-range guidance governs the final approach as the AUV enters 

the vicinity of the dock, directly determining recovery success. �is phase demands 

much higher positioning accuracy and therefore typically relies on electromagnetic or 

optical techniques. Electromagnetic signals, however, attenuate rapidly in water, exhibit 

limited universality, and operate over restricted ranges. In contrast, optical guidance 

employs photodetectors to sense and identify visual fiducials on the underwater docking 

station, enabling high-precision relative pose estimation while offering inherent stealth 

[437, 438]. A schematic of the optical guidance during AUV docking is shown in Fig. 37.

To improve the reliability of terminal AUV docking, specialized optical guidance strat-

egies must be developed to address the unique constraints of underwater operations. 

Image-sensor based systems estimate the AUV’s relative pose by capturing visual data of 

active or passive fiducials mounted at the docking entrance, extracting their features, and 

solving a perspective-geometry problem [439]. However, underwater optical guidance 

using image sensors faces significant challenges. Degradation of the underwater light 

field and attenuation of beacon saliency hinder reliable visual detection. Spatially vary-

ing absorption and scattering introduce geometric distortion, contrast loss, and limited 

effective range. Additionally, the low-texture characteristics of beacons and refractive 

disturbances reduce the robustness of key point extraction and matching. Environmen-

tal variability, including changes in salinity and turbidity, further alters refractive indices, 

leading to nonlinear pose-estimation errors and limiting the generalizability of con-

ventional pose-solving algorithms in diverse underwater conditions. Recent DL-driven 

advances in underwater image enhancement have markedly improved visual detection, 

enabling robust key point extraction and accurate pose estimation by modeling com-

plex data distributions. Autonomous, resilient AUV docking demands optical guidance 

that unites lightweight deep-learning models for real-time accuracy, hybrid optical links 

for sub-meter, high-speed localization, and low-latency fusion of INS, DVL, USBL, and 

optical data through federated filters and graph neural networks. �ese innovations 

collectively underpin next-generation intelligent electro-optical platforms for deep-sea 

exploration and underwater security.

Conclusion

�is paper has comprehensively introduced the principles, challenges, and technological 

advancements of optical imaging in water-related environments, with a particular focus 

on deep-sea exploration. We traced the physical constraints imposed by wavelength-

dependent absorption, scattering by suspended particulates, and extreme hydrostatic 

pressure, factors that collectively limit photon availability and degrade image quality in 

the mesopelagic and hadal zones. To address these barriers, the paper surveyed a range 

of advanced optical imaging modalities, including polarimetric imaging, range-gated 

imaging, single-photon imaging, streak tube imaging, GI, spectral imaging, FOD camera 

imaging and AI-driven algorithms. Each of these methods offers specific advantages 

in improving resolution, penetration depth, and operational robustness under turbid 

and ultra-low illumination conditions. �e integration of AI further marks a critical 

inflection point, enabling advanced image reconstruction, denoising, and real-time 
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interpretation capabilities. �ese innovations not only improve the fidelity of deep-

sea optical observations but also reduce system complexity and enhance autonomous 

adaptability, which is vital for long-duration missions.

Polarization imaging reduces scattering and glare. Range-gated imaging suppresses 

near-field backscatter and isolates depth slices. Single-photon imaging provides photon-

efficient millimeter- to centimeter-scale depth in low light. Streak-camera imaging offers 

wide-swath, picosecond timing for high-fidelity bathymetry. GI leverages structured 

patterns and correlation to remain functional in heavy scatter. Spectral (hyperspectral) 

imaging enables material and biogeochemical discrimination. FOD camera imaging 

delivers reliable documentation under hadal pressures. AI-driven restoration and 

enhancement recover color, contrast, and fine detail while fusing multi-modal cues for 

robust perception.

Specifically, polarimetric imaging enhances contrast, edge saliency, and material dis-

crimination by exploiting scattering- and reflection-dependent polarization, enabling 

reliable target detection in shallow, relatively clear water. Polarimetric imaging with 

active linear or circular illumination it can deliver centimeter-scale detail over several 

ALs. Its main limitations are daylight dependence for passive operation, progressive 

depolarization under strong turbidity and multiple scattering, and sensitivity to calibra-

tion and division-of-focal-plane crosstalk, which constrain penetration and quantita-

tive accuracy relative to time-resolved LiDAR. In practice, polarimetry is a complement 

to range-gated or single-photon techniques rather than a replacement in highly turbid 

or long-range scenarios. Range-gated imaging isolates returns from a chosen depth 

slice and suppresses out-of-slice backscatter, yielding high contrast, centimeter-scale 

axial resolution, and millimeter-centimeter lateral detail at standoffs of tens of meters. 

Polarization-assisted gating and multi-gate fusion further enhance contrast and enable 

volumetric 3D reconstruction. Its limitations include residual in-gate multiple scatter-

ing in very turbid water, sensitivity to laser-detector synchronization and timing jitter/

walk-off, motion blur during scanning or platform motion, and eye-safety/energy con-

straints that impose SNR and duty-cycle trade-offs. In practice, range-gated imaging is 

well suited to mid-range infrastructure inspection, target detection or 3D mapping from 

AUV/ROV and surface platforms. Underwater single-photon imaging, time-correlated 

SPAD or Geiger-mode APD lidar, delivers millimeter- to centimeter-scale depth accu-

racy at extremely low photon counts. Fielded systems reach tens of meters, and labo-

ratory studies approach 8 to 10 ALs (or beyond), with SPAD arrays enabling real-time 

3D at short standoff. Its principal advantages are very high sensitivity and statistically 

principled, histogram-based depth inference that remains effective in photon-starved, 

scattering-limited regimes, often with eye-safe, compact laser sources. Key limitations 

include susceptibility to ambient background and bioluminescence. Pile-up and after 

pulsing distort the time histograms. Pixel-to-pixel nonuniformity and pressure- or 

temperature-induced timing drift, multipath from boundaries, and synchronization 

jitter further degrade accuracy. STIL delivers wide-swath mapping over tens of meters 

with 1 cm range accuracy and millimeter-centimeter lateral detail, leveraging picosec-

ond timing that maps time-of-flight into a spatial coordinate for dense, few-photon 3D 

profiles. Its main constraints are stringent timing and sweep-linearity calibration, cross-

slit radiometric/timing consistency, and sensitivity to platform motion, together with 
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high-voltage requirements that limit miniaturization. In practice, STIL is best suited 

for high-fidelity bathymetry and geomorphology. GI uses structured illumination and 

bucket detection to reconstructed object through scatter, offering strong robustness to 

turbidity, compatibility with flexible hardware configurations. Its principal limitations 

are the sampling burden and acquisition latency, exacerbated by calibration demands on 

SLM/DMD modulators and model mismatch. �us, practical systems benefit from com-

pressive sensing, optimized illumination patterns, and physics-guided deep networks to 

reduce measurements and stabilize inversion. Recent DL and large-model approaches 

have improved fidelity and sampling efficiency, with demonstrations approaching on 

the order of 10 ALs. Spectral imaging delivers material discrimination from UV to NIR 

through narrowband analytics and spectral unmixing, enabling quantitative benthic 

classification, characterization, and identification under controlled illumination and cal-

ibration. Its effectiveness is depth-limited by per-band SNR, scattering-induced cross-

talk, and radiometric drift, and the acquisition/processing load scales with band count, 

making it most suitable for short-range surveys on well-lit, well-calibrated platforms. 

FOD cameras provide operational simplicity and survivability to hadal pressures with 

application-dependent spatial resolution. �ey are challenged by ultra-low illumination 

and window-induced aberrations, best for persistent observation, documentation, and 

situational awareness on landers and ROVs. AI-driven algorithms act as a cross-cutting 

layer that enhances all modalities through physics-aware restoration, fusion, and auton-

omy. �e advantages include improved robustness, denoising, and real-time interpreta-

tion, whereas risks involve domain shift, calibration sensitivity, and onboard compute 

budgets, most effective when co-designed with sensors (e.g., polarization-assisted gat-

ing, SPAD histogram deconvolution, STIL motion compensation, GI pattern optimiza-

tion) to meet mission-specific range, resolution, and throughput targets.

Notely, while multimodal imaging can substantially enhance underwater percep-

tion, it also introduces several practical challenges. Spatial alignment between hetero-

geneous sensors is often imperfect, and even minor calibration errors may propagate 

through the processing pipeline, reducing the reliability of fused representations. 

Temporal synchronization presents an additional difficulty in dynamic underwater 

scenes, where platform motion and rapidly varying illumination require precise tim-

ing across modalities. Moreover, multimodal fusion typically increases computational 

complexity, which can constrain real-time performance on resource-limited AUV and 

ROV platforms. Addressing these issues calls for lightweight alignment techniques, 

adaptive synchronization strategies, and efficient fusion architectures, directions that 

warrant further investigation in future research.

Looking forward, future research should prioritize ultra-compact, energy-efficient 

imaging systems with multi-modal sensing that tolerate FOD pressures while 

delivering spectrally and temporally rich datasets, and should tightly couple optics 

with AI and robotics to enable adaptive decision-making, habitat classification, 

and event-triggered sampling. One of the key thrusts is complementary fusion 

across modalities. �e polarimetric and spectral channels can provide material and 

surface-reflection cues that enhancing range-gated or single-photon acquisition 

for backscatter suppression and photon-efficient depth recovery. �e streak-tube 

timing can anchor wide-swath bathymetry and provide ground-truth calibration. 



Page 77 of 89Sun et al. PhotoniX             (2026) 7:7  

GI compensates for the lack of light-field control in conventional imaging method 

by imposing known structured illumination and correlation decoding, thereby 

enhancing robustness to scattering. FOD cameras can host these active modules as 

swappable payloads for persistent hadal deployments. Realizing this fusion requires 

shared geometry, synchronized timing, and radiometric/spectral-Stokes calibration, 

together with physics constrained AI that performs joint inversion and uncertainty-

aware data fusion.  For submersible, future research is expected to advance real-

time enhancement pipelines optimized for less than 30  ms inference on embedded 

GPUs, develop adaptive generalization frameworks that sustain detection accuracy 

across unseen water types, and design lightweight, multimodal models tailored for 

AUV/ROV deployment. Together, these trends will enable reliable, mission-ready 

underwater vision systems capable of operating robustly in diverse and challenging 

marine environments. With these ingredients, multi-modal, AI-enabled systems can 

advance deep-sea biodiversity and biogeochemistry studies and support sustainable 

resource assessment, ushering in high-resolution, intelligent, and exploration across 

the full ocean column.
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