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We compute the expectation value of the energy-momentum tensor of a real scalar field in an
approximation which accounts for spacetime gradients of the hydrodynamical variables in local
thermodynamical equilibrium. We show that the energy-momentum tensor receives corrections with
respect to the standard local-equilibrium result. Notably, the relation between the energy density and
pressure, i.e., the equation of state, is modified with respect to the one in global equilibrium. The obtained
corrections might be relevant for systems created in relativistic hadron and heavy-ion collisions.
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I. INTRODUCTION

Relativistic hydrodynamics (see Ref. [1] for a recent
review of theories of relativistic dissipative hydrodynamics)
is successfully applied at very different scales: from hadron
and heavy-ion collisions [2–4] to astrophysics [5,6]. The
applicability of hydrodynamics indicates the validity of
some reduced description for a given system. Here,
“reduced description” means that the state of a system
can be characterized by the knowledge of the expectation
values of some observables only. It has been well known for
a long time (see Ref. [7]) that the statistical operator ρ of a
state which is “least biased” as far as unmonitored degrees
of freedom are concerned maximizes the von Neumann
entropy, S ¼ −Tr½ρ ln ρ�, subject to the constraints

hAni ¼ Tr½Anρ�; ð1Þ

Tr½ρ� ¼ 1; ð2Þ

where hAni are the expectation values of some (relevant)
observables (operators) An. The statistical operator is then
given by that of a generalized Gibbs state

ρ ¼ 1

Z
exp

�
−
X
n

anAn

�
; ð3Þ

where an are the corresponding Lagrange multipliers and

Z ¼ Tr

�
exp

�
−
X
n

anAn

��
ð4Þ

is the partition function which, as a normalizing factor in
Eq. (3), ensures that Tr½ρ� ¼ 1.
The crucial point for the applicability of the reduced

description is the choice of the set of relevant observables.
For a quantum field-theoretical system in a heat bath of
temperature T, without a conserved charge and in global
equilibrium, the sole relevant observable is the Hamilton
operator H, and the statistical operator reads in the rest
frame of the system

ρgeq;RF ¼ Z−1
geq;RF exp ð−βHÞ; Zgeq;RF ¼ Tr½exp ð−βHÞ�;

ð5Þ

where β≡ 1=T.1 If the system moves at a constant four-
velocity uμ, this expression is easily generalized to2Published by the American Physical Society under the terms of

the Creative Commons Attribution 4.0 International license.
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1We use natural units ℏ ¼ c ¼ kB ¼ 1.
2We use the metric convention gμν ¼ diagðþ1;−1;−1;−1Þ.
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ρgeq ¼ Z−1
geq exp ð−βνPνÞ; Zgeq ¼ Tr½exp ð−βνPνÞ�; ð6Þ

where βν ¼ βuν and Pν is the four-momentum operator.
For a system without a conserved charge which is in the

hydrodynamic regime, instead of in global equilibrium, the
relevant observable is the operator of the spacetime
dependent energy-momentum tensor TμνðxÞ. A reduced
description can be achieved (and hydrodynamic equations
can be derived) utilizing Zubarev’s formalism of the
nonequilibrium statistical operator [8–11] (for modern
developments, see Ref. [12] and references therein). In
Zubarev’s approach [8] the nonequilibrium statistical
operator maximizes the entropy subject to the following
initial-state constraint imposed on a three-dimensional
spacelike hypersurface σðτ0Þwith a timelike normal vector
nμðxÞ:

nμðxÞT̃μνðxÞ ¼ nμðxÞhTμνðxÞi: ð7Þ

The left-hand side of the above equation is determined by a
true state of the system, with energy-momentum tensor
T̃μνðxÞ, and the right-hand side features the expectation
value of the energy-momentum tensor operator calculated
with the nonequilibrium statistical operator, h� � �i ≡
Tr½ρneq½σðτ0Þ� � � ��. Maximizing the entropy is essentially
synonymous to assuming that the initial state of the system
is in local thermodynamical equilibrium. Consequently,
the nonequilibrium statistical operator reads [13]

ρneq½σðτ0Þ�¼Z−1
neq½σðτ0Þ�exp

�
−
Z
σðτ0Þ

dσμðyÞβνðyÞTμνðyÞ
�
;

Zneq½σðτ0Þ�¼Tr

�
exp

�
−
Z
σðτ0Þ

dσμðyÞβνðyÞTμνðyÞ
��

; ð8Þ

where dσμðyÞ≡ dσnμðyÞ. The inverse four-temperature
vector βνðyÞ≡ βðyÞuνðyÞ is now a spacetime dependent
field, with uνðyÞ being the local four-velocity of the
system [on a spacetime point y on σðτ0Þ], normalized as
uνðyÞuνðyÞ ¼ 1. In this approach there is a continuum of
constraints: on the whole hypersurface σðτ0Þ the relevant
local observables, such as the energy-momentum tensor on
the left-hand side of Eq. (7), are equal to the expectation
values of the corresponding local quantum operators with
respect to the statistical operator, i.e., the expectation value
of the energy-momentum tensor operator on the right-hand
side of Eq. (7).
The initial state, ρneq½σðτ0Þ�, characterizes an actual state

of the system. This initial condition is not very restrictive if
almost all initial states consistent with the above constraints
evolve (in the Schrödinger picture) towards some

hydrodynamical attractor (see, e.g., Ref. [14]), where such
states become empirically indistinguishable with respect to
the set of relevant observables and most details of the actual
initial microscopic conditions become irrelevant. In the
original Zubarev approach the nonequilibrium statistical
operator maximizes the entropy subject to constraints
imposed in the infinitely remote past [8]. For the descrip-
tion of the transient evolution of matter in hadron and
heavy-ion collisions it is more natural, however, to use
initial conditions which correspond to the beginning of the
collision, i.e., on a suitably chosen hypersurface σðτ0Þ. The
corresponding reformulation of Zubarev’s method was
discussed in Ref. [13].
In the Heisenberg picture, by definition the statistical

operator does not change with time or, if some one-
parameter family of three-dimensional spacelike hyper-
surfaces σðτÞ is defined, the statistical operator does not
change with τ. This allows us to take spacetime gradients
out of the statistical averaging with ρneq½σðτ0Þ�, i.e., the
conservation equations determining the Lagrange multi-
pliers can be written as

h∂μTμνðxÞi ¼ ∂μhTμνðxÞi ¼ 0: ð9Þ

Note that Eq. (9) is time reversible.3

Nevertheless, the fact that ρneq½σðτ0Þ� does not change
with time does not mean that it retains its functional form
(8) on a three-dimensional spacelike hypersurface σðτÞwith
τ > τ0. In fact, due to irreversible dissipative processes
driven by spacetime gradients of the hydrodynamical
variables (i.e, in our case βν), the system will deviate from
the initial local-equilibrium state on σðτ0Þ in the course of
its evolution. This can be seen as follows: using Gauss’
theorem and energy-momentum conservation one obtains

−
Z
σðτ0Þ

dσμðyÞβνðyÞTμνðyÞ

¼ −
Z
σðτÞ

dσμðyÞβνðyÞTμνðyÞ þ
Z
Ω
d4zTμνðzÞ∂z;μβνðzÞ:

ð10Þ

Here, the four-dimensional spacetime volumeΩ is enclosed
by the two spacelike hypersurfaces σðτ0Þ and σðτÞ and
timelike hypersurfaces connecting these two, where
βνðyÞTμνðyÞ is supposed to vanish. Then, the nonequili-
brium statistical operator can be written as [13]

3In the original Zubarev approach [8], the reversibility of
the exact conservation equations is broken by adding an infini-
tesimally small source term on the right-hand side of the
evolution equation for the statistical operator in the Heisenberg
representation.
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ρneq½σðτ0Þ� ¼ Z−1
neq½σðτ0Þ� exp

�
−
Z
σðτ0Þ

dσμðyÞβνðyÞTμνðyÞ
�

¼ Z−1
neq½σðτ0Þ� exp

�
−
Z
σðτÞ

dσμðyÞβνðyÞTμνðyÞ

þ
Z
Ω
d4zTμνðzÞ∂z;μβνðzÞ

�
: ð11Þ

For the following, we define

A≡
Z
σðτÞ

dσμðyÞβνðyÞTμνðyÞ; ð12Þ

B≡
Z
Ω
d4zTμνðzÞ∂z;μβνðzÞ; ð13Þ

and assume that B is small compared to A, which is true if
∂z;μβνðzÞ is sufficiently small. Consequently, to leading
(zeroth) order in B the nonequilibrium statistical operator is
equal to the local-equilibrium statistical operator on the
hypersurface σðτÞ [13]

ρleq½σðτÞ� ¼ Z−1
leq½σðτÞ� exp

�
−
Z
σðτÞ

dσμðyÞβνðyÞTμνðyÞ
�
;

Zleq½σðτÞ� ¼ Tr

�
exp

�
−
Z
σðτÞ

dσμðyÞβνðyÞTμνðyÞ
��

: ð14Þ

Corrections to the leading order can be computed pertur-
batively; to linear (first) order in B, one obtains [13]

ρneq½σðτ0Þ� ¼ ρleq½σðτÞ�
�
1þ

Z
1

0

dλeλABe−λA − hBileq
�

þOðB2Þ; ð15Þ

where h� � �ileq ≡ Tr½ρleq½σðτÞ� � � ��. Since B ∼ Tμν, calculat-
ing the expectation value of the energy-momentum tensor,
hTμνðxÞi, including these corrections one obtains terms
involving two-point correlation functions of the energy-
momentum tensor. These can be expressed in terms of
transport coefficients using the well-known Kubo relations.
One thus obtains the well-known dissipative terms in the
equations of motion of dissipative hydrodynamics. Since
the transport coefficients are proportional to the mean free
path λmfp of particles in the system, while ∂β is inversely
proportional to the length of homogeneity L of the system,
the dissipative terms are proportional to the Knudsen
number Kn≡ λmfp=L.
The transport coefficients are calculated in the Markovian

(short-memory) approximation, which exploits the exist-
ence of disparate time scales in the system. It is worth noting
that this approximation is not only a useful tool for explicit
calculations: the Markovian level of description mimics the
effective loss of details about the initial conditions.
Irreversible dissipative hydrodynamics appears as an

effective theory of the slow degrees of freedom in its range
of applicability, see, e.g., Refs. [8–13] for derivations of
dissipative hydrodynamical equations in the Zubarev
approach.
Note that if one neglects the dissipative corrections, i.e.,

sets B ¼ 0, the statistical operator (14) actually retains its
initial form (8), i.e., local thermodynamical equilibrium is
maintained throughout the evolution of the system. One
would now naively assume that, if one calculates hTμνðxÞi
by setting B ¼ 0 in Eq. (15), i.e., if one calculates
hTμνðxÞileq, one would obtain the ideal-fluid form for the
energy-momentum tensor in local thermodynamical equi-
librium,

T̃μν
id ðxÞ ¼ ½ϵðxÞ þ PðxÞ�uμðxÞuνðxÞ − PðxÞgμν; ð16Þ

where ϵðxÞ and PðxÞ are the local energy density and
pressure of the fluid, respectively. However, this is not true,
in fact hTμνðxÞileq ≠ T̃μν

id ðxÞ, due to the nonlocality of
ρleq½σðτÞ� introduced by the integration over the hypersur-
face σðτÞ. In order to obtain the ideal-fluid form, one
requires an additional approximation. Namely, one needs to
assume that βμðyÞ varies sufficiently smoothly over the
hypersurface σðτÞ, such that the expectation value of some
local operator OðxÞ, hOðxÞileq ¼ Tr½ρleq½σðτÞ�OðxÞ�, will
be mainly determined by the value of the field βμðyÞ around
the point x. Corrections can be systematically taken into
account by expanding βμðyÞ in a Taylor series around x,

βμðyÞ ¼ βμðxÞ þ ∂λβμðxÞðy − xÞλ þOðð∂βÞ2Þ; ð17Þ

and then substituting it into ρleq½σðτÞ�. Introducing the four-
momentum operator of the system on the hypersurface
σðτÞ, Pν ≡ R

σðτÞ dσnμðyÞTμνðyÞ, and denoting

C≡ ∂λβνðxÞ
Z
σðτÞ

dσμðyÞðy − xÞλTμνðyÞ þOðð∂βÞ2Þ; ð18Þ

we then obtain

Z
σðτÞ

dσμðyÞβνðyÞTμνðyÞ ¼ βνðxÞPν þ C: ð19Þ

If C is a small correction to βνðxÞPν, expectation values
with respect to ρleq½σðτÞ� can be calculated perturbatively in
a power series in C, just as the one in B in Eq. (15) (see,
e.g., Ref. [15]). Since C ∼ Tμν, to linear order the expect-
ation value of the energy-momentum tensor receives
corrections proportional to the two-point function of the
energy-momentum tensor. In contrast to the terms ∼B
discussed previously, however, there are no traditional
Kubo relations to relate these corrections to transport
coefficients, since now there is no spacetime integral over
Ω, but only an integral over the hypersurface σðτÞ.
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To leading (zeroth) order, we set C ¼ 0 and insert
Eq. (19) into ρleq½σðτÞ�. One then obtains an expression
which is formally identical to the global-equilibrium
statistical operator (6), but with a spacetime dependent
βνðxÞ, which we refer to as “spacetime (x-)dependent
global equilibrium” (x-geq),

ρleq½σðτÞ�⟶C¼0
ρx−geqðxÞ ¼ Z−1

x−qeqðxÞ exp ½−βνðxÞPν�;
Zx−geqðxÞ ¼ Tr½exp f−βνðxÞPνg�: ð20Þ

It is now obvious (by reasons of symmetry alone) that

hTμνðxÞix−geq ¼ Tr½ρx−geqTμνðxÞ� ¼ T̃μν
id ðxÞ: ð21Þ

For this reason, the spacetime (x-)dependent global-equi-
librium energy-momentum tensor is usually referred to as
energy-momentum tensor in “local equilibrium.” We have
seen that this is not quite correct, as the true local-
equilibrium energy-momentum tensor, hTμνðxÞileq, con-
tains additional gradient terms ∼C (and powers thereof).
Therefore, although using spacetime dependent global
equilibrium sounds contradictory and much more cumber-
some than local equilibrium, we will stick to this nomen-
clature in the following, since it accurately expresses the
fact that expectation values are computed with the operator
(20) instead of the local-equilibrium statistical opera-
tor (14).
In this paper, we calculate the expectation value of the

energy-momentum tensor operator of a real scalar field
ϕðxÞ, using similar approximations for the nonequilibrium
statistical operator as outlined above. However, we deviate
from the above approach, which yields the well-known
result (21), in one important aspect. Namely, the explicit
expression for the energy-momentum tensor operator in
general involves spacetime gradients of the field operators.
Using the stationarity of the nonequilibrium statistical
operator (8), we can take these derivatives outside of the
statistical averaging, as in Eq. (9). The approximations
outlined above are then applied to the calculation of the
statistical two-point function of the fields, hϕðxÞϕðyÞi,
rather than to the calculation of the expectation value
hTμνðxÞi of the full energy-momentum tensor operator. We
show that the expression obtained for hTμνðxÞi under these
approximations involves corrections with respect to the
ideal-fluid form (16).4 In particular, we demonstrate that the
relation between pressure and energy density, i.e., the
equation of state, is affected by these corrections and
therefore is modified with respect to the case of global
thermodynamical equilibrium. The magnitude of these
corrections is determined by the ratio of the thermal
wavelength λth to the typical spacetime homogeneity length
L of a given system. If the latter is much larger than the

former, then these additional terms can be neglected. This is
certainly true for the particular limit of global thermody-
namical equilibrium, as well as for a coarse-grained
description of macroscopic systems, where there is a clear
separation between the microscopic and the macroscopic
scales. However, this need not be the case, for example, for
relativistic hadron and heavy-ion collisions, where small
and highly inhomogeneous systems are created with a
typical macroscopic time or length scale of a few
femtometers.
The remainder of this paper is structured as follows: in

Sec. II we compute the expectation value of the energy-
momentum tensor based on the idea outlined above, using a
real scalar field as a simple, yet explicit example. In Sec. III
we derive the corrections to the equation of state in global
thermodynamical equilibrium arising from spacetime gra-
dients of the hydrodynamical fields. Our conclusions are
given in Sec. IV.

II. ALTERNATIVE CALCULATION
OF THE EXPECTATION VALUE

OF THE ENERGY-MOMENTUM TENSOR

For the sake of simplicity, we consider a real scalar field
with the action

S ¼
Z

d4xL; ð22Þ

with L being the corresponding Lagrangian

L ¼ 1

2
∂μϕ∂

μϕ −
m2

2
ϕ2 þ LintðϕÞ; ð23Þ

where the interacting part of the Lagrangian density,
LintðϕÞ, does not contain spacetime derivatives. To calcu-
late hTμνðxÞi, one needs an explicit form for the operator of
the energy-momentum tensor. The canonical one reads

TμνðxÞ ¼ ∂
μϕ∂νϕ − gμνL; ð24Þ

where the Lagrangian L is given by Eq. (22). Following the
idea formulated in the introduction, one can take the
spacetime derivatives in Eq. (24) outside the statistical
averaging, just as in Eq. (9), since the nonequilibrium
statistical operator is stationary. We then obtain5

hTμνðzÞi ¼
�
∂
μ
x∂

ν
y −

1

2
gμν∂xα∂αy

�
Fðx; yÞjx¼y¼z

þ gμν
�
1

2
m2hϕ2ðzÞi − hLintðϕÞi

�
: ð25Þ

4See also Refs. [16,17].

5For simplicity, we will assume that the field expectation value
vanishes, hϕðxÞi ¼ 0.
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Here Fðx; yÞ denotes the statistical two-point function,

Fðx; yÞ ¼ hF̂ðx; yÞi; ð26Þ

F̂ðx;yÞ¼ 1

2
fϕðxÞ;ϕðyÞg≡1

2
½ϕðxÞϕðyÞþϕðyÞϕðxÞ�: ð27Þ

It is convenient to introduce the new variables

Z ¼ xþ y
2

; ð28Þ

Δz ¼ y − x: ð29Þ

Then,

hTμνðzÞi ¼
�
−∂μΔz∂νΔz þ

1

2
gμν∂Δz;α∂αΔz

�
F

�
Z −

Δz
2
; Z þ Δz

2

�����
Z¼z;Δz¼0

þ
�
1

4
∂
μ
Z∂

ν
Z −

1

8
gμν∂Z;α∂αZ

�
F

�
Z −

Δz
2
; Z þ Δz

2

�����
Z¼z;Δz¼0

þ gμν
�
1

2
m2hϕ2ðzÞi − hLintðϕÞi

�
: ð30Þ

The result can be compactly written as

hTμνðzÞi ¼
Z

d4Δzδð4ÞðΔzÞ
�
−∂μΔz∂νΔz þ

1

2
gμν∂Δz;α∂αΔz

�
F

�
z −

Δz
2
; zþ Δz

2

�

þ
�
1

4
∂
μ
z∂

ν
z −

1

8
gμν∂z;α∂αz

�
hϕ2ðzÞi þ gμν

�
1

2
m2hϕ2ðzÞi − hLintðϕÞi

�
: ð31Þ

As advertised in the introduction, we now replace the statistical average with respect to the nonequilibrium statistical
operator, h� � �i ¼ Tr½ρneq½σðτ0Þ� � � ��, by the thermal average with respect to the spacetime dependent global-equilibrium
operator at point z, h� � �iz−geq ¼ Tr½ρz−geqðzÞ � � ��, i.e., we neglect all dissipative corrections ∼B, C. We will call the result the
“gradient-corrected z-dependent global-equilibrium approximation” (gc-z-geq), which is then

T̃μν
gc-z-geqðzÞ ¼

Z
d4Δz δð4ÞðΔzÞ

�
−∂μΔz∂νΔz þ

1

2
gμν∂Δz;α∂αΔz

�
Fz−geq

�
z −

Δz
2
; zþ Δz

2

�

þ
�
1

4
∂
μ
z∂

ν
z −

1

8
gμν∂z;α∂αz

�
hϕ2ðzÞiz−geq þ gμν

�
1

2
m2hϕ2ðzÞiz−geq − hLintðzÞiz−geq

�
; ð32Þ

where Fz−geqðz − Δz
2
; zþ Δz

2
Þ ¼ hF̂ðz − Δz

2
; zþ Δz

2
Þiz−geq. Equation (32) expresses the expectation value of the energy-

momentum tensor in terms of the thermal n-point functions and their derivatives. Regularization of the above expression can
be done by subtracting the corresponding expectation values at zero temperature from the thermal n-point functions.
The terms in Eq. (32) with derivatives with respect to z manifest deviations from (spacetime dependent) global

thermodynamical equilibrium where only relative positions matter. Therefore it is convenient to write the result as

T̃μν
gc-z-geqðzÞ ¼ T̃μν

z−geqðzÞ þ
�
1

4
∂
μ
z∂

ν
z −

1

8
gμν∂z;α∂αz

�
hϕ2ðzÞiz−geq; ð33Þ

where

T̃μν
z−geqðzÞ ¼

Z
d4Δzδð4ÞðΔzÞ

�
−∂μΔz∂νΔz þ

1

2
gμν∂Δz;α∂αΔz

�
Fz−geq

�
z −

Δz
2
; zþ Δz

2

�

þ gμν
�
1

2
m2hϕ2ðzÞiz−geq − hLintðzÞiz−geq

�
: ð34Þ
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As we will now show, T̃μν
z−geqðzÞ coincides with the expect-

ation value of the energy-momentum tensor calculated with
the z-dependent global-equilibrium statistical operator (20),
i.e., we will show that T̃μν

z−geqðzÞ ¼ T̃μν
id ðzÞ, in agreement

with Eq. (21). To this end, let us Fourier-transform the
statistical two-point function Fz−geqðz − Δz

2
; zþ Δz

2
Þ with

respect to the relative coordinate Δz, as follows:

Fz−geq

�
z −

Δz
2
; zþ Δz

2

�

¼ 1

ð2πÞ4
Z

d4peiΔzμp
μ
Gz−geqðp; zÞ: ð35Þ

Substituting Eq. (35) into Eq. (34) we obtain

T̃μν
z−geqðzÞ ¼ 1

ð2πÞ4
Z

d4ppμpνGz−geqðp; zÞ

þ gμν

2ð2πÞ4
Z

d4pðm2 − p2ÞGz−geqðp; zÞ

− gμνhLintðϕÞiz−geq: ð36Þ

In the following, for the sake of simplicity we set the
interactions to zero, LintðϕÞ ¼ 0, and use the kinetic
on-mass-shell approximation (see, e.g., Ref. [18]),
where Gz−geqðp; zÞ ¼ 4πδðp2 −m2Þθðp0ÞnBðβμðzÞpμÞ,
with nBðxÞ ¼ ðex − 1Þ−1 being the Bose-Einstein distribu-
tion function. Then, the last two terms in Eq. (35) vanish.
We arrive at6

T̃μν
z−geq ¼ 1

ð2πÞ4
Z

d4ppμpνGz−geqðβμpμÞ

¼ ðϵz−geq þ Pz−geqÞuμuν − Pz−geqgμν: ð37Þ

Here,

ϵz−geq ¼
1

ð2πÞ3
Z

d3p
p0

uμpμuνpνnBðβμpμÞ; ð38Þ

Pz−geq ¼ −
1

3
Δμν

1

ð2πÞ3
Z

d3p
p0

pμpνnBðβμpμÞ; ð39Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
is the on shell energy of

the particles and Δμν ≡ gμν − uμuν is the projector onto
the three-dimensional subspace orthogonal to uμ.
Equations (38) and (39) are the standard expressions for
the energy density and pressure of a noninteracting
Bose gas of particles with mass m. We thus confirm that
T̃μν
z−geqðzÞ ¼ T̃μν

id ðzÞ.
Let us conclude this section by mentioning that the other

terms on the right-hand side of Eq. (33) represent gradient

corrections to the energy-momentum tensor of an ideal fluid
in z-dependent global equilibrium. Usually, it is assumed
that T̃μν

gc-z-geqðzÞ ≃ T̃μν
z−geqðzÞ ¼ T̃μν

id ðzÞ. This approximation
is certainly true for isotropic systems close to thermody-
namical equilibrium, but can be questioned for small and
highly inhomogeneous systems. In the next section, we will
explicitly compute these gradient corrections.

III. PSEUDOGAUGE DEPENDENCE
AND GRADIENT-CORRECTED SPACETIME

DEPENDENT ENERGY-MOMENTUM TENSOR

Equation (33) can be written in a more suggestive way as
follows:

T̃μν
gc-z-geqðzÞ ¼ T̃μν

z−geqðzÞ þ ΛðzÞgμν þΦμνðzÞ; ð40Þ

where

ΛðzÞ ¼ 1

8
∂z;α∂

α
z hϕ2ðzÞiz−geq; ð41Þ

ΦμνðzÞ ¼ 1

4
ð∂μz∂νz − gμν∂z;α∂αzÞhϕ2ðzÞiz−geq: ð42Þ

One observes that

∂z;μΦμνðzÞ ¼ 0; ð43Þ

and, therefore, Φμν does not contribute to the energy-
momentum conservation equation. In effect,Φμν influences
the initial conditions only.
A natural question to ask is whether one can redefine the

energy-momentum tensor in such a way that Φμν ≡ 0. One
can show that this can be done by means of modifying the
energy-momentum tensor (24) by a so-called pseudogauge
transformation, i.e., in essence by adding suitable terms
which do not affect the energy-momentum conservation
equation,7

T μν ¼ Tμν −
1

4
ð∂μ∂ν − gμν∂α∂αÞϕ2; ð44Þ

to obtain the desired result.8 Note that this energy-momen-
tum tensor yields the same four-momentum as the canoni-
cal one, and ∂μT μν ¼ 0. Equation (40) implies that

6For the sake of simplicity we suppress the dependence on z.

7It has been known for a long time that there exists an
ambiguity in the definition of the energy-momentum tensor.
The energy-momentum tensor is known to be defined only up to
the derivative of an antisymmetric tensor. The possibility of a
simultaneous modification of both the energy-momentum and
spin tensors was discussed in Ref. [19].

8This energy-momentum tensor can be also obtained by adding
a total derivative to the Lagrangian, L → L − 1

2
∂μðϕ∂μϕÞ.
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T̃ μν
gc-z-geqðzÞ ¼ T̃μν

z−geqðzÞ þ ΛðzÞgμν: ð45Þ

Substituting Eq. (37) into Eq. (45) we readily see that
T̃ μν

gc-z-geq has the ideal-fluid form,

T̃ μν
gc-z-geq ¼ ðϵz−geqþPz−geqÞuμuν−Pz−geqgμνþΛgμν ð46Þ

¼ ðϵgc-z-geq þ Pgc-z-geqÞuμuν − Pgc-z-geqgμν; ð47Þ

where

ϵgc-z-geq ¼ ϵz−geq þ Λ; ð48Þ

Pgc-z-geq ¼ Pz−geq − Λ; ð49Þ

Λ ¼ 1

8
∂α∂

α 1

ð2πÞ3
Z

d3p
p0

nBðβμpμÞ: ð50Þ

One observes that ϵgc-z-geq is the (spacetime dependent)
energy density and uμ is the hydrodynamical four-velocity
in the Landau frame of T̃ μν

gc-z-geqðzÞ. Using Eqs. (47)–(50)
we conclude that T̃ μν

gc-z-geqðzÞ leads to the differential
equations of ideal hydrodynamics with an equation of
state, which, for Λ ≠ 0, is not equal to that in (spacetime
dependent) global thermodynamical equilibrium.
The expressions for the energy density and pressure

obtained in Eqs. (48) and (49) contain corrections with
respect to the global-equilibrium case. In effect, these
contributions to the energy-momentum tensor are negli-
gibly small if

jΛj
Pz−geq

≪ 1; ð51Þ

see Eq. (46). To estimate the magnitude of these correc-
tions, one would in principle first have to solve the
hydrodynamic equations with Λ ¼ 0 for β and uμ, and
then use these values for β and uμ to evaluate jΛj=Pz−geq.
To get an intuitive understanding of the magnitude of
jΛj=Pz−geq, let us compute the integral in Eq. (39) in the
local rest frame of the fluid, where u�μ ¼ ð1; 0; 0; 0Þ and
u�μp�μ ¼ p�

0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p�2 þm2

p
. The result is

Pz−geq ¼
1

3

1

ð2πÞ3
Z

d3p�

p�
0

p�2nBðβp�
0Þ: ð52Þ

It is convenient to introduce the following notations:

p�2 ≡
R d3p�

p�
0

p�2nBðβp�
0ÞR d3p�

p�
0

nBðβp�
0Þ

; ð53Þ

1

L2
≡ j∂α∂α

R d3p�
p�
0

nBðβp�
0ÞjR d3p�

p�
0

nBðβp�
0Þ

: ð54Þ

Then

Pz−geq ¼
1

3
p�2

Z
d3p�

p�
0

nBðβp�
0Þ; ð55Þ

jΛj ¼ 1

8

1

L2

Z
d3p�

p�
0

p�2nBðβp�
0Þ; ð56Þ

and jΛj=Pz−geq reads

jΛj
Pz−geq

¼ 3

8

1

p�2L2
: ð57Þ

For the purpose of illustration, let us consider the
nonrelativistic, mβ ¼ m=T ≫ 1, and ultrarelativistic,
mβ ¼ m=T ≪ 1, limits. Equation (57) then becomes

jΛj
Pz−geq

∼
λ2th
L2

; ð58Þ

where λth is the thermal wavelength: λth ∼ 1=
ffiffiffiffiffiffiffi
mT

p
for

mβ ≫ 1 and λth ∼ 1=T for mβ ≪ 1. Meanwhile, L can be
interpreted as the spacetime length of homogeneity of a
system, see Eq. (54). We thus conclude that the corrections
to the global-equilibrium equation of state can be neglected
if the thermal wavelengths are much smaller than the
characteristic spacetime scales of the system,

λth
L

≪ 1: ð59Þ

Otherwise, if λth=L≳ 1, then the energy density, ϵz−leq, or
pressure, Pz−leq, can become negative, see Eqs. (48)–(50).
Such a violation of the positivity condition implies the
inapplicability of hydrodynamics,9 and suggests that
spacetime gradients in the system are so large that one
can neither neglect the standard dissipative corrections, nor
those arising from spacetime gradients of the ideal hydro-
dynamical variables such as βν. It is worth noting that
the inequality (59) is reminiscent of the condition that the
Knudsen number should be sufficiently small for the
applicability of the hydrodynamical description. Then,
our analysis supports the view that, as an effective theory,
hydrodynamics is applicable if there is a clear separation
between the microscopic and the macroscopic scales.
As a final comment, we note that if one utilizes the

Klein-Gordon Lagrangian for spinors built with second-

9See also Ref. [20], where the domain of validity of hydro-
dynamics applied to small systems was considered.
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order derivatives of the fields (for a review of the most
common choices of the energy-momentum and spin tensors
for Dirac fields, see, e.g., Ref. [21]), then the considered
corrections should also manifest itself for the Dirac field.
However, this issue is beyond the scope of this study.

IV. CONCLUSIONS

In the present paper, we calculated nondissipative cor-
rections to the energy-momentum tensor of a real scalar
field in a state which is described by a statistical operator
with a spacetime dependent temperature four-vector and
which is commonly identified with a local-equilibrium state.
In particular, we demonstrated that the relation between
pressure and energy density, i.e., the equation of state, is
affected by these corrections and therefore is modified with
respect to the case of global thermodynamical equilibrium.
The corrections are of second order in the ratio of the
thermal wavelength to the typical macroscopic length scale
of the system. If the thermal wavelengths are comparable in
size with the typical spatiotemporal scales of the system,
then a hydrodynamical description might fail. Our findings
support the conjecture that hydrodynamics is based on a
clear separation of scales: the microscopic scales, which are

characteristic of the underlying microscopic theory, e.g., a
quantum field theory, and the macroscopic scales, which
characterize the spatiotemporal variation of the hydrody-
namical variables. Our results present a challenge for the
hydrodynamical description of the small, inhomogeneous
systems created in hadron or hadron-ion collisions.
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