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We compute the expectation value of the energy-momentum tensor of a real scalar field in an

approximation which accounts for spacetime gradients of the hydrodynamical variables in local

thermodynamical equilibrium. We show that the energy-momentum tensor receives corrections with

respect to the standard local-equilibrium result. Notably, the relation between the energy density and

pressure, i.e., the equation of state, is modified with respect to the one in global equilibrium. The obtained

corrections might be relevant for systems created in relativistic hadron and heavy-ion collisions.
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I. INTRODUCTION

Relativistic hydrodynamics (see Ref. [1] for a recent

review of theories of relativistic dissipative hydrodynamics)

is successfully applied at very different scales: from hadron

and heavy-ion collisions [2–4] to astrophysics [5,6]. The

applicability of hydrodynamics indicates the validity of

some reduced description for a given system. Here,

“reduced description” means that the state of a system

can be characterized by the knowledge of the expectation

values of some observables only. It has been well known for

a long time (see Ref. [7]) that the statistical operator ρ of a

state which is “least biased” as far as unmonitored degrees

of freedom are concerned maximizes the von Neumann

entropy, S ¼ −Tr½ρ ln ρ�, subject to the constraints

hAni ¼ Tr½Anρ�; ð1Þ

Tr½ρ� ¼ 1; ð2Þ

where hAni are the expectation values of some (relevant)

observables (operators) An. The statistical operator is then

given by that of a generalized Gibbs state

ρ ¼ 1

Z
exp

�

−
X

n

anAn

�

; ð3Þ

where an are the corresponding Lagrange multipliers and

Z ¼ Tr

�

exp

�

−
X

n

anAn

��

ð4Þ

is the partition function which, as a normalizing factor in

Eq. (3), ensures that Tr½ρ� ¼ 1.

The crucial point for the applicability of the reduced

description is the choice of the set of relevant observables.

For a quantum field-theoretical system in a heat bath of

temperature T, without a conserved charge and in global

equilibrium, the sole relevant observable is the Hamilton

operator H, and the statistical operator reads in the rest

frame of the system

ρgeq;RF ¼ Z−1
geq;RF exp ð−βHÞ; Zgeq;RF ¼ Tr½exp ð−βHÞ�;

ð5Þ

where β≡ 1=T.
1
If the system moves at a constant four-

velocity uμ, this expression is easily generalized to
2
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3
.

1
We use natural units ℏ ¼ c ¼ kB ¼ 1.
2
We use the metric convention gμν ¼ diagðþ1;−1;−1;−1Þ.
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ρgeq ¼ Z−1
geq exp ð−βνPνÞ; Zgeq ¼ Tr½exp ð−βνPνÞ�; ð6Þ

where βν ¼ βuν and Pν is the four-momentum operator.

For a system without a conserved charge which is in the

hydrodynamic regime, instead of in global equilibrium, the

relevant observable is the operator of the spacetime

dependent energy-momentum tensor TμνðxÞ. A reduced

description can be achieved (and hydrodynamic equations

can be derived) utilizing Zubarev’s formalism of the

nonequilibrium statistical operator [8–11] (for modern

developments, see Ref. [12] and references therein). In

Zubarev’s approach [8] the nonequilibrium statistical

operator maximizes the entropy subject to the following

initial-state constraint imposed on a three-dimensional

spacelike hypersurface σðτ0Þwith a timelike normal vector

nμðxÞ:

nμðxÞT̃μνðxÞ ¼ nμðxÞhTμνðxÞi: ð7Þ

The left-hand side of the above equation is determined by a

true state of the system, with energy-momentum tensor

T̃μνðxÞ, and the right-hand side features the expectation

value of the energy-momentum tensor operator calculated

with the nonequilibrium statistical operator, h� � �i ≡
Tr½ρneq½σðτ0Þ� � � ��. Maximizing the entropy is essentially

synonymous to assuming that the initial state of the system

is in local thermodynamical equilibrium. Consequently,

the nonequilibrium statistical operator reads [13]

ρneq½σðτ0Þ�¼Z−1
neq½σðτ0Þ�exp

�

−

Z

σðτ0Þ
dσμðyÞβνðyÞTμνðyÞ

�

;

Zneq½σðτ0Þ�¼Tr

�

exp

�

−

Z

σðτ0Þ
dσμðyÞβνðyÞTμνðyÞ

��

; ð8Þ

where dσμðyÞ≡ dσnμðyÞ. The inverse four-temperature

vector βνðyÞ≡ βðyÞuνðyÞ is now a spacetime dependent

field, with uνðyÞ being the local four-velocity of the

system [on a spacetime point y on σðτ0Þ], normalized as

uνðyÞuνðyÞ ¼ 1. In this approach there is a continuum of

constraints: on the whole hypersurface σðτ0Þ the relevant

local observables, such as the energy-momentum tensor on

the left-hand side of Eq. (7), are equal to the expectation

values of the corresponding local quantum operators with

respect to the statistical operator, i.e., the expectation value

of the energy-momentum tensor operator on the right-hand

side of Eq. (7).

The initial state, ρneq½σðτ0Þ�, characterizes an actual state

of the system. This initial condition is not very restrictive if

almost all initial states consistent with the above constraints

evolve (in the Schrödinger picture) towards some

hydrodynamical attractor (see, e.g., Ref. [14]), where such

states become empirically indistinguishable with respect to

the set of relevant observables and most details of the actual

initial microscopic conditions become irrelevant. In the

original Zubarev approach the nonequilibrium statistical

operator maximizes the entropy subject to constraints

imposed in the infinitely remote past [8]. For the descrip-

tion of the transient evolution of matter in hadron and

heavy-ion collisions it is more natural, however, to use

initial conditions which correspond to the beginning of the

collision, i.e., on a suitably chosen hypersurface σðτ0Þ. The
corresponding reformulation of Zubarev’s method was

discussed in Ref. [13].

In the Heisenberg picture, by definition the statistical

operator does not change with time or, if some one-

parameter family of three-dimensional spacelike hyper-

surfaces σðτÞ is defined, the statistical operator does not

change with τ. This allows us to take spacetime gradients

out of the statistical averaging with ρneq½σðτ0Þ�, i.e., the
conservation equations determining the Lagrange multi-

pliers can be written as

h∂μTμνðxÞi ¼ ∂μhTμνðxÞi ¼ 0: ð9Þ

Note that Eq. (9) is time reversible.
3

Nevertheless, the fact that ρneq½σðτ0Þ� does not change

with time does not mean that it retains its functional form

(8) on a three-dimensional spacelike hypersurface σðτÞwith
τ > τ0. In fact, due to irreversible dissipative processes

driven by spacetime gradients of the hydrodynamical

variables (i.e, in our case βν), the system will deviate from

the initial local-equilibrium state on σðτ0Þ in the course of

its evolution. This can be seen as follows: using Gauss’

theorem and energy-momentum conservation one obtains

−

Z

σðτ0Þ
dσμðyÞβνðyÞTμνðyÞ

¼ −

Z

σðτÞ
dσμðyÞβνðyÞTμνðyÞ þ

Z

Ω

d4zTμνðzÞ∂z;μβνðzÞ:

ð10Þ

Here, the four-dimensional spacetime volumeΩ is enclosed

by the two spacelike hypersurfaces σðτ0Þ and σðτÞ and

timelike hypersurfaces connecting these two, where

βνðyÞTμνðyÞ is supposed to vanish. Then, the nonequili-

brium statistical operator can be written as [13]

3
In the original Zubarev approach [8], the reversibility of

the exact conservation equations is broken by adding an infini-
tesimally small source term on the right-hand side of the
evolution equation for the statistical operator in the Heisenberg
representation.
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ρneq½σðτ0Þ� ¼ Z−1
neq½σðτ0Þ� exp

�

−

Z

σðτ0Þ
dσμðyÞβνðyÞTμνðyÞ

�

¼ Z−1
neq½σðτ0Þ� exp

�

−

Z

σðτÞ
dσμðyÞβνðyÞTμνðyÞ

þ
Z

Ω

d4zTμνðzÞ∂z;μβνðzÞ
�

: ð11Þ

For the following, we define

A≡

Z

σðτÞ
dσμðyÞβνðyÞTμνðyÞ; ð12Þ

B≡

Z

Ω

d4zTμνðzÞ∂z;μβνðzÞ; ð13Þ

and assume that B is small compared to A, which is true if

∂z;μβνðzÞ is sufficiently small. Consequently, to leading

(zeroth) order in B the nonequilibrium statistical operator is

equal to the local-equilibrium statistical operator on the

hypersurface σðτÞ [13]

ρleq½σðτÞ� ¼ Z−1
leq½σðτÞ� exp

�

−

Z

σðτÞ
dσμðyÞβνðyÞTμνðyÞ

�

;

Zleq½σðτÞ� ¼ Tr

�

exp

�

−

Z

σðτÞ
dσμðyÞβνðyÞTμνðyÞ

��

: ð14Þ

Corrections to the leading order can be computed pertur-

batively; to linear (first) order in B, one obtains [13]

ρneq½σðτ0Þ� ¼ ρleq½σðτÞ�
�

1þ
Z

1

0

dλeλABe−λA − hBileq
�

þOðB2Þ; ð15Þ

where h� � �ileq ≡ Tr½ρleq½σðτÞ� � � ��. Since B ∼ Tμν, calculat-

ing the expectation value of the energy-momentum tensor,

hTμνðxÞi, including these corrections one obtains terms

involving two-point correlation functions of the energy-

momentum tensor. These can be expressed in terms of

transport coefficients using the well-known Kubo relations.

One thus obtains the well-known dissipative terms in the

equations of motion of dissipative hydrodynamics. Since

the transport coefficients are proportional to the mean free

path λmfp of particles in the system, while ∂β is inversely

proportional to the length of homogeneity L of the system,

the dissipative terms are proportional to the Knudsen

number Kn≡ λmfp=L.

The transport coefficients are calculated in the Markovian

(short-memory) approximation, which exploits the exist-

ence of disparate time scales in the system. It is worth noting

that this approximation is not only a useful tool for explicit

calculations: the Markovian level of description mimics the

effective loss of details about the initial conditions.

Irreversible dissipative hydrodynamics appears as an

effective theory of the slow degrees of freedom in its range

of applicability, see, e.g., Refs. [8–13] for derivations of

dissipative hydrodynamical equations in the Zubarev

approach.

Note that if one neglects the dissipative corrections, i.e.,

sets B ¼ 0, the statistical operator (14) actually retains its

initial form (8), i.e., local thermodynamical equilibrium is

maintained throughout the evolution of the system. One

would now naively assume that, if one calculates hTμνðxÞi
by setting B ¼ 0 in Eq. (15), i.e., if one calculates

hTμνðxÞileq, one would obtain the ideal-fluid form for the

energy-momentum tensor in local thermodynamical equi-

librium,

T̃
μν
id ðxÞ ¼ ½ϵðxÞ þ PðxÞ�uμðxÞuνðxÞ − PðxÞgμν; ð16Þ

where ϵðxÞ and PðxÞ are the local energy density and

pressure of the fluid, respectively. However, this is not true,

in fact hTμνðxÞileq ≠ T̃
μν
id ðxÞ, due to the nonlocality of

ρleq½σðτÞ� introduced by the integration over the hypersur-

face σðτÞ. In order to obtain the ideal-fluid form, one

requires an additional approximation. Namely, one needs to

assume that βμðyÞ varies sufficiently smoothly over the

hypersurface σðτÞ, such that the expectation value of some

local operator OðxÞ, hOðxÞileq ¼ Tr½ρleq½σðτÞ�OðxÞ�, will
be mainly determined by the value of the field βμðyÞ around
the point x. Corrections can be systematically taken into

account by expanding βμðyÞ in a Taylor series around x,

βμðyÞ ¼ βμðxÞ þ ∂λβμðxÞðy − xÞλ þOðð∂βÞ2Þ; ð17Þ

and then substituting it into ρleq½σðτÞ�. Introducing the four-
momentum operator of the system on the hypersurface

σðτÞ, Pν ≡
R

σðτÞ dσnμðyÞTμνðyÞ, and denoting

C≡ ∂λβνðxÞ
Z

σðτÞ
dσμðyÞðy − xÞλTμνðyÞ þOðð∂βÞ2Þ; ð18Þ

we then obtain

Z

σðτÞ
dσμðyÞβνðyÞTμνðyÞ ¼ βνðxÞPν þ C: ð19Þ

If C is a small correction to βνðxÞPν, expectation values

with respect to ρleq½σðτÞ� can be calculated perturbatively in
a power series in C, just as the one in B in Eq. (15) (see,

e.g., Ref. [15]). Since C ∼ Tμν, to linear order the expect-

ation value of the energy-momentum tensor receives

corrections proportional to the two-point function of the

energy-momentum tensor. In contrast to the terms ∼B
discussed previously, however, there are no traditional

Kubo relations to relate these corrections to transport

coefficients, since now there is no spacetime integral over

Ω, but only an integral over the hypersurface σðτÞ.
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To leading (zeroth) order, we set C ¼ 0 and insert

Eq. (19) into ρleq½σðτÞ�. One then obtains an expression

which is formally identical to the global-equilibrium

statistical operator (6), but with a spacetime dependent

βνðxÞ, which we refer to as “spacetime (x-)dependent
global equilibrium” (x-geq),

ρleq½σðτÞ�⟶
C¼0

ρx−geqðxÞ ¼ Z−1
x−qeqðxÞ exp ½−βνðxÞPν�;

Zx−geqðxÞ ¼ Tr½exp f−βνðxÞPνg�: ð20Þ

It is now obvious (by reasons of symmetry alone) that

hTμνðxÞix−geq ¼ Tr½ρx−geqTμνðxÞ� ¼ T̃
μν
id ðxÞ: ð21Þ

For this reason, the spacetime (x-)dependent global-equi-
librium energy-momentum tensor is usually referred to as

energy-momentum tensor in “local equilibrium.” We have

seen that this is not quite correct, as the true local-

equilibrium energy-momentum tensor, hTμνðxÞileq, con-

tains additional gradient terms ∼C (and powers thereof).

Therefore, although using spacetime dependent global

equilibrium sounds contradictory and much more cumber-

some than local equilibrium, we will stick to this nomen-

clature in the following, since it accurately expresses the

fact that expectation values are computed with the operator

(20) instead of the local-equilibrium statistical opera-

tor (14).

In this paper, we calculate the expectation value of the

energy-momentum tensor operator of a real scalar field

ϕðxÞ, using similar approximations for the nonequilibrium

statistical operator as outlined above. However, we deviate

from the above approach, which yields the well-known

result (21), in one important aspect. Namely, the explicit

expression for the energy-momentum tensor operator in

general involves spacetime gradients of the field operators.

Using the stationarity of the nonequilibrium statistical

operator (8), we can take these derivatives outside of the

statistical averaging, as in Eq. (9). The approximations

outlined above are then applied to the calculation of the

statistical two-point function of the fields, hϕðxÞϕðyÞi,
rather than to the calculation of the expectation value

hTμνðxÞi of the full energy-momentum tensor operator. We

show that the expression obtained for hTμνðxÞi under these
approximations involves corrections with respect to the

ideal-fluid form (16).
4
In particular, we demonstrate that the

relation between pressure and energy density, i.e., the

equation of state, is affected by these corrections and

therefore is modified with respect to the case of global

thermodynamical equilibrium. The magnitude of these

corrections is determined by the ratio of the thermal

wavelength λth to the typical spacetime homogeneity length

L of a given system. If the latter is much larger than the

former, then these additional terms can be neglected. This is

certainly true for the particular limit of global thermody-

namical equilibrium, as well as for a coarse-grained

description of macroscopic systems, where there is a clear

separation between the microscopic and the macroscopic

scales. However, this need not be the case, for example, for

relativistic hadron and heavy-ion collisions, where small

and highly inhomogeneous systems are created with a

typical macroscopic time or length scale of a few

femtometers.

The remainder of this paper is structured as follows: in

Sec. II we compute the expectation value of the energy-

momentum tensor based on the idea outlined above, using a

real scalar field as a simple, yet explicit example. In Sec. III

we derive the corrections to the equation of state in global

thermodynamical equilibrium arising from spacetime gra-

dients of the hydrodynamical fields. Our conclusions are

given in Sec. IV.

II. ALTERNATIVE CALCULATION

OF THE EXPECTATION VALUE

OF THE ENERGY-MOMENTUM TENSOR

For the sake of simplicity, we consider a real scalar field

with the action

S ¼
Z

d4xL; ð22Þ

with L being the corresponding Lagrangian

L ¼ 1

2
∂μϕ∂

μϕ −
m2

2
ϕ2 þ LintðϕÞ; ð23Þ

where the interacting part of the Lagrangian density,

LintðϕÞ, does not contain spacetime derivatives. To calcu-

late hTμνðxÞi, one needs an explicit form for the operator of

the energy-momentum tensor. The canonical one reads

TμνðxÞ ¼ ∂
μϕ∂νϕ − gμνL; ð24Þ

where the Lagrangian L is given by Eq. (22). Following the

idea formulated in the introduction, one can take the

spacetime derivatives in Eq. (24) outside the statistical

averaging, just as in Eq. (9), since the nonequilibrium

statistical operator is stationary. We then obtain
5

hTμνðzÞi ¼
�

∂
μ
x∂

ν
y −

1

2
gμν∂xα∂

α
y

�

Fðx; yÞjx¼y¼z

þ gμν
�

1

2
m2hϕ2ðzÞi − hLintðϕÞi

�

: ð25Þ

4
See also Refs. [16,17].

5
For simplicity, we will assume that the field expectation value

vanishes, hϕðxÞi ¼ 0.
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Here Fðx; yÞ denotes the statistical two-point function,

Fðx; yÞ ¼ hF̂ðx; yÞi; ð26Þ

F̂ðx;yÞ¼ 1

2
fϕðxÞ;ϕðyÞg≡1

2
½ϕðxÞϕðyÞþϕðyÞϕðxÞ�: ð27Þ

It is convenient to introduce the new variables

Z ¼ xþ y

2
; ð28Þ

Δz ¼ y − x: ð29Þ

Then,

hTμνðzÞi ¼
�

−∂
μ
Δz∂

ν
Δz þ

1

2
gμν∂Δz;α∂

α
Δz

�

F

�

Z −
Δz

2
; Z þ Δz

2

��

�

�

�

Z¼z;Δz¼0

þ
�

1

4
∂
μ
Z∂

ν
Z −

1

8
gμν∂Z;α∂

α
Z

�

F

�

Z −
Δz

2
; Z þ Δz

2

��

�

�

�

Z¼z;Δz¼0

þ gμν
�

1

2
m2hϕ2ðzÞi − hLintðϕÞi

�

: ð30Þ

The result can be compactly written as

hTμνðzÞi ¼
Z

d4Δzδð4ÞðΔzÞ
�

−∂
μ
Δz∂

ν
Δz þ

1

2
gμν∂Δz;α∂

α
Δz

�

F

�

z −
Δz

2
; zþ Δz

2

�

þ
�

1

4
∂
μ
z∂

ν
z −

1

8
gμν∂z;α∂

α
z

�

hϕ2ðzÞi þ gμν
�

1

2
m2hϕ2ðzÞi − hLintðϕÞi

�

: ð31Þ

As advertised in the introduction, we now replace the statistical average with respect to the nonequilibrium statistical

operator, h� � �i ¼ Tr½ρneq½σðτ0Þ� � � ��, by the thermal average with respect to the spacetime dependent global-equilibrium

operator at point z, h� � �iz−geq ¼ Tr½ρz−geqðzÞ � � ��, i.e., we neglect all dissipative corrections ∼B, C. We will call the result the

“gradient-corrected z-dependent global-equilibrium approximation” (gc-z-geq), which is then

T̃
μν
gc-z-geqðzÞ ¼

Z

d4Δz δð4ÞðΔzÞ
�

−∂
μ
Δz∂

ν
Δz þ

1

2
gμν∂Δz;α∂

α
Δz

�

Fz−geq

�

z −
Δz

2
; zþ Δz

2

�

þ
�

1

4
∂
μ
z∂

ν
z −

1

8
gμν∂z;α∂

α
z

�

hϕ2ðzÞiz−geq þ gμν
�

1

2
m2hϕ2ðzÞiz−geq − hLintðzÞiz−geq

�

; ð32Þ

where Fz−geqðz − Δz
2
; zþ Δz

2
Þ ¼ hF̂ðz − Δz

2
; zþ Δz

2
Þiz−geq. Equation (32) expresses the expectation value of the energy-

momentum tensor in terms of the thermal n-point functions and their derivatives. Regularization of the above expression can
be done by subtracting the corresponding expectation values at zero temperature from the thermal n-point functions.
The terms in Eq. (32) with derivatives with respect to z manifest deviations from (spacetime dependent) global

thermodynamical equilibrium where only relative positions matter. Therefore it is convenient to write the result as

T̃
μν
gc-z-geqðzÞ ¼ T̃

μν
z−geqðzÞ þ

�

1

4
∂
μ
z∂

ν
z −

1

8
gμν∂z;α∂

α
z

�

hϕ2ðzÞiz−geq; ð33Þ

where

T̃
μν
z−geqðzÞ ¼

Z

d4Δzδð4ÞðΔzÞ
�

−∂
μ
Δz∂

ν
Δz þ

1

2
gμν∂Δz;α∂

α
Δz

�

Fz−geq

�

z −
Δz

2
; zþ Δz

2

�

þ gμν
�

1

2
m2hϕ2ðzÞiz−geq − hLintðzÞiz−geq

�

: ð34Þ
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As we will now show, T̃
μν
z−geqðzÞ coincides with the expect-

ation value of the energy-momentum tensor calculated with

the z-dependent global-equilibrium statistical operator (20),

i.e., we will show that T̃
μν
z−geqðzÞ ¼ T̃

μν
id ðzÞ, in agreement

with Eq. (21). To this end, let us Fourier-transform the

statistical two-point function Fz−geqðz − Δz
2
; zþ Δz

2
Þ with

respect to the relative coordinate Δz, as follows:

Fz−geq

�

z −
Δz

2
; zþ Δz

2

�

¼ 1

ð2πÞ4
Z

d4peiΔzμp
μ

Gz−geqðp; zÞ: ð35Þ

Substituting Eq. (35) into Eq. (34) we obtain

T̃
μν
z−geqðzÞ ¼

1

ð2πÞ4
Z

d4ppμpνGz−geqðp; zÞ

þ gμν

2ð2πÞ4
Z

d4pðm2 − p2ÞGz−geqðp; zÞ

− gμνhLintðϕÞiz−geq: ð36Þ

In the following, for the sake of simplicity we set the

interactions to zero, LintðϕÞ ¼ 0, and use the kinetic

on-mass-shell approximation (see, e.g., Ref. [18]),

where Gz−geqðp; zÞ ¼ 4πδðp2 −m2Þθðp0ÞnBðβμðzÞpμÞ,
with nBðxÞ ¼ ðex − 1Þ−1 being the Bose-Einstein distribu-

tion function. Then, the last two terms in Eq. (35) vanish.

We arrive at
6

T̃
μν
z−geq ¼

1

ð2πÞ4
Z

d4ppμpνGz−geqðβμpμÞ

¼ ðϵz−geq þ Pz−geqÞuμuν − Pz−geqg
μν: ð37Þ

Here,

ϵz−geq ¼
1

ð2πÞ3
Z

d3p

p0

uμp
μuνp

νnBðβμpμÞ; ð38Þ

Pz−geq ¼ −
1

3
Δμν

1

ð2πÞ3
Z

d3p

p0

pμpνnBðβμpμÞ; ð39Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
2 þm2

p

is the on shell energy of

the particles and Δμν ≡ gμν − uμuν is the projector onto

the three-dimensional subspace orthogonal to uμ.
Equations (38) and (39) are the standard expressions for

the energy density and pressure of a noninteracting

Bose gas of particles with mass m. We thus confirm that

T̃
μν
z−geqðzÞ ¼ T̃

μν
id ðzÞ.

Let us conclude this section by mentioning that the other

terms on the right-hand side of Eq. (33) represent gradient

corrections to the energy-momentum tensor of an ideal fluid

in z-dependent global equilibrium. Usually, it is assumed

that T̃
μν
gc-z-geqðzÞ ≃ T̃

μν
z−geqðzÞ ¼ T̃

μν
id ðzÞ. This approximation

is certainly true for isotropic systems close to thermody-

namical equilibrium, but can be questioned for small and

highly inhomogeneous systems. In the next section, we will

explicitly compute these gradient corrections.

III. PSEUDOGAUGE DEPENDENCE

AND GRADIENT-CORRECTED SPACETIME

DEPENDENT ENERGY-MOMENTUM TENSOR

Equation (33) can be written in a more suggestive way as

follows:

T̃
μν
gc-z-geqðzÞ ¼ T̃

μν
z−geqðzÞ þ ΛðzÞgμν þΦ

μνðzÞ; ð40Þ

where

ΛðzÞ ¼ 1

8
∂z;α∂

α
z hϕ2ðzÞiz−geq; ð41Þ

Φ
μνðzÞ ¼ 1

4
ð∂μz∂νz − gμν∂z;α∂

α
zÞhϕ2ðzÞiz−geq: ð42Þ

One observes that

∂z;μΦ
μνðzÞ ¼ 0; ð43Þ

and, therefore, Φ
μν does not contribute to the energy-

momentum conservation equation. In effect,Φμν influences

the initial conditions only.

A natural question to ask is whether one can redefine the

energy-momentum tensor in such a way that Φμν ≡ 0. One

can show that this can be done by means of modifying the

energy-momentum tensor (24) by a so-called pseudogauge

transformation, i.e., in essence by adding suitable terms

which do not affect the energy-momentum conservation

equation,
7

T μν ¼ Tμν −
1

4
ð∂μ∂ν − gμν∂α∂

αÞϕ2; ð44Þ

to obtain the desired result.
8
Note that this energy-momen-

tum tensor yields the same four-momentum as the canoni-

cal one, and ∂μT
μν ¼ 0. Equation (40) implies that

6
For the sake of simplicity we suppress the dependence on z.

7
It has been known for a long time that there exists an

ambiguity in the definition of the energy-momentum tensor.
The energy-momentum tensor is known to be defined only up to
the derivative of an antisymmetric tensor. The possibility of a
simultaneous modification of both the energy-momentum and
spin tensors was discussed in Ref. [19].

8
This energy-momentum tensor can be also obtained by adding

a total derivative to the Lagrangian, L → L − 1

2
∂μðϕ∂μϕÞ.
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T̃
μν
gc-z-geqðzÞ ¼ T̃

μν
z−geqðzÞ þ ΛðzÞgμν: ð45Þ

Substituting Eq. (37) into Eq. (45) we readily see that

T̃
μν
gc-z-geq has the ideal-fluid form,

T̃
μν
gc-z-geq ¼ ðϵz−geqþPz−geqÞuμuν−Pz−geqg

μνþΛgμν ð46Þ

¼ ðϵgc-z-geq þ Pgc-z-geqÞuμuν − Pgc-z-geqg
μν; ð47Þ

where

ϵgc-z-geq ¼ ϵz−geq þ Λ; ð48Þ

Pgc-z-geq ¼ Pz−geq − Λ; ð49Þ

Λ ¼ 1

8
∂α∂

α
1

ð2πÞ3
Z

d3p

p0

nBðβμpμÞ: ð50Þ

One observes that ϵgc-z-geq is the (spacetime dependent)

energy density and uμ is the hydrodynamical four-velocity

in the Landau frame of T̃ μν
gc-z-geqðzÞ. Using Eqs. (47)–(50)

we conclude that T̃
μν
gc-z-geqðzÞ leads to the differential

equations of ideal hydrodynamics with an equation of

state, which, for Λ ≠ 0, is not equal to that in (spacetime

dependent) global thermodynamical equilibrium.

The expressions for the energy density and pressure

obtained in Eqs. (48) and (49) contain corrections with

respect to the global-equilibrium case. In effect, these

contributions to the energy-momentum tensor are negli-

gibly small if

jΛj
Pz−geq

≪ 1; ð51Þ

see Eq. (46). To estimate the magnitude of these correc-

tions, one would in principle first have to solve the

hydrodynamic equations with Λ ¼ 0 for β and uμ, and
then use these values for β and uμ to evaluate jΛj=Pz−geq.

To get an intuitive understanding of the magnitude of

jΛj=Pz−geq, let us compute the integral in Eq. (39) in the

local rest frame of the fluid, where u�μ ¼ ð1; 0; 0; 0Þ and

u�μp
�μ ¼ p�

0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
�2 þm2

p

. The result is

Pz−geq ¼
1

3

1

ð2πÞ3
Z

d3p�

p�
0

p
�2nBðβp�

0
Þ: ð52Þ

It is convenient to introduce the following notations:

p
�2 ≡

R

d3p�

p�
0

p
�2nBðβp�

0
Þ

R

d3p�

p�
0

nBðβp�
0
Þ

; ð53Þ

1

L2
≡

j∂α∂α
R

d3p�

p�
0

nBðβp�
0
Þj

R

d3p�

p�
0

nBðβp�
0
Þ

: ð54Þ

Then

Pz−geq ¼
1

3
p
�2
Z

d3p�

p�
0

nBðβp�
0
Þ; ð55Þ

jΛj ¼ 1

8

1

L2

Z

d3p�

p�
0

p
�2nBðβp�

0
Þ; ð56Þ

and jΛj=Pz−geq reads

jΛj
Pz−geq

¼ 3

8

1

p
�2L2

: ð57Þ

For the purpose of illustration, let us consider the

nonrelativistic, mβ ¼ m=T ≫ 1, and ultrarelativistic,

mβ ¼ m=T ≪ 1, limits. Equation (57) then becomes

jΛj
Pz−geq

∼
λ2th
L2

; ð58Þ

where λth is the thermal wavelength: λth ∼ 1=
ffiffiffiffiffiffiffi

mT
p

for

mβ ≫ 1 and λth ∼ 1=T for mβ ≪ 1. Meanwhile, L can be

interpreted as the spacetime length of homogeneity of a

system, see Eq. (54). We thus conclude that the corrections

to the global-equilibrium equation of state can be neglected

if the thermal wavelengths are much smaller than the

characteristic spacetime scales of the system,

λth

L
≪ 1: ð59Þ

Otherwise, if λth=L≳ 1, then the energy density, ϵz−leq, or

pressure, Pz−leq, can become negative, see Eqs. (48)–(50).

Such a violation of the positivity condition implies the

inapplicability of hydrodynamics,
9

and suggests that

spacetime gradients in the system are so large that one

can neither neglect the standard dissipative corrections, nor

those arising from spacetime gradients of the ideal hydro-

dynamical variables such as βν. It is worth noting that

the inequality (59) is reminiscent of the condition that the

Knudsen number should be sufficiently small for the

applicability of the hydrodynamical description. Then,

our analysis supports the view that, as an effective theory,

hydrodynamics is applicable if there is a clear separation

between the microscopic and the macroscopic scales.

As a final comment, we note that if one utilizes the

Klein-Gordon Lagrangian for spinors built with second-

9
See also Ref. [20], where the domain of validity of hydro-

dynamics applied to small systems was considered.
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order derivatives of the fields (for a review of the most

common choices of the energy-momentum and spin tensors

for Dirac fields, see, e.g., Ref. [21]), then the considered

corrections should also manifest itself for the Dirac field.

However, this issue is beyond the scope of this study.

IV. CONCLUSIONS

In the present paper, we calculated nondissipative cor-

rections to the energy-momentum tensor of a real scalar

field in a state which is described by a statistical operator

with a spacetime dependent temperature four-vector and

which is commonly identified with a local-equilibrium state.

In particular, we demonstrated that the relation between

pressure and energy density, i.e., the equation of state, is

affected by these corrections and therefore is modified with

respect to the case of global thermodynamical equilibrium.

The corrections are of second order in the ratio of the

thermal wavelength to the typical macroscopic length scale

of the system. If the thermal wavelengths are comparable in

size with the typical spatiotemporal scales of the system,

then a hydrodynamical description might fail. Our findings

support the conjecture that hydrodynamics is based on a

clear separation of scales: the microscopic scales, which are

characteristic of the underlying microscopic theory, e.g., a

quantum field theory, and the macroscopic scales, which

characterize the spatiotemporal variation of the hydrody-

namical variables. Our results present a challenge for the

hydrodynamical description of the small, inhomogeneous

systems created in hadron or hadron-ion collisions.
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