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We compute the expectation value of the energy-momentum tensor of a real scalar field in an
approximation which accounts for spacetime gradients of the hydrodynamical variables in local

thermodynamical equilibrium. We show that the energy-momentum tensor receives corrections with
respect to the standard local-equilibrium result. Notably, the relation between the energy density and
pressure, i.e., the equation of state, is modified with respect to the one in global equilibrium. The obtained

corrections might be relevant for systems created in relativistic hadron and heavy-ion collisions.
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I. INTRODUCTION

Relativistic hydrodynamics (see Ref. [1] for a recent
review of theories of relativistic dissipative hydrodynamics)
is successfully applied at very different scales: from hadron
and heavy-ion collisions [2—4] to astrophysics [5,6]. The
applicability of hydrodynamics indicates the validity of
some reduced description for a given system. Here,
“reduced description” means that the state of a system
can be characterized by the knowledge of the expectation
values of some observables only. It has been well known for
a long time (see Ref. [7]) that the statistical operator p of a
state which is “least biased” as far as unmonitored degrees
of freedom are concerned maximizes the von Neumann
entropy, S = —Tr[pInp], subject to the constraints

(An) = Tr[A,p], (1)

Tr[p] =1, (2)

where (A,) are the expectation values of some (relevant)
observables (operators) A,. The statistical operator is then
given by that of a generalized Gibbs state
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p=1Lexp (—ZA) ()

where a,, are the corresponding Lagrange multipliers and

Z="Tr {exp <—Zn:anAn>] (4)

is the partition function which, as a normalizing factor in
Eq. (3), ensures that Trp] = 1.

The crucial point for the applicability of the reduced
description is the choice of the set of relevant observables.
For a quantum field-theoretical system in a heat bath of
temperature 7, without a conserved charge and in global
equilibrium, the sole relevant observable is the Hamilton
operator H, and the statistical operator reads in the rest
frame of the system

deq,RF = Tr[exp (_ﬂH)]’

(5)

Pgeq.RF = delq,RF exp (—pH),

where f=1/ T." If the system moves at a constant four-
velocity u*, this expression is easily generalized to’

'We use natural units # = ¢ = kg = 1.
“We use the metric convention ¢ = diag(+1,-1,-1,-1).

Published by the American Physical Society



SERGII V. AKKELIN and DIRK H. RISCHKE

PHYS. REV. D 112, 036018 (2025)

pgeq = delq €Xp <_ﬂ1/Py)’ deq = TI'[CXp (_ﬂypbﬂ’ (6)
where 5, = pu, and P” is the four-momentum operator.
For a system without a conserved charge which is in the
hydrodynamic regime, instead of in global equilibrium, the
relevant observable is the operator of the spacetime
dependent energy-momentum tensor 7#*(x). A reduced
description can be achieved (and hydrodynamic equations
can be derived) utilizing Zubarev’s formalism of the
nonequilibrium statistical operator [8—11] (for modern
developments, see Ref. [12] and references therein). In
Zubarev’s approach [8] the nonequilibrium statistical
operator maximizes the entropy subject to the following
initial-state constraint imposed on a three-dimensional
spacelike hypersurface ¢(z,) with a timelike normal vector

n,(x):
n, (%) T (x) = m, () (T (x)). (7)

The left-hand side of the above equation is determined by a
true state of the system, with energy-momentum tensor
T#(x), and the right-hand side features the expectation
value of the energy-momentum tensor operator calculated
with the nonequilibrium statistical operator, (---) =
Tr[ppeq[0(70)] - - -]. Maximizing the entropy is essentially
synonymous to assuming that the initial state of the system
is in local thermodynamical equilibrium. Consequently,
the nonequilibrium statistical operator reads [13]

pioto =il -

do, (y)ﬂy(y)T””(y)},
o(7)

Zualoten) =Te|exp{ - [ (To>do,,<y>ﬂy<y>w<y>}], (®)

where do,(y) =don,(y). The inverse four-temperature
vector f3,(y) = f(y)u,(y) is now a spacetime dependent
field, with u,(y) being the local four-velocity of the
system [on a spacetime point y on o(zy)], normalized as
u,(y)u*(y) = 1. In this approach there is a continuum of
constraints: on the whole hypersurface o(z) the relevant
local observables, such as the energy-momentum tensor on
the left-hand side of Eq. (7), are equal to the expectation
values of the corresponding local quantum operators with
respect to the statistical operator, i.e., the expectation value
of the energy-momentum tensor operator on the right-hand
side of Eq. (7).

The initial state, p,cq[0(7))], characterizes an actual state
of the system. This initial condition is not very restrictive if
almost all initial states consistent with the above constraints
evolve (in the Schrodinger picture) towards some

hydrodynamical attractor (see, e.g., Ref. [14]), where such
states become empirically indistinguishable with respect to
the set of relevant observables and most details of the actual
initial microscopic conditions become irrelevant. In the
original Zubarev approach the nonequilibrium statistical
operator maximizes the entropy subject to constraints
imposed in the infinitely remote past [8]. For the descrip-
tion of the transient evolution of matter in hadron and
heavy-ion collisions it is more natural, however, to use
initial conditions which correspond to the beginning of the
collision, i.e., on a suitably chosen hypersurface (7). The
corresponding reformulation of Zubarev’s method was
discussed in Ref. [13].

In the Heisenberg picture, by definition the statistical
operator does not change with time or, if some one-
parameter family of three-dimensional spacelike hyper-
surfaces o(r) is defined, the statistical operator does not
change with 7. This allows us to take spacetime gradients
out of the statistical averaging with p,.[c(7))], i.e., the
conservation equations determining the Lagrange multi-
pliers can be written as

(9,1 (x)) = 9,(T"(x)) = 0. ©)

Note that Eq. (9) is time reversible.?

Nevertheless, the fact that peq[c(7g)] does not change
with time does not mean that it retains its functional form
(8) on a three-dimensional spacelike hypersurface o(z) with
7 > 7. In fact, due to irreversible dissipative processes
driven by spacetime gradients of the hydrodynamical
variables (i.e, in our case f3,), the system will deviate from
the initial local-equilibrium state on ¢(zy) in the course of
its evolution. This can be seen as follows: using Gauss’
theorem and energy-momentum conservation one obtains

- L - do,(y)B,(y)T*(y)

__/ do, (y)B, (y) T (y) + / d*z7"(2)0. ., ().
o(7) Q
(10)

Here, the four-dimensional spacetime volume € is enclosed
by the two spacelike hypersurfaces o(zy) and o(z) and
timelike hypersurfaces connecting these two, where
B,(y)T*(y) is supposed to vanish. Then, the nonequili-
brium statistical operator can be written as [13]

’In the original Zubarev approach [8], the reversibility of
the exact conservation equations is broken by adding an infini-
tesimally small source term on the right-hand side of the
evolution equation for the statistical operator in the Heisenberg
representation.
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palo(e0)] = Ziblota) exp | [ _ dnWALIT0)
-zt esp = [ o, (8007
+ [2 d“zT"”(Z)@z.ﬂﬂy(Z)} : (11)
For the following, we define
a= [ 4O, (12)
b= [ dar(0.06,00) (13)

and assume that B is small compared to A, which is true if
d,,p,(z) is sufficiently small. Consequently, to leading
(zeroth) order in B the nonequilibrium statistical operator is
equal to the local-equilibrium statistical operator on the
hypersurface o(z) [13]

Pralo ()] = Zik ()] exp [— / K <y>ﬁy<y>w<y>} ,

Lot = Te|exp { - | i o, 0RO} 14

Corrections to the leading order can be computed pertur-
batively; to linear (first) order in B, one obtains [13]

+ O(B?), (15)

prloteo)l = pralo(@)] (14 [ i B - ),

where (- - +)ioq = Tr[pieq[0(7)] - - }]. Since B ~ T, calculat-
ing the expectation value of the energy-momentum tensor,
(T (x)), including these corrections one obtains terms
involving two-point correlation functions of the energy-
momentum tensor. These can be expressed in terms of
transport coefficients using the well-known Kubo relations.
One thus obtains the well-known dissipative terms in the
equations of motion of dissipative hydrodynamics. Since
the transport coefficients are proportional to the mean free
path A, of particles in the system, while df is inversely
proportional to the length of homogeneity L of the system,
the dissipative terms are proportional to the Knudsen
number Kn = 4,5,/ L.

The transport coefficients are calculated in the Markovian
(short-memory) approximation, which exploits the exist-
ence of disparate time scales in the system. It is worth noting
that this approximation is not only a useful tool for explicit
calculations: the Markovian level of description mimics the
effective loss of details about the initial conditions.
Irreversible dissipative hydrodynamics appears as an

effective theory of the slow degrees of freedom in its range
of applicability, see, e.g., Refs. [8§—13] for derivations of
dissipative hydrodynamical equations in the Zubarev
approach.

Note that if one neglects the dissipative corrections, i.e.,
sets B = 0, the statistical operator (14) actually retains its
initial form (8), i.e., local thermodynamical equilibrium is
maintained throughout the evolution of the system. One
would now naively assume that, if one calculates (7#(x))
by setting B=0 in Eq. (15), i.e., if one calculates
(T"(x))1eq> one would obtain the ideal-fluid form for the
energy-momentum tensor in local thermodynamical equi-
librium,

T3 (x) = [e(x) + P()]Juw (x)u* (x) = P(x)g™,  (16)

where €(x) and P(x) are the local energy density and
pressure of the fluid, respectively. However, this is not true,
in fact (T%(x)),q # T’y (x), due to the nonlocality of
Pieqlo(7)] introduced by the integration over the hypersur-
face o(7). In order to obtain the ideal-fluid form, one
requires an additional approximation. Namely, one needs to
assume that f,(y) varies sufficiently smoothly over the
hypersurface o(7), such that the expectation value of some
local operator O(x), (O(x))eq = Tr[pieq[0(7)]O(x)], will
be mainly determined by the value of the field $,(y) around
the point x. Corrections can be systematically taken into
account by expanding f,(y) in a Taylor series around x,

Bu(y) = Bu(x) + 0,8, (x)(y = x) + O((0p)*). (17

and then substituting it into pj.q[c(7)]. Introducing the four-
momentum operator of the system on the hypersurface
o(z), P* = [, don,(y)T"(y), and denoting

C=0,p,(x) /

o(t

) do, (y)(y = x)*T*(y) + O((9p)*), (18)
we then obtain

/ AR OBOIT) = AL C (1)

If C is a small correction to f,(x)P", expectation values
with respect to pjq[(7)] can be calculated perturbatively in
a power series in C, just as the one in B in Eq. (15) (see,
e.g., Ref. [15]). Since C ~ T*, to linear order the expect-
ation value of the energy-momentum tensor receives
corrections proportional to the two-point function of the
energy-momentum tensor. In contrast to the terms ~B
discussed previously, however, there are no traditional
Kubo relations to relate these corrections to transport
coefficients, since now there is no spacetime integral over
Q, but only an integral over the hypersurface o(7).
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To leading (zeroth) order, we set C =0 and insert
Eq. (19) into piq[o(z)]. One then obtains an expression
which is formally identical to the global-equilibrium
statistical operator (6), but with a spacetime dependent
B, (x), which we refer to as “spacetime (x-)dependent
global equilibrium” (x-geq),

Preql0(0)] = Pr—geq (%) = Zikieq (x) exp [, (x) P,

Zx—geq (X) = Tr[exp {_ﬂv(x)Pb}]’ (20)

It is now obvious (by reasons of symmetry alone) that

<T”U(x)>x—geq = TrLox—gequw(x)] = Tﬁ;(x) (21)

For this reason, the spacetime (x-)dependent global-equi-
librium energy-momentum tensor is usually referred to as
energy-momentum tensor in “local equilibrium.” We have
seen that this is not quite correct, as the true local-
equilibrium energy-momentum tensor, (7**(x))q, con-
tains additional gradient terms ~C (and powers thereof).
Therefore, although using spacetime dependent global
equilibrium sounds contradictory and much more cumber-
some than local equilibrium, we will stick to this nomen-
clature in the following, since it accurately expresses the
fact that expectation values are computed with the operator
(20) instead of the local-equilibrium statistical opera-
tor (14).

In this paper, we calculate the expectation value of the
energy-momentum tensor operator of a real scalar field
¢(x), using similar approximations for the nonequilibrium
statistical operator as outlined above. However, we deviate
from the above approach, which yields the well-known
result (21), in one important aspect. Namely, the explicit
expression for the energy-momentum tensor operator in
general involves spacetime gradients of the field operators.
Using the stationarity of the nonequilibrium statistical
operator (8), we can take these derivatives outside of the
statistical averaging, as in Eq. (9). The approximations
outlined above are then applied to the calculation of the
statistical two-point function of the fields, (¢p(x)@(y)),
rather than to the calculation of the expectation value
(T (x)) of the full energy-momentum tensor operator. We
show that the expression obtained for (7#*(x)) under these
approximations involves corrections with respect to the
ideal-fluid form (1 6).4 In particular, we demonstrate that the
relation between pressure and energy density, i.e., the
equation of state, is affected by these corrections and
therefore is modified with respect to the case of global
thermodynamical equilibrium. The magnitude of these
corrections is determined by the ratio of the thermal
wavelength A, to the typical spacetime homogeneity length
L of a given system. If the latter is much larger than the

“See also Refs. [16,17].

former, then these additional terms can be neglected. This is
certainly true for the particular limit of global thermody-
namical equilibrium, as well as for a coarse-grained
description of macroscopic systems, where there is a clear
separation between the microscopic and the macroscopic
scales. However, this need not be the case, for example, for
relativistic hadron and heavy-ion collisions, where small
and highly inhomogeneous systems are created with a
typical macroscopic time or length scale of a few
femtometers.

The remainder of this paper is structured as follows: in
Sec. I we compute the expectation value of the energy-
momentum tensor based on the idea outlined above, using a
real scalar field as a simple, yet explicit example. In Sec. III
we derive the corrections to the equation of state in global
thermodynamical equilibrium arising from spacetime gra-
dients of the hydrodynamical fields. Our conclusions are
given in Sec. IV.

II. ALTERNATIVE CALCULATION
OF THE EXPECTATION VALUE
OF THE ENERGY-MOMENTUM TENSOR

For the sake of simplicity, we consider a real scalar field
with the action

S = / d*xL, (22)

with £ being the corresponding Lagrangian

1 m?
L=30,00"¢ = ¢ + Lin(), (23)

where the interacting part of the Lagrangian density,
L (), does not contain spacetime derivatives. To calcu-
late (T#*(x)), one needs an explicit form for the operator of
the energy-momentum tensor. The canonical one reads

T (x) = "o — g L, (24)
where the Lagrangian £ is given by Eq. (22). Following the
idea formulated in the introduction, one can take the
spacetime derivatives in Eq. (24) outside the statistical

averaging, just as in Eq. (9), since the nonequilibrium
statistical operator is stationary. We then obtain’

1
(1) = (005 = 374005 F5 9

o (G - Enld)). 25)

>For simplicity, we will assume that the field expectation value
vanishes, (¢(x)) = 0.
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Here F(x,y) denotes the statistical two-point function,

F(xy) = (F(x.y), (26)
F(x.) = 3 {000,400} = 5 [2)00) + (1)) @7)
It is convenient to introduce the new variables
z=" ‘ZL . (28)
Az=y-x. (29)

Then,

1 Az Az
(TH(z)) = (-a‘ZZaUAZ + EguvamyaagJF(z — 5 Z+ —)

Z=z7,Az=0

Z=z,Az=0

The result can be compactly written as

1 A A
(T (2)) = / d*Az6@ (Az) (—&‘gzagz +3 guuaAz,aagJ F (z - 71 I+ ;)

+ (o0 = g 0.0t ) P2 + 0 (P2 - (L)) 31)

As advertised in the introduction, we now replace the statistical average with respect to the nonequilibrium statistical
operator, (---) = Tr[pyeq[c(7o)] - - |, by the thermal average with respect to the spacetime dependent global-equilibrium
operator at point z, (- ) ,_eeq = Tr[p._geq(2) - - °], i-€., we neglect all dissipative corrections ~B, C. We will call the result the
“gradient-corrected z-dependent global-equilibrium approximation” (gc-z-geq), which is then

Tglé—z—geq(z) = / d4AZ 5(4) (AZ> <_a‘ZZaIZZ =+ %g’waAz.aagz> Fz—geq (Z - % , 2+ %)
1 1 1
+ (G010t = 000 )P+ (3PP O ) G

where F,_yeq(z =5 .2+ 5) = (F(z =5 .2+5%),_geq- Equation (32) expresses the expectation value of the energy-

momentum tensor in terms of the thermal n-point functions and their derivatives. Regularization of the above expression can

be done by subtracting the corresponding expectation values at zero temperature from the thermal n-point functions.
The terms in Eq. (32) with derivatives with respect to z manifest deviations from (spacetime dependent) global

thermodynamical equilibrium where only relative positions matter. Therefore it is convenient to write the result as

Ml can(2) = Pa(a) 4 (0008 = 40,008 ) P(0) s 33)
where
Th geq(z) = / d*Az6W (Az) (—a‘gza”AZ + % g0 Awa&) Fo_geq <z - % 2+ %)
0 (5P = (e ) (34)
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As we will now show, T%%4q(z) coincides with the expect-
ation value of the energy-momentum tensor calculated with
the z-dependent global-equilibrium statistical operator (20),
i.e., we will show that T4 eq(z) = T% (z), in agreement
with Eq. (21). To this end, let us Fourier-transform the
statistical two-point function F,_g,(z — 5%,z + %) with
respect to the relative coordinate Az, as follows:

Az Az
F seq -5t

1 o
= Gyt [ AP G(p) (39)

Substituting Eq. (35) into Eq. (34) we obtain

~ 1
T geq(2) = 2n)* / d*pp P*Ggeq(p. 2)
2
+ ﬁ / d4p(m2 - pz)Gz—geq(pv Z)
- gﬂp <£int(¢)>z—geq' (36)

In the following, for the sake of simplicity we set the
interactions to zero, L;(¢) =0, and use the kinetic
on-mass-shell approximation (see, e.g., Ref. [18]),
where  G_geq(p.2) = 4n6(p* — m*)0(po)ng(B,(2) p"),
with ng(x) = (e* — 1)7! being the Bose-Einstein distribu-
tion function. Then, the last two terms in Eq. (35) vanish.
We arrive at®

- 1
T geq = @ / d* pp# p*G_geq (Bup*)

= (ez—geq + 7Dz—geq)”’u”ty - 7Dz—gquw- (37)
Here,

1 d’p )
€1—geq — (271_)3/17014;417””1/17 nB(ﬂyp”)’ (38)

1 1 [dp
Prgeq = _§AﬂUW/%p}p nB(ﬁﬂpM)’ (39)

where py = +/p>+m? is the on shell energy of
the particles and A, = g,, — u,u, is the projector onto
the three-dimensional subspace orthogonal to u*.
Equations (38) and (39) are the standard expressions for
the energy density and pressure of a noninteracting
Bose gas of particles with mass m. We thus confirm that
T’zligeq(z) = Tlil:(z)'

Let us conclude this section by mentioning that the other
terms on the right-hand side of Eq. (33) represent gradient

®For the sake of simplicity we suppress the dependence on z.

corrections to the energy-momentum tensor of an ideal fluid
in z-dependent global equilibrium. Usually, it is assumed
that The -geq(2) = T4 4eq(z) = T4y (z). This approximation
is certainly true for isotropic systems close to thermody-
namical equilibrium, but can be questioned for small and
highly inhomogeneous systems. In the next section, we will
explicitly compute these gradient corrections.

III. PSEUDOGAUGE DEPENDENCE
AND GRADIENT-CORRECTED SPACETIME
DEPENDENT ENERGY-MOMENTUM TENSOR

Equation (33) can be written in a more suggestive way as
follows:

ng—Z—geq(Z) = Tgigeq(z) + A(2)g" + @*(z), (40)

where
AGR) = 000 (2)) e (41)
() = (0h — 0, 0 P (D)o (42)

One observes that
0., P"(z) =0, (43)

and, therefore, ®** does not contribute to the energy-
momentum conservation equation. In effect, ®* influences
the initial conditions only.

A natural question to ask is whether one can redefine the
energy-momentum tensor in such a way that ®* = (. One
can show that this can be done by means of modifying the
energy-momentum tensor (24) by a so-called pseudogauge
transformation, i.e., in essence by adding suitable terms
which do not affect the energy-momentum conservation
equation,7

1
TW =T - (- 00 (M)

to obtain the desired result.® Note that this energy-momen-
tum tensor yields the same four-momentum as the canoni-
cal one, and d,7*" = 0. Equation (40) implies that

It has been known for a long time that there exists an
ambiguity in the definition of the energy-momentum tensor.
The energy-momentum tensor is known to be defined only up to
the derivative of an antisymmetric tensor. The possibility of a
simultaneous modification of both the energy-momentum and
spigl tensors was discussed in Ref. [19].

This energy-momentum tensor can be also obtained by adding
a total derivative to the Lagrangian, £ — L — 10, (40" ¢).
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ngz geq( ) = leligeq(z) + A(Z)g’w- (45)

Substituting Eq. (37) into Eq. (45) we readily see that
T has the ideal-fluid form,

ge-z-geq
Tt zoseq = (€2-geq T Pemgeq) W' = Pr_ygeqd” + Ag™  (46)
= (€gc-r-geq T Poczgeq) W' = Pocrgeqd”s  (47)

where
€gc-z-geq = €z—geq T A, (48)
Poczgeq = Prmgeq — I\ (49)
A=gor s | . (50)

8 (2n)*) po

One observes that €, o is the (spacetime dependent)
energy density and u# is the hydrodynamical four-velocity
in the Landau frame of Tgc - geq(z). Using Eqgs. (47)—(50)
we conclude that 7% ..,(z) leads to the differential
equations of ideal hydrodynamics with an equation of
state, which, for A # 0, is not equal to that in (spacetime
dependent) global thermodynamical equilibrium.

The expressions for the energy density and pressure
obtained in Egs. (48) and (49) contain corrections with
respect to the global-equilibrium case. In effect, these
contributions to the energy-momentum tensor are negli-
gibly small if

AL <1, (51)
P:geq

see Eq. (46). To estimate the magnitude of these correc-
tions, one would in principle first have to solve the
hydrodynamic equations with A =0 for f# and ¥, and
then use these values for f and u* to evaluate [A[/P,_ge,.
To get an intuitive understanding of the magnitude of
|A|/P._geq- let us compute the integral in Eq. (39) in the
local rest frame of the fluid, where u* = (1,0,0,0) and

w,p™ = p§ = /p** + m*. The result is
11 d*pr .
Prgeq = 5(27)3 P p“ns(Bpg)- (52)

It is convenient to introduce the following notations:

30k

P n(Bp)
d3p* *

f Py ns(ﬁpo)

=
1

(53)

1 10,0 (Bro)l
EE dz * . (54)
f . nB(ﬁPo)
Then
1— [ dp*
Pz—geq = gp*z/ P B(ﬁpo) (55)
N =57 [ 2 i) (56)
=77 | =P ne(Bpg).
8L2 pO 0
and |A|/P,_geq reads
A 3 1
Al S —— (57)
Pz—geq 8p*2L2

For the purpose of illustration, let us consider the
nonrelativistic, mpf =m/T > 1, and ultrarelativistic,
mf =m/T < 1, limits. Equation (57) then becomes

2
N -
P geq L

where Ay, is the thermal wavelength: Ay ~ 1/y/mT for
mf > 1 and Ay, ~ 1/T for mp < 1. Meanwhile, L can be
interpreted as the spacetime length of homogeneity of a
system, see Eq. (54). We thus conclude that the corrections
to the global-equilibrium equation of state can be neglected
if the thermal wavelengths are much smaller than the
characteristic spacetime scales of the system,

A
— < 1. 5
L < (59)

Otherwise, if Ag,/L 2 1, then the energy density, €,_jq, OF
pressure, P,_j.q, can become negative, see Eqgs. (48)—(50).
Such a violation of the positivity condition implies the
inapplicability of hydrodynamics,” and suggests that
spacetime gradients in the system are so large that one
can neither neglect the standard dissipative corrections, nor
those arising from spacetime gradients of the ideal hydro-
dynamical variables such as f,. It is worth noting that
the inequality (59) is reminiscent of the condition that the
Knudsen number should be sufficiently small for the
applicability of the hydrodynamical description. Then,
our analysis supports the view that, as an effective theory,
hydrodynamics is applicable if there is a clear separation
between the microscopic and the macroscopic scales.

As a final comment, we note that if one utilizes the
Klein-Gordon Lagrangian for spinors built with second-

°See also Ref. [20], where the domain of validity of hydro-
dynamics applied to small systems was considered.
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order derivatives of the fields (for a review of the most
common choices of the energy-momentum and spin tensors
for Dirac fields, see, e.g., Ref. [21]), then the considered
corrections should also manifest itself for the Dirac field.
However, this issue is beyond the scope of this study.

IV. CONCLUSIONS

In the present paper, we calculated nondissipative cor-
rections to the energy-momentum tensor of a real scalar
field in a state which is described by a statistical operator
with a spacetime dependent temperature four-vector and
which is commonly identified with a local-equilibrium state.
In particular, we demonstrated that the relation between
pressure and energy density, i.e., the equation of state, is
affected by these corrections and therefore is modified with
respect to the case of global thermodynamical equilibrium.
The corrections are of second order in the ratio of the
thermal wavelength to the typical macroscopic length scale
of the system. If the thermal wavelengths are comparable in
size with the typical spatiotemporal scales of the system,
then a hydrodynamical description might fail. Our findings
support the conjecture that hydrodynamics is based on a
clear separation of scales: the microscopic scales, which are

characteristic of the underlying microscopic theory, e.g., a
quantum field theory, and the macroscopic scales, which
characterize the spatiotemporal variation of the hydrody-
namical variables. Our results present a challenge for the
hydrodynamical description of the small, inhomogeneous
systems created in hadron or hadron-ion collisions.
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