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Lattice Monte Carlo simulations and the functional renormalization group (RG) are powerful approaches

that allow for quantitative studies of nonperturbative phenomena such as bound-state formation,

spontaneous symmetry breaking, and phase transitions. While results from both methods have recently

shown remarkable agreement for many observables, e.g., in quantum chromodynamics, an analysis of

deviations in certain quantities turns out to be challenging. This is because calculations with the two

methods are based on different approximations, regularizations, and scale fixing procedures. In the present

work, we present a framework for a more direct comparison by formulating the functional RG approach on

a finite spacetime lattice. This removes all ambiguities of regularization, finite-size, and scale fixing

procedures in concrete studies. By investigating the emergence of spontaneous symmetry breaking and

phase transitions in a Zð2Þ scalar theory in d ¼ 1, 2, and 3 spacetime dimensions, we demonstrate at the

example of the local potential approximation how this framework can be used to evaluate and compare the

systematic errors of both approaches.
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I. INTRODUCTION

Phase transitions in strongly coupled systems are inten-

sively studied in many areas of research and require non-

perturbative methods to arrive at reliable theoretical

predictions. One example is quantum chromodynamics

(QCD), whose phase structure is relevant for the early

Universe, heavy-ion collisions, and neutron star physics.

In recent years, investigations at high temperature and low

densities have been pushed to a new level with first-

principles calculations, see, e.g., Refs. [1–17] for recent

lattice QCD studies, Refs. [18–25] for recent first-principles

studies based on functional approaches, and Refs. [26–29]

for reviews. While both approaches are inherently non-

perturbative, they have complementary systematic errors,

strengths, and weaknesses. This motivates a systematic

understanding of the former by detailed comparisons.

Although results from lattice QCD calculations and

first-principles functional studies show remarkable agree-

ment for many observables, an analysis of the origin of

differences remains difficult, due to the many possible

sources, such as different implementations of the QCD

action and its symmetries, cutoff effects, finite-volume

effects, and truncations. Moreover, different scale fixing

procedures are often used in lattice Monte Carlo (MC) and

functional studies which potentially results in a nontrivial

matching procedure for the parameters of the theory under

consideration. However, for a quantitative comparison and

a rigorous understanding of the effect of approximations, it

is necessary to eliminate any nontrivial matching procedure

for parameters.

In this work we aim to overcome some of these problems

by formulating the functional renormalization group (RG)

approach on a finite spacetime lattice. This allows us to

trivially relate the bare actions entering lattice MC and

functional renormalization group (fRG) studies and, in

particular, obviates a continuum limit before a meaningful

comparison. As a first step, we restrict ourselves to a scalar

theory without gauge degrees of freedom. This provides a

useful framework for a quantitative analysis of the effect of
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a plethora of artifacts which are also present in QCD

studies, such as cutoff artifacts, finite-volume effects, and

truncation artifacts. Artifacts associated with different

fermion implementations in lattice simulations may in

principle be analyzed within such a framework as well.

Moreover, the possibility of a clear comparison between the

two methods is appealing as it may trigger a cross-

fertilization with respect to improvements of both methods.

Based on earlier fRG studies of quantum field theories

in a finite spacetime volume [30–34] and on a spacetime

lattice [35–39], we set up a framework for clean direct

comparisons of lattice MC and fRG studies, which allows

for a quantitative understanding of the effect of the

approximations underlying these two methods. This is of

particular relevance for QCD applications but also beyond.

For concreteness, we shall focus on a Zð2Þ scalar field

theory in d ¼ 1, 2, 3 spacetime dimensions in the present

work since it is simulable with high precision and allows

for particularly clean comparisons of this kind. The con-

sideration of different numbers of spacetime dimensions is

interesting as it allows us to directly test whether a

nontrivial momentum dependence in correlation functions

is indeed suppressed when the number of spacetime

dimensions is increased. Because of dimensional reduction,

the case of spin-type models in d ¼ 3 is of particular

interest for QCD at finite temperature. For example,

Oð4Þ-type models are expected to provide an effective

description of the chiral QCD phase transition at low

densities and the restoration of the Zð2Þ symmetry may

play a prominent role close to a potentially existing critical

end point in the QCD phase diagram.

This work is organized as follows: In Sec. II, we

introduce the concrete model for our numerical studies.

The two methods considered in our present work, lattice

MC and lattice fRG, are then discussed in Secs. III and IV,

respectively. While we keep the general introduction of the

lattice MC approach brief, we provide a more detailed

discussion of the lattice fRG approach. In general, the latter

provides us with a set of differential equations for corre-

lation functions on a spacetime lattice. In addition to a

discussion of regulator functions, general aspects of RG

flows on a spacetime lattice, and the connection to the

standard continuum fRG approach, we discuss the trunca-

tion underlying our numerical calculations and show in

which limits this truncation already provides us with exact

results. To be specific, we consider the so-called local

potential approximation (LPA) in our numerical studies

which corresponds to the leading-order approximation in

terms of a derivative expansion of the effective action. Note

that this truncation is the simplest truncation in the fRG

approach which already includes fluctuation effects. Our

main results are presented in Sec. V, where we also provide

an intrinsic estimate of the uncertainties of LPA by a direct

computation of momentum-dependent corrections to the

two-point function. In addition, we compare lattice MC and

fRG results for the order parameter of our Zð2Þ model and

the susceptibility across lattices with different sizes. Our

conclusions can be found in Sec. VI.

II. MODEL

We consider a single-component real scalar field ϕ on a

d-dimensional isotropic lattice V ¼ fx ¼ ðx1;…; xdÞjxμ ¼
anμ; nμ ∈ f0;…; Nμ − 1gg ⊂ ðaZÞd with lattice spacing a

and periodic boundary conditions for ϕ. The extent of the

lattice is assumed to be the same in all directions,Nμ ¼ Nσ.

The partition function reads

Z½J� ¼
Z

Dϕe−S½ϕ�þJ·ϕ; ð1Þ

where J · ϕ ¼ ad
P

x∈V Jxϕx, S½ϕ� ¼ Sðfϕx∈VgÞ,1 and the
measure of the partition function is defined as

Z

Dϕ ¼
Y

y∈V

adϕ
Z

∞

−∞

dϕy: ð2Þ

Here, dϕ ¼ ðd − 2Þ=2 is the mass dimension of the field ϕ.

Note that, with this definition of the measure, the path

integral is dimensionless.

Furthermore, we work with a discretized bare action S½ϕ�
of the following form:

S½ϕ� ¼ ad
X

x∈V

�

1

2

X

d

μ¼1

Δ
f
μϕxΔ

f
μϕx þ UðϕxÞ

�

; ð3Þ

where Δ
f
μϕx ¼ ðϕxþeμ

− ϕxÞ=a is the discretized forward

derivative and UðϕxÞ denotes the bare potential of the form

UðϕxÞ ¼
1

2
m2ϕ2

x þ
1

4!
λϕ4

x − cϕx: ð4Þ

Here, we introduced an external homogeneous field c
which couples linearly to the field ϕ. For the quartic

coupling we assume λ > 0.

By rewriting the kinetic part of the action (3) in

momentum space, we find

S½ϕ� ¼ 1

V

X

q∈ Ṽ

ϵ2q

2
ϕ̃−qϕ̃q þ ad

X

x∈V

UðϕxÞ; ð5Þ

where V ¼ ðaNσÞd denotes the volume of the system and

Ṽ ¼ fq ¼ ðq1;…; qdÞjqμ ¼
2πnμ
aNσ

; nμ ∈ f0;…Nσ − 1gg the

corresponding momentum space. The kinetic energy ϵq is

defined as

1
From here on, A½ϕ� is short for Aðfϕx∈VgÞ.
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ϵ2q ¼
X

d

μ¼1

�

2

a
sin

�

1

2
aqμ

��

2

: ð6Þ

This quantity determines the kinetic energy levels for a

given lattice momentum q. Note that the functional form

of the kinetic energy reflects the periodic boundary

conditions.

A. Spontaneous symmetry breaking

Spontaneous symmetry breaking (SSB) of the global

Zð2Þ symmetry of our theory can be realized only in the

thermodynamic limit, Nσ →∞ (for a fixed lattice spacing).

In any finite volume quantum fluctuations inevitably

restore the Zð2Þ symmetry. From a mathematical stand-

point, SSB can be defined as a limiting process where an

external Zð2Þ symmetry breaking source (e.g., given in

form of the parameter c in our action above) is removed

after the extrapolation to the infinite volume limit has

been taken.

An order parameter for spontaneous Zð2Þ symmetry

breaking is given by the “magnetization,”

hMi ≔ lim
c→0

lim
V→∞

hMiV;c; ð7Þ

where M is the average field value

M ¼ ad

V

X

x∈V

ϕx; ð8Þ

and h·iV;c is the expectation value with respect to the

partition function (1) for a system in a volume V in the

presence of an external field c. The Zð2Þ symmetry is said

to be spontaneously broken, if hMi ≠ 0 for a given fixed

lattice spacing.

Whether the Zð2Þ symmetry can be spontaneously

broken in the ground state at all depends on the number

of spacetime dimensions. To be specific, the Mermin-

Wagner theorem forbids SSB in d < 2 spacetime dimen-

sions which results in a vanishing magnetization, i.e.,

hMi ¼ 0 for d < 2, regardless of the exact values of the

model parameters. Note that, for theories with a continuous

symmetry, such as OðN > 1Þ, there is no SSB even in

d ¼ 2 spacetime dimensions due to the presence of mass-

less Nambu-Goldstone bosons.

We emphasize that the role of the explicit symmetry

breaking term in the definition of the magnetization (7) is

crucial, since it distinguishes a direction in field space

along which the formation of a nontrivial minimum is

energetically favored, such that hMiV;c>0 > 0. Without

external field c, the magnetization would vanish for all

finite volumes, i.e., hMiV;c¼0 ¼ 0, and consequently, the

limit in Eq. (7) would vanish for all bare actions with a

global Zð2Þ symmetry, regardless of the number of space-

time dimensions.

Quantum fluctuations associated with bosonic degrees of

freedom tend to restore the symmetry in the ground state.

Therefore, it is necessary (but not sufficient) to choose

m2 < 0 in Eq. (3) in order to obtain a ground state in the full

quantum theory which is governed by spontaneous Zð2Þ
symmetry breaking. Indeed, provided m2 has been chosen

smaller than a critical value which depends on the param-

eters d and λ, the magnetization remains finite in d ≥ 2

spacetime dimensions, even after all quantum fluctuations

have been integrated out.

B. Effective potential

Many physical observables of our model can be directly

extracted from the effective potential U, which is the

potential contribution of the effective action for vanishing

external fields, c ¼ 0. The effective potential inherits the

Zð2Þ symmetry of the bare action and is given by the

Legendre transform of the Schwinger functional W ¼ lnZ

at c ¼ 0 evaluated at a constant field configuration

ϕ ¼ ðϕxÞx∈V ¼ ðφ;…;φÞ,2

UðφÞ ¼ 1

V
sup
J

�

ϕ · J −Wc¼0½J�
�

: ð9Þ

Assuming the field configuration at the supremum Jsup is

homogeneous, Jsup ¼ ðj;…; jÞ,3 the supremum over J can

be replaced by a one-dimensional supremum over j. In this

case, together with ϕ · J ¼ Vφj, Eq. (9) can be rewritten as

UðφÞ ¼ 1

V
sup
j

�

Vφj −Wc¼0½J ¼ ðj;…; jÞ�
�

: ð10Þ

Now we can utilize that the parameter c in the potential (4)

enters the partition function in the same way as the source

term, i.e., Wc¼0½J ¼ ðj;…; jÞ�≡Wc¼j½J ¼ 0�, to remove

the source, implying that the effective potential (9) can be

equivalently obtained from

UðφÞ ¼ 1

V
sup
c

�

Vφc −Wc½0�
�

: ð11Þ

2
The quantity ϕ should not be confused with a field vector as

encountered in OðNÞ models. The entries φ of this tuple are
associated with the spacetime points x and assume the same value
at all spacetime points in case of a constant field configuration.

3
This assumption is in general only true when the condensate

is homogeneous for all c, i.e., when hϕxiV;c ¼ φ for all x∈V.
Then, we find

φ ¼ hϕxiV;c ¼ a−d
∂W

∂Jx

�

�

�

�

J¼ðc;…;cÞ
:

In particular, this holds if the ground state of the quantum theory
is translation invariant.
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Furthermore, since the magnetization can be expressed as a

derivative of the Schwinger functional with respect to the

external field,

hMiV;c ¼
1

V

∂

∂c
W; ð12Þ

we conclude, together with Eq. (11), that

∂φUðhMiV;cÞ ¼ c: ð13Þ

From Eq. (13), we can already infer some general

properties of the Zð2Þ-symmetric effective potential in

both finite and infinite volume. In finite volume the

effective potential is strictly convex with a trivial global

minimum at φ ¼ 0, since hMiV;c → 0 as c → 0. Only in the

thermodynamic limit, V → ∞, when a nontrivial magneti-

zation persists as c → 0, the effective potential U has two

degenerate nontrivial minima located at �φ0 which must

also coincide with the magnetization (7), i.e., φ0 ≡ hMi.
Moreover, Eq. (13) can be used to reconstruct the effective

potential and its derivative, ∂φUðφÞ, by performing multiple

calculations of the magnetization for different values of c,
see also Refs. [21,23]. This approach is exactly what we

employ in our analysis of finite systems in Sec. V B.

Another physically relevant quantity which we will

discuss in Sec. V B is the so-called susceptibility, which

is the integrated connected two-point correlation function

and can be expressed by the magnetization,

χV;c ¼ VhðM − hMiV;cÞ2iV;c: ð14Þ

This quantity diverges at second-order phase transitions in

the thermodynamic limit and hence can be used to identify

these. In terms of the Schwinger functional, it can be

written as the second derivative with respect to the external

field c,

χV;c ¼
1

V

∂
2

∂c2
W; ð15Þ

which, using Eqs. (12) and (13), implies

∂
2
φUðhMiV;cÞ ¼ χ−1V;c: ð16Þ

Thus, the susceptibility is associated with the inverse

curvature of the effective potential evaluated at the corre-

sponding magnetization φ ¼ hMiV;c. In finite volumes, the

susceptibility can never diverge as the effective potential is

strictly convex, regardless of the number of spacetime

dimensions or the specific values of m2 and λ > 0 in the

bare potential.

III. LATTICE MC SIMULATIONS

The aim of this work is a direct comparison of lattice MC

and lattice fRG calculations. By using the same discretized

action on the same spacetime lattice with given lattice

spacing and volume, we avoid any “translation” or renorm-

alization of model parameters between the two approaches

and, in particular, the necessity of a continuum limit.

For given lattice spacing, volume, and bare parameter

sets, the only approximation of a MC simulation consists

of evaluating the path integral on a finite (rather than

infinite) number of field configurations. In a process

referred to as importance sampling, a set of field configu-

rations is generated with probability weights given by the

Boltzmann factor e−S½ϕ�. The expectation value of a given

observable O is then approximated as an average over the

generated field configurations,

hOiV;c ≈
1

N

X

N

i¼1

O½ϕi�: ð17Þ

Here, ϕi refers to a specific field configuration generated in

the MC process. The fluctuation of the observable with the

different configurations is evaluated by the usual standard

deviation, which diminishes as N−1=2 as the number of

configurations is increased.

We generate our field configurations using a hybrid

Monte Carlo (HMC) algorithm [40]. Furthermore, after

every HMC step we include a sign flip ϕ→ −ϕ with a

subsequent accept-reject step. This ensures that the simu-

lation does not get “stuck” in a specific minimum of the

potential, thus reducing the initial correlation between

consecutive configurations and therefore the overall sim-

ulation time. In order to control and further suppress

correlations, we bin our data and calculate the statistical

errors using the jackknife procedure. Since a scalar theory

on the lattice is computationally not very demanding, the

statistical uncertainty in the following results could be kept

small by accumulating a large amount of uncorrelated data.

Whenever not visible, error bars are smaller than the

symbol sizes.

IV. LATTICE FUNCTIONAL

RENORMALIZATION GROUP

Although the fRG method has originally been developed

for studies of systems in infinitely large, continuous

spacetime volumes, it is also suitable to study theories

on finite spacetime lattices. This has been done in previous

works on scalar field theories such as in Refs. [35–39].

Studies of systems of scalar field theories and fermion-

boson models in a continuous but finite spacetime volume

have been put forward in Refs. [30–33] which have been

supplemented with an analysis of finite-temperature and

density effects [41–43], see Ref. [44] for a review.

The underlying idea of the fRG approach is to integrate

out the momentum modes of the partition function suc-

cessively, starting with the bare action (3). To this end, it is

necessary to introduce an infrared regulator Rk which

introduces a RG scale k into the theory. This regulator
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suppresses modes with momenta ϵq ≲ k while modes with

momenta ϵq ≳ k are no longer affected by the regulator. In

the path integral, the regulator appears in form of a

regulator term,

ΔSkðfϕx∈VgÞ ¼
1

V

X

q∈ Ṽ

RkðϵqÞ
2

ϕ̃−qϕ̃q; ð18Þ

which is added to the bare action S, see Refs. [45,46] for a
general discussion of the properties of regulators. This

yields the scale-dependent partition function Zk,

Zk½J� ¼
Z

Dϕe−S½ϕ�−ΔSk½ϕ�þJ·ϕ; ð19Þ

from which the Wetterich equation can be derived in a

similar way as for continuous spacetimes. The exact flow

equation for the effective action in position space reads [45]

∂tΓ̄k½ϕ� ¼ a2d
X

x;y∈V

�

Γ̄
ð2Þ
k;ab½ϕ� þ ΔS

ð2Þ
k;ab

�

−1

xy

∂tΔS
ð2Þ
k;yx; ð20Þ

where we have introduced the so-called scale-dependent

effective average action Γ̄k.
4
Moreover, with the scale

derivative ∂t ¼ −k∂k, we have implicitly introduced the

quantity t which can be related to the so-called RG time.

For reviews and introductions to the continuum formulation

of the Wetterich equation, see Refs. [27,46–51].

The lattice formulation of the Wetterich equation (20) is

a partial differential equation with 1þ jVj variables. Its
solution, the scale-dependent effective average action Γ̄k,

interpolates between the bare action S½ϕ� as k → ∞ and the

full quantum effective action Γ½ϕ� as k → 0. The latter

property of the scale-dependent effective action is trivially

fulfilled, as Eq. (19) reduces to Eq. (1) when k → 0. A more

detailed derivation of the ultraviolet (UV) limit is shown in

Sec. IVA 2. In the following, we refer to the limits k → ∞

and k → 0 as UV limit and infrared (IR) limit, respectively.

Formally, the Wetterich equation represents an initial

value problem where the initial condition is given by an

action Γ̄Λ½ϕ� at the so-called cutoff scale Λ and the

differential equation is given by theWetterich equation (20).

As long as Λ is finite, this action is not identical to the bare

action S. However, in the UV limit, the “running couplings”

of the fRG flow, i.e., the couplings λiðkÞ of Γ̄k, must

approach the (finite) values of the corresponding couplings

λi in the bare action S,

lim
k→∞

λiðkÞ ¼ λi: ð21Þ

Consequently for large RG scales k ≫ 1=a, we should

observe that the change of the couplings with respect to the

RG scale approaches zero, i.e.,

∂tλiðkÞ ≈ 0 for k ≫ 1=a: ð22Þ

To obtain the full quantum effective action Γ, it is therefore

sufficient to initialize the flow equation (20) with the action

Γ̄Λ ¼ S at some large but finite cutoff. This also ensures

that this initial condition canonically fulfills the require-

ment of RG consistency [52], i.e., the cutoff independence

of the full quantum effective action. This is in contrast to

continuum theories, where a nontrivial scale-dependent

initial condition SΛ must be determined to ensure that the

full quantum effective action Γ remains unchanged as Λ is

varied.

A. RG flow on finite spacetime lattices

In this subsection, we discuss several aspects of RG

flows on finite spacetime lattices.

Depending on the dispersion relation, one obtains a

finite set of kinetic energy levels, E ¼ fϵqjq∈ Ṽg ¼
f0;Δϵ;…; ϵmaxg. Here, Δϵ is the lowest nonzero kinetic

energy level, i.e., Δϵ ¼ minq∈ Ṽn0ðϵqÞ. For example, for the

relation (6), the highest kinetic energy level is ϵmax ¼
2

ffiffiffi

d
p

=a and the lowest nonzero level is given by

Δϵ ¼ 2 sinðπ=NσÞ=a. This allows us to divide the RG

flow into three regimes: the UV regime with k > ϵmax, the

intermediate regime with Δϵ ≤ k ≤ ϵmax, and the IR regime

with k < Δϵ. It is important to note that the precise values

of the boundaries of these regimes may shift when the

regulator is changed. This is because the regulator itself

defines the notion of the RG scale. However, for the Litim

regulator [53,54],

RkðϵqÞ ¼ ðk2 − ϵ2qÞΘðk2 − ϵ2qÞ; ð23Þ

which we shall primarily use in this work, the boundaries of

the different regimes are as defined above.

Before discussing the different regimes of the RG flow,

we introduce useful definitions and relations which will

help in analyzing the dynamics in these regimes below. We

start by considering the Wetterich equation (20) in momen-

tum space and exploit the fact that the regulator is diagonal

in momentum space, cf. Eq. (18),

∂tΓ̄k½ϕ� ¼
1

2

1

V

X

q∈ Ṽ

G
ð2Þ
k;q;−q½ϕ�∂tRkðϵqÞ; ð24Þ

4
We define the functional derivatives of the nth order acting on

an action A on a spacetime lattice in position space as

AðnÞ;x1…xn ½J� ¼ a−d
∂

∂Jx1
…a−d

∂

∂Jxn
A½J�;

and correspondingly in momentum space as

AðnÞ;q1…qn ½J� ¼ V
∂

∂J̃q1
…V

∂

∂J̃qn
A½J�:
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with the propagator

G
ð2Þ
k;p;q½ϕ� ¼

�

Γ̄
ð2Þ
k;ab½ϕ� þ ΔS

ð2Þ
k;ab

�

−1

pq
: ð25Þ

In general, the inversion of the regularized two-point

function in momentum space is nontrivial, even on a finite

spacetime lattice. However, employing that the system

under consideration is translation invariant and evaluating

the propagator (25) at a constant background field con-

figuration, ϕ ¼ ðϕxÞx∈V ¼ ðφ;…;φÞ, we have

G
ð2Þ
k;p;q½ϕ� ¼ G

ð2Þ
k ðφ; qÞVδp;−q ð26Þ

and therefore

G
ð2Þ
k ðφ; qÞ ¼ 1

∂
2
φUkðφÞ þ ΔΓ̄

ð2Þ
k ðφ; qÞ þ RkðϵqÞ

: ð27Þ

Here, we have divided Γ̄
ð2Þ
k;p;q½ϕ� ¼ Γ̄

ð2Þ
k ðφ; qÞVδp;−q into a

potential-like and a kineticlike contribution. For the poten-

tial-like contribution we have

∂
2
φUkðφÞ ¼ Γ̄

ð2Þ
k ðφ; 0Þ; ð28Þ

where Uk corresponds to the potential term of the scale-

dependent effective average action Γ̄k, i.e., UkðφÞ ¼
V−1

Γ̄k½ϕ�. All momentum-dependent terms are encoded

in the kineticlike contribution,

ΔΓ̄
ð2Þ
k ðφ; qÞ ¼ Γ̄

ð2Þ
k ðφ; qÞ − Γ̄

ð2Þ
k ðφ; 0Þ: ð29Þ

1. Infrared regime

Using the Litim regulator (23) or any other regulator

fulfilling the property

∂tRkðϵqÞ ¼ 0 for k ≤ ϵq; ð30Þ

the Wetterich equation (24) yields

∂tΓ̄k½ϕ� ¼
1

2

1

V

X

q∈ Ṽ

ϵq<k

G
ð2Þ
k;q;−q½ϕ�∂tRkðϵqÞ: ð31Þ

This choice of regulator canonically truncates the right-

hand side of the Wetterich equation without assuming any

approximation. This implies that in the IR regime, for

k < Δϵ, only the zero mode contributes to the Wetterich

equation, which reduces Eq. (31) to

∂tΓ̄k½ϕ� ¼
1

2

1

V
G

ð2Þ
k;0;0½ϕ�∂tRkð0Þ: ð32Þ

Now, evaluating both sides of Eq. (32) at a constant

background field configuration ϕ ¼ ðφ;…;φÞ and using

the structure of the propagator (27) with ΔΓ̄
ð2Þ
k ðφ; 0Þ ¼ 0,

we find for the scale-dependent effective potential,

UkðφÞ ¼ V−1
Γ̄k½ϕ�, the exact flow equation

∂tUkðφÞ ¼
1

V

∂tRkð0Þ
∂
2
φUkðφÞ þ Rkð0Þ

: ð33Þ

This flow equation yields a well-defined solution as

k → 0, as long as the regulator is masslike [53,54], i.e.,

Rk>0ð0Þ > 0. Furthermore, it functionally mimics a zero-

dimensional RG flow, which must lead to a strictly convex

quantum effective action in the IR limit, see Refs. [55–59].

This is in accordance with the general absence of sponta-

neous symmetry breaking on finite spacetime lattices.

Note that due to the evaluation of the propagator (27) at

q ¼ 0, the flow equation for the scale-dependent effective

potential completely decouples from the nontrivial kinetic

structure ΔΓ̄
ð2Þ
k . Meaning that, in the IR regime, the scale-

dependent effective potential is not affected by couplings

like a wave-function renormalization or other couplings

associated with the momentum structure of the scale-

dependent effective action.

Finally, note that the assumption of translational invari-

ance, used in Eq. (26), is almost always inherent in the

truncation ansatz employed in fRG studies.

2. Ultraviolet regime

Let us now discuss the UV regime of the RG flow.

Specifically, we focus on this regime for regulators to

which we refer as lattice site decoupling regulators. These

are regulators which, above a certain RG scale k⋆—the

lattice site decoupling scale—eliminate any kinetic struc-

ture in the propagator. As a result, the scale-dependent

partition function Zk½J� in Eq. (19) reduces to a product of

zero-dimensional partition functions Z0d
k ðJxÞ. Meaning

that the regulator term in the action renders all fluctuations

purely local in this regime, see Ref. [36].

More precisely, in order to qualify as lattice site

decoupling, the regulator must fulfill

Rk>k⋆ðϵqÞ ¼ M2

k − ϵ2q; ð34Þ

for all RG scales k greater than the decoupling scale k⋆,
which implies that

S½ϕ� þ ΔSk>k⋆ ½ϕ� ¼ ad
X

x∈V

M2

k

2
ϕ2
x þ ad

X

x∈V

UðϕxÞ ð35Þ

is a purely local action. Here, Mk is a k-dependent mass

term to be chosen such that it diverges as k → ∞. This

property guarantees that the scale-dependent effective

average action Γ̄k approaches the bare action S in the

UV limit, as we shall show below. For example, the Litim
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regulator (23) with k⋆ ¼ ϵmax and Mk ¼ k is of this type.
5

For the scale-dependent partition function (19) we find

Zk>k⋆ ½J� ¼
Z

Dϕ
Y

x∈V

e−a
dð1

2
M2

k
ϕ2
xþUðϕxÞ−JxϕxÞ

¼
Y

x∈V

Z0d
k ðadJxÞ; ð36Þ

where we have used Eq. (2) and introduced the zero-

dimensional partition function

Z0d
k ðjÞ ¼ adϕ

Z

∞

−∞

dφe−S
0d
k
ðφÞþjφ; ð37Þ

with S0dk ðφÞ ¼ adð1
2
M2

kφ
2 þ UðφÞÞ. For the Schwinger

functional we analogously find

Wk>k⋆ ½J� ¼
X

x∈V

W0d
k ðadJxÞ; ð38Þ

where W0d
k ðjÞ ¼ lnZ0d

k ðjÞ. Due to the simple structure of

Eq. (38), we find

a−d
∂

∂Jx
Wk>k⋆ ½J� ¼ W

0dð1Þ
k ðadJxÞ: ð39Þ

This implies that Jx½ϕ� ¼ a−d½W0dð1Þ
k �−1ðϕxÞ. Hence, the

Legendre transform of Wk½J�, i.e., the scale-dependent

effective action, reads

Γk>k⋆ ½ϕ� ¼ ad
X

x∈V

Jx½ϕ�ϕx −Wk>k⋆ ½J½ϕ��

¼
X

x∈V

�

½W0dð1Þ
k �−1ðϕxÞϕx−W

0d
k ð½W0dð1Þ

k �−1ðϕxÞÞ
�

¼
X

x∈V

Γ
0d
k ðϕxÞ: ð40Þ

The modified Legendre transform, the scale-dependent

effective average action, is then given by

Γ̄k>k⋆ ½ϕ� ¼
X

x∈V

Γ
0d
k ðϕxÞ − ΔSk½ϕ�

¼ 1

V

X

q∈ Ṽ

ϵ2q

2
ϕ̃−qϕ̃q þ

X

x∈V

�

Γ
0d
k ðϕxÞ − ad

M2

k

2
ϕ2
x

�

:

ð41Þ

It is worth mentioning that, due to the regulator term

ΔSk½ϕ� in the modified Legendre transformation in

Eq. (41), a kinetic contribution is added to the scale-

dependent effective average action. Furthermore, since we

did not yet make any approximation, the solution (41) is

exact which means that it is a solution of the (untruncated)

Wetterich equation (20) for k > k⋆. Only the term asso-

ciated with the potential in Γ̄k changes during the RG flow,

other couplings are not generated. This reflects the purely

local structure of the theory for RG scales k > k⋆. From
this analysis, we conclude that the use of a lattice site

decoupling regulator is advisable in actual applications of

our lattice fRG framework.

Finally, using Eq. (41), we can prove that the scale-

dependent effective average action indeed approaches

the bare action S as k → ∞. To this end, we note that

½W0dð1Þ
k �−1ðϕxÞ ∼ adM2

kϕx as k → ∞ which implies

Γ
0d
k ðϕxÞ − ad

M2

k

2
ϕ2
x

¼ − ln

�

adϕ
Z

∞

−∞

dφe−a
dUðφÞe−a

d
M2

k
2
ðφ−ϕxÞ2

�

∼ adUðϕxÞ þ C ð42Þ

for k → ∞. Here, C is a field independent and thus

irrelevant constant. We would like to stress that each term

in Eq. (42) diverges separately. However, the combination

of all terms yields the finite bare potential in the UV limit

and thus Γ̄k½ϕ� → S½ϕ� as k → ∞. Note that this also

implies the UV behavior of the couplings as shown

in Eq. (22).

3. Intermediate regime

In the intermediate regime, Δϵ ≤ k ≤ ϵmax, the RG flow

is nontrivial and in principle all couplings allowed by the

symmetries of a given model are dynamically generated.

We add that the size of this regime shrinks as we decrease

the number of lattice sites Nσ and disappears for Nσ ¼ 1.

B. Local potential approximation

As we have already seen in Secs. IVA 1 and IVA 2, the

effective potential in the scale-dependent effective average

action plays a dominant role in the IR as well as in the UV

regime, especially in case of regulators satisfying the

properties (30) and (34). To describe these regimes accu-

rately, it is therefore mandatory to consider an approxima-

tion of the Wetterich equation (20) which is exact in these

limits. This is the case for the LPA as these limits

correspond to zero-dimensional theories. In the following

we shall therefore employ this approximation which

represents the lowest order of the derivative expansion

but already goes beyond the mean-field approximation as it

takes into account fluctuation effects.

The LPA assumes in every RG step the ansatz

Γ̄k½ϕ� ¼
1

V

X

q∈ Ṽ

ϵ2q

2
ϕ̃−qϕ̃q þ ad

X

x∈V

UkðϕxÞ ð43Þ
5
Another example for a lattice site decoupling regulator is

the smooth Litim regulator introduced in Ref. [60] which has

k⋆ ¼
ffiffiffi

2
p

ϵmax as its lattice site decoupling scale.
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for the scale-dependent effective average action on the

right-hand side of the Wetterich equation (20). This implies

that terms associated with derivatives of the fields enter the

right-hand side of the Wetterich equation only in the form

as they appear in the classical action. Nevertheless, within

LPA, such couplings are dynamically generated, especially

in the aforementioned intermediate regime of the RG flow

and can in principle be straightforwardly calculated by

taking field derivatives on both sides of the Wetterich

equation (24).

Using Eq. (43) as truncation for the scale-dependent

effective action, the kinetic contribution is simply given by

ΔΓ̄
ð2Þ
k ðφ; qÞ ¼ ϵ2q, and thus the propagator (27) reads

G
ð2Þ
k ðφ; qÞ ¼ 1

∂
2
φUkðφÞ þ ϵ2q þ RkðϵqÞ

: ð44Þ

In particular, for the Litim regulator (23), we have ϵ2q þ
RkðϵqÞ ¼ k2 for k ≤ ϵq. Hence, evaluating the Wetterich

equation (24) at a constant background field configuration,

ϕ ¼ ðφ;…;φÞ, and using the Litim regulator, the flow

equation for the scale-dependent effective potential reads

∂tUkðφÞ ¼
1

2
ΩðkÞ ∂tk

2

k2 þ ∂
2
φUkðφÞ

; ð45Þ

where ΩðkÞ is the density of modes,

ΩðkÞ ¼ 1

V

X

q∈ Ṽ

Θðk2 − ϵ2qÞ: ð46Þ

In the UV regime, k > ϵmax, we find ΩðkÞ ¼ a−d. In the IR
regime, k < Δϵ, we have ΩðkÞ ¼ 1=V.

6
We emphasize

that, even in this approximation, the flow equation (45)

already represents a highly nonlinear diffusion equation. In

Appendix A, we discuss the numerical setup used to solve

this differential equation in the present work.

In Fig. 1, we illustrate the behavior of various quantities

in the RG flow for the bare action (3) in d ¼ 3 dimensions

with aλ ¼ 6 and ðamÞ2 ¼ −1. To be specific, we show the

scale-dependent (global) minimum φ0ðkÞ of the scale-

dependent potential Uk, the curvature mass mðkÞ evaluated
at φ0ðkÞ of Uk, and the density of modes ΩðkÞ as functions
of the RG scale k. We observe that φ0ðkÞ and mðkÞ
approach plateaus, reflecting the convergence of Uk → U

in the UV limit, i.e., as k → ∞. From this figure we also

deduce that, for a given bare action, it is indeed possible to

find a finite initial RG scale that is sufficiently large to

suppress artifacts associated with its finiteness. For the

specific parameter set represented in Fig. 1, we find that

Λ ¼ 100=a is sufficiently large. We add that the RG flow is

exact down to the lattice site decoupling scale k⋆ ¼ ϵmax, as

discussed in Sec. IVA 2. The density of modes ΩðkÞ
remains constant in this regime.

In the intermediate regime, the RG flow in LPA is no

longer exact. Here, the mode density decreases as the RG

scale is lowered until it reaches Ωðk ¼ ΔϵÞ ¼ 1=V. The
corresponding scale defines the onset of the IR regime. In

this regime, the flow equation for the scale-dependent

effective potential completely decouples from kinetic con-

tributions and only the zero mode contributes to the RG

flow, see Eq. (32). The LPA is then no longer an

approximation but exact again. As a consequence of the

fact that the RG flow reduces to that of a zero-dimensional

system in this regime, the minimum φ0ðkÞ eventually

approaches zero for k → 0. Thus, there is no spontaneous

symmetry breaking in the IR limit, as it should be for zero-

dimensional systems. The curvature mass mðkÞ approaches
a small positive value, indicating the formation of a very

flat but strictly convex effective potential in the IR limit.

Note that the flow equation associated with this regime,

which can be extracted from Eq. (45) by replacing the mode

density with 1=V, is indeed reminiscent of that of a zero-

dimensional system, see also Sec. IVA 1.

V. RESULTS

We begin the discussion of our numerical results by

noting that we shall choose λa4−d ¼ 6 for the quartic

coupling for all spacetime dimensions d considered in this

FIG. 1. Illustration of the RG flow of the (global) minimum

φ0ðkÞ of the potential Uk, the curvature mass mðkÞ evaluated at

the minimum φ0ðkÞ of Uk, and the density of modes ΩðkÞ in the

IR, intermediate, and UV regimes for a given bare action, see

main text for details.

6
For comparison, in a continuous and infinite spacetime,

we find

ΩðkÞ ¼ surfðdÞ
ð2πÞd

1

d
kd;

where surfðdÞ is the surface of a d-dimensional unit sphere.
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work. Thus, with respect to the parameters of our model,

we vary only the squared bare mass parameter m2 and the

external field c, which is sufficient for a study of SSB and

phase transitions. All dimensionful quantities shall be given

in units of the lattice spacing a. For notational convenience,
we are using natural units, “a ¼ 1”, from here on.

A. FRG: Assessing LPA

To obtain an intrinsic check of the reliability of LPA, we

analyze the kinetic term in the propagator (27). To that end,

we derive the flow equation for the quantity ΔΓ̄
ð2Þ
k ðφ; pÞ

defined in Eq. (29). This is done by first taking two field

derivatives on both sides of the Wetterich equation (24) and

evaluating the resulting flow equation on a constant back-

ground field configuration ϕ ¼ ðφ;…;φÞ. From this, we

then obtain the following expression in LPA:

∂tΔΓ̄
ð2Þ
k ðφ; pÞ ¼ 1

V

X

q∈ Ṽ

∂tRkðϵqÞ
�

G
ð2Þ
k ðφ; qÞ∂3φUkðφÞ

�

2

×
h

G
ð2Þ
k ðφ; q − pÞ −G

ð2Þ
k ðφ; qÞ

i

: ð47Þ

The definition of the propagator G
ð2Þ
k can be found in

Eq. (44). Since the propagators on the right-hand side of

Eq. (47) do not depend onΔΓ̄
ð2Þ
k itself (as we work in LPA),

this flow equation is not a coupled differential equation and

can therefore be integrated straightforwardly by inserting

the solution for the effective potential Uk from Eq. (45) for

a given set of parameters.

We emphasize that, for RG scales above the lattice site

decoupling scale k⋆ (i.e., in the UV regime), the propagator

G
ð2Þ
k ðφ; qÞ becomes independent of the momenta and

therefore the difference of the two propagators on the

right-hand side of Eq. (47) vanishes identically. In this

regime, the kinetic term does not receive any quantum

corrections in the RG flow. This again reflects the exactness

of LPA at these scales, as discussed in Sec. IVA 2.

Equation (47) can be used to estimate the uncertainty of

LPA in the intermediate regime where this approximation is

not exact. To be more specific, if we would find that the

change of the momentum-dependent part of the two-point

function relative to its classical form is exactly zero or at

least very small for all momenta and field values, then LPA

can be expected to be a reasonable approximation for a

determination of the effective potential. To quantify the

uncertainty of LPA, we therefore define

KðqÞ ¼ max
φ≥φ0ðk¼ϵqÞ

�

�

�

�

ΔΓ̄
ð2Þ
k¼ϵq

ðφ; qÞ − ϵ2q

ϵ2q

�

�

�

�

: ð48Þ

This quantity represents the maximum relative deviation of

the momentum-dependent part of the two-point function, as

obtained in an LPA flow for a given momentum q, from the

momentum dependence assumed in LPA. The latter is

nothing but the classical kinetic term. Note that, in Eq. (48),

we only take field values inside the physically relevant

region into account, i.e., for φ ≥ φ0ðkÞ. In the physically

irrelevant region, i.e., for field values φ < φ0ðkÞ, the

momentum-dependent part of the two-point function dras-

tically changes since the potential becomes flat there. This

would strongly dominate the relative deviation K.

Because of the property (30) of the Litim regulator, only

momentum-dependent contributions ΔΓ̄
ð2Þ
k ðφ; qÞ with

ϵq < k are required to determine the next RG step for

the scale-dependent effective potential Uk, see Eq. (31). In

other words, the evolution of the scale-dependent effective

potential Uk for k → 0 is not directly affected by the parts

of ΔΓ̄
ð2Þ
k ðφ; qÞ with ϵq > k. This is also reflected in the

decrease of the mode density ΩðkÞ as the IR limit is

approached, see Fig. 1. Therefore, to include only the regime

of the RG flow which affects the flow equation for the scale-

dependent effective potential for a certain momentum q in

Eq. (48), we evaluate ΔΓ̄
ð2Þ
k ðφ; qÞ at k ¼ ϵq.

It is important to emphasize that the quantity defined in

Eq. (48) serves solely as a measure to estimate the

uncertainty of LPA. It should be interpreted as follows:

If the value of KðqÞ is small, LPA can be considered as a

reliable approximation whereas no definitive statement can

be made about the validity of LPA for large KðqÞ.
Since the RG evolution of the two-point function

depends on the solution for the effective potential Uk

and, consequently, on the parameters that determine the

bare action, namely m2 and λ, we analyze the relative

deviation (48) as a function of m2 while keeping λ ¼ 6

fixed. In Fig. 2, we show the relative deviation (48)

evaluated on the mode associated with the lowest nonzero

energy level Δϵ for one-, two-, and three-dimensional

systems with Nσ ¼ 16, 32, 64 lattice sites in each direction.

Note that the modes associated with Δϵ are the only modes

which remain “active” in the RG flow down to the IR

regime and can therefore significantly influence the evo-

lution of the scale-dependent effective potential throughout

the entire intermediate regime.

We observe that the relative deviation is generally

smaller for d ¼ 3 than for d ¼ 2 spacetime dimensions.

This is in accordance with the general observation that the

anomalous dimension at a critical fixed point increases in

scalar field theories when the number of spacetime dimen-

sions is decreased, see, e.g., Ref. [61] for a review.
7
For

example, the anomalous dimension at such a fixed point in

d ¼ 3 is about one order of magnitude smaller than in

7
In our setting, the anomalous dimension η can be defined in

terms of the exponential decay of the propagator at criticality for

Nσ → ∞, i.e., G
ð2Þ
k¼0

ðφ ¼ 0; q0Þ ∼ ϵ
−1þη=2
q0 a−η for Nσ → ∞. Here,

q0 is a momentum mode with ϵq0 ≡ Δϵ where Δϵ is the lowest

nonzero kinetic energy level, see Sec. IVA.
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d ¼ 2. Moreover, this observation with respect to the

relative deviation is consistent with the fact that the critical

exponents obtained in LPA in d ¼ 3, where η ¼ 0 by

construction, already agree on the percent level with the

world’s best estimates, see, e.g., Refs. [61–66]. At least

close to a phase transition, a large anomalous dimension

can therefore be considered an indication for the formation

of a nontrivial momentum dependence of the two-point

function. In any case, in both d ¼ 2 and d ¼ 3, we observe

peaklike structures that become sharper as Nσ increases.

For Nσ ¼ 64, the positions of these peaks are located at

m2

peak ≈ −1.295 and m2

peak ≈ −0.682 for d ¼ 2 and d ¼ 3,

respectively. As we shall see below, these peaklike struc-

tures emerge close to the phase transition. For better

guidance of the eye, we included horizontal lines in

Fig. 2 to indicate the regions in the m2-plane where the

relative deviation K evaluated on the lowest nontrivial

mode Δϵ is above 3% and 10%, respectively. The precise

values for the boundaries of these regions are listed in

Table I for Nσ ¼ 64.

For completeness, we also show the scale-dependent

global minimum φ0ðkÞ as well as the scale-dependent

correlation length ξðkÞ ¼ 1=mðkÞ evaluated at the RG scale

k ¼ Δϵ as functions of m2 in Fig. 3. Note that, since we

evaluated these quantities at a nonzero RG scale, the

effective potential Uk¼Δϵ need not be convex and the

Zð2Þ symmetry in the ground state is not yet necessarily

restored at this scale. This explains the regions with a finite

value of φ0 in Fig. 3(a). The vertical dashed lines in both

panels of Fig. 3 indicate the position of the peaks in the

relative deviation K for Nσ ¼ 64 in d ¼ 2 and d ¼ 3

spacetime dimensions, respectively, see Fig. 2. Note that

the peaks in the relative deviation do not coincide exactly

with those of the correlation length, but approach each

other as the spatial volume is increased. This is a finite-size

effect that will disappear in the thermodynamic limit, where

a nonanalytic phase transition emerges, and indicates that

the two-point function develops a nontrivial momentum

dependence close to the phase transition.

In Fig. 2, we also show the relative deviation for d ¼ 1

spacetime dimensions. The corresponding partition func-

tion can be associated with the anharmonic oscillator in

quantum mechanics. In this case, the curvature of the

effective potential U at its minimum is related to the energy

difference between the two lowest levels of the system.

Although the symmetry in the ground state is found to be

restored in LPA, as it should be, it has already been shown

by comparison with exact results in Ref. [67] that LPA does

not provide quantitative results for the energy difference of

the two lowest-lying states for small values of the dimen-

sionless coupling λ=jm2j3=2 with m2 < 0 and λ > 0. This

implies that LPA does not allow one to correctly recover the

effective potential for classical potentials with a large

potential barrier in d ¼ 1. This can be traced back to the

relevance of instanton effects, which are not included in our

current LPA calculation [67]. For sufficiently large values

of the dimensionless coupling, LPA yields results for the

difference of the two lowest-lying energy levels which are

in quantitative agreement with the exact results. Note that

this observation is in accordance with the behavior of the

relative deviation (48) in Fig. 2. Indeed, we observe that the

relative deviation K increases as m2 is lowered for d ¼ 1.

This can be understood as follows: As we approach the

limit of an infinitely negative value of m2, the effective

potential becomes arbitrarily flat and the correlation length

increases accordingly, see Fig. 3(b). Note also that the

nontrivial minimum φ0ðΔϵÞ of U must vanish for large

enough volumes due to the Mermin-Wagner theorem. As a

consequence, all field values contribute to the relative

deviation K as defined in Eq. (48), including those where

the effective potential is very flat.

Finally, we would like to emphasize that all quantities

shown in Figs. 2 and 3 carry an intrinsic dependence on the

regulator Rk, irrespective of the fact that we did not solve

theWetterich equation exactly. In fact, these quantities have

been extracted from the RG flow at a nonzero RG scale k
which inherently depends on the choice of regulator. Note

also that we choose k ¼ Δϵ since our regulator fulfills the

property (30). This renders the flow equation for the scale-

dependent effective potential (33) exact for k < Δϵ which

is only the case for a specific class of regulators.

In summary, we have defined an fRG-intrinsic measure,

the relative deviation of the momentum-dependent part of

FIG. 2. The relative deviation of the fluctuation-induced kinetic

term (48) from its classical form as a function of the bare massm2.

TABLE I. List of characteristic quantities of KðΔϵÞ, i.e., the
relative deviation of the fluctuation-induced kinetic term from its

classical form, as extracted from Fig. 2 for Nσ ¼ 64.

d Nσ KðΔϵÞ ≥ 10% KðΔϵÞ ≥ 3% m2

peak

2 64 m2 ∈ ½−1.659;−0.871� m2 ∈ ½−1.75;−0.325� −1.295

3 64 m2 ∈ f−0.682g m2 ∈ ½−1.0;−0.810� −0.682
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the two-point function from its classical counterpart, which

allows us to estimate the uncertainty of LPA in different

regimes, see Eq. (48). Our analysis based on this measure

indicates that LPA tends to be more reliable the smaller the

spacetime lattices, the higher the spacetime dimensions,

and sufficiently far away from the critical regime. However,

we stress that this criterion does not determine how a given

relative deviation in the momentum-dependent part of the

two-point function affects other physical observables. This

question must be addressed by comparing our LPA results

with those obtained using the MC approach.

B. Comparison of lattice MC and lattice fRG

The present work aims at a quantitative comparison of

two nonperturbative methods, lattice MC and lattice fRG,

rather than at a study of phenomenological aspects of spin

models. For this comparison, we perform calculations over

a wide range of the model parameters m and c while

keeping the quartic coupling λ fixed.

In addition to our fRG-intrinsic analysis of the predictive

power of LPA in the previous subsection, a comparison of

our lattice fRG and lattice MC results allows us to examine

and quantify the limitations of LPA in more detail.

1. Effective potential

In the fRG approach we have direct access to the effective

potential as it is the solution of the flow equation (45) in the

IR limit. For a lattice MC computation of this potential, one

may exploit the identity (13), i.e.,

∂φUðhMiV;cÞ ¼ c:

This equation relates the magnetization with the effective

potential and can be used to obtain the latter by performing

MC calculations for different values of c. To be specific, by
computing hMiV;c as a function of c and assuming that this

relation can be inverted, we find c ¼ cðhMiV;cÞ. The

effective potential in the absence of an external field can

then be obtained as follows:

UðφÞ ¼
Z

φ

φ̄

dφ0cðφ0Þ þ const:; ð49Þ

where we have used (13) and the lower integration

boundary is given by φ̄ ¼ limc→0hMiV;c.
We emphasize that the effective potential is analytic and

strictly convex in finite systems. In the thermodynamic

limit, this is still the case in the absence of SSB, where we

have φ̄ ¼ 0. However, if the ground state is governed by

SSB, then the effective potential becomes nonanalytic at

φ ¼ φ̄ ¼ limc→0hMiV;c and we have ∂φUðφÞ ¼ 0 for

φ < φ̄, i.e., the effective potential is flat within this range

of field values. These considerations imply that we can

already analyze the shape of the effective potential by

studying the dependence of the magnetization on c. In
particular, in our studies of finite systems, where the

effective potential is analytic, the c dependence of the

magnetization and its susceptibility can be employed to

detect regions in parameter space where the effective

potential becomes flat over a finite range of field values,

indicating SSB in the thermodynamic limit. Recall that the

susceptibility is determined by the inverse of the curvature

of the effective potential, see Eq. (16). For example, a rapid

increase in the susceptibility for small values of the external

field c indicates the formation of a nonanalyticity in the

effective potential and the formation of a flat regime. We

shall discuss this in more detail below.

FIG. 3. Global minimum φ0ðkÞ of the effective potential (a) and correlation length ξðkÞ ¼ 1=mðkÞ (b) evaluated at the RG scale

k ¼ Δϵ for a fixed bare coupling λ ¼ 6 as functions of the bare mass m2 as obtained for different lattices sizes Nσ in d ¼ 2 and d ¼ 3

dimensions, respectively. Vertical lines mark the peak of the susceptibility on Nσ ¼ 64.
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For illustration, we show the field derivative of the

effective potential form2 ¼ −3=2 andm2 ¼ −1=2 in d ¼ 3

spacetime dimensions for Nσ ¼ 16 as a function of the

magnetization in Fig. 4. These results imply that the

associated effective potential is strictly convex in both

cases and has a global minimum at φ ¼ 0, reflecting the

absence of SSB in finite systems. For m2 ¼ −3=2, how-
ever, our results for the field derivative of the effective

potential indicate that the effective potential itself is already

very flat in the region 0 ≤ φ≲ 1. From Fig. 4, we can also

deduce that the curvature of the effective potential under-

goes a rapid change at the point where the potential

becomes flat. This translates into a rapid change of the

susceptibility ∼∂hMiV;c=∂c as a function of the external

field c, as we shall see below. Following our discussion

above, this behavior of the field derivative of the effective

potential for m2 ¼ −3=2 can be considered a precursor for

the formation of a phase with a finite magnetization in the

thermodynamic limit. For m2 ¼ −1=2, the situation is

different. Indeed, we do not find that the potential develops

a flat region in field space. Therefore, we expect the system

to remain in the Zð2Þ-symmetric phase in the thermody-

namic limit. In any case, for both values ofm2, we find that

the effective potential from our lattice fRG study in LPA

agrees remarkably well with the results from our MC

calculations.

2. Precursors of SSB in finite systems

Without explicitly considering the thermodynamic limit,

we can already deduce from the behavior of the effective

potential under a variation ofNσ (for a fixed lattice spacing)

whether the ground state is governed by SSB in the

thermodynamic limit. As mentioned above, the behavior

of the effective potential is also encoded in the magneti-

zation as a function of the external field c. To be specific,

coming from large values of the external field c, SSB

manifests itself as the formation of a plateau in the

magnetization as c is decreased. For a system with a given

set of model parameters in d spacetime dimensions, we

shall see that this plateau increases with increasing Nσ and

eventually extends to c ¼ 0, if the ground state is governed

by SSB in the thermodynamic limit. The formation of such

a plateau can therefore be regarded as a precursor of SSB in

finite systems. Of course, whether this plateau extends to

c ¼ 0 for Nσ → ∞ and thus truly indicates SSB in the

thermodynamic limit must always be analyzed by studying

the scaling of the magnetization with Nσ . We add that,

in the presence of SSB in the thermodynamic limit, the

disappearance of the magnetization in a finite system for

c → 0 is a finite-volume effect.

Let us now compare our results for the magnetization

and the susceptibility in different spacetime dimensions as

obtained by our two nonperturbative approaches.

One dimension. For m2 > 0, this system corresponds to

the anharmonic oscillator in quantum mechanics. The case

withm2 < 0, which we consider from here on, is a model to

study tunneling in quantum mechanics. In any case, the

relation to quantum-mechanical one-particle systems

already indicates that SSB cannot occur in d ¼ 1, which

we also find in our present study. Note that this is correct

regardless of our choice of model parameter values.

Accordingly, the magnetization in one dimension must

vanish when we consider the limit c → 0 after the limit

Nσ → ∞ has been taken.

In Fig. 5, we show the magnetization and the suscep-

tibility as a function of c for various values of Nσ and two

values for m2 < 0. As explained above, the quartic cou-

pling has been set to the same value λ ¼ 6 in the two cases.

For all considered values of Nσ and m2, we do not observe

the formation of a plateau in the magnetization as a function

of the external field c. In fact, the magnetization tends to

zero as we decrease c while the susceptibility remains

finite. Moreover, in accordance with our fRG-intrinsic

analysis of the reliability of LPA in Sec. VA, we find that

the deviation of our lattice fRG results from the lattice MC

results increases with decreasing m2. This can be traced

back to the fact that an accurate resolution of the momen-

tum dependence of the correlation functions becomes very

relevant for a quantitatively correct description of tunneling

through a (high) potential barrier. In any case, while

inaccurate on a quantitative level for increasing Nσ, the

disappearance of the magnetization for c → 0 in the

thermodynamic limit is still observed in LPA.

We close the discussion of the one-dimensional case by

adding that the lattice MC and lattice fRG results are overall

in excellent agreement for small values of Nσ . This is true

regardless of the dimension of the system, see also below.

Of course, this does not come unexpected as LPA becomes

exact for Nσ ¼ 1 which corresponds to the case of a zero-

dimensional quantum field theory [56–59].

FIG. 4. Field derivative of the effective potentialU as a function

of the field for m2 ¼ −1=2 and m2 ¼ −3=2 in three spacetime

dimensions with Nσ ¼ 16.
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Two dimensions. In Fig. 6, the magnetization and the

susceptibility are shown as functions of the external field c

for m2 ¼ −1.5 and m2 ¼ −0.5 as obtained for various

values of Nσ in two spacetime dimensions. The quartic

coupling is the same in both cases. We readily observe that

the lattice MC and lattice fRG results for the magnetization

are in good agreement. The two values selected for the

parameter m2 are associated with qualitatively different

situations in the thermodynamic limit, as we shall see next.

For m2 ¼ −1.5, we observe the formation of a plateau in

the magnetization as a function of the external field c,
which becomes broader continuously as we increase Nσ.

Thus, for this value of m2 we expect the system to be in the

symmetry broken phase where the ground state is governed

by spontaneous Zð2Þ symmetry breaking in the thermo-

dynamic limit for c → 0. Our results make apparent that the

order of the limits c → 0 and Nσ → ∞ do not commute. In

fact, to obtain a finite magnetization in the thermodynamic

limit, we have to take the limit c → 0 after the thermody-

namic limit, Nσ → ∞, see also Eq. (7).

For m2 ¼ −0.5, we do not observe the formation of a

plateau in the magnetization, even for large values of Nσ.

For increasing Nσ , we rather find that the results from both

methods converge to a continuous function which tends to

zero for c → 0. Consequently, we expect the system to be in

the symmetric phase in the thermodynamic limit for this

value of m2.

Let us now consider the susceptibility, which is a more

sensitive probe for the detection of differences between

our lattice fRG and the lattice MC results, since it

corresponds to the derivative of the magnetization with

respect to the external field c and measures fluctuations.

Still, we observe that the results for the susceptibility agree

well for m2 ¼ −0.5. However, deviations are found for

m2 ¼ −1.5 as Nσ increases. Note that, for this value of m
2,

the system is in the symmetry broken phase but still not far

FIG. 5. Magnetization and susceptibility in one spacetime dimension as a function of the external field c, as obtained from lattice MC

(dots) and lattice fRG (solid lines) calculations, in panels (a.i) and (a.ii) for m2 ¼ −3, and in panels (b.i) and (b.ii) for m2 ¼ −0.5.
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away from the phase transition in m2, see our discussion of

phase transitions below. Since our lattice fRG calculations

are based on LPA, these deviations of the lattice fRG results

from the lattice MC results already hint at the importance of

a nontrivial momentum dependence in the correlation

functions, which become increasingly relevant close to

the phase transition. We shall come back to this aspect

below, as we would first like to discuss characteristic

features of the susceptibility in finite systems.

In our results for the susceptibility in the symmetry

broken phase approaching the thermodynamic limit, we

observe the formation of two plateaus, one appearing for

very small values of c and the other for small but not too

small values of c, see Fig. 6(a.ii) for an illustration. The

latter plateau determines the value of the susceptibility in

the thermodynamic limit for c → 0. In fact, this plateau

extends to smaller values of c as Nσ increases and would

end in a finite value if we take the limit c → 0 after the

thermodynamic limit.

To understand the second plateau in the susceptibility,

which appears at small values of c in finite systems, it is

instructive to recall how the effective potential can be

reconstructed from the dependence of the external field on

the magnetization, c ¼ cðhMiV;cÞ. Note that c increases

strictly monotonically with hMiV;c and we have c → 0 for

hMiV;c → 0 in finite systems. Following our discussion of

Eq. (49), the function cðhMiV;cÞ can be identified with the

field derivative of the effective potential, ∂φU. Accordingly,

the susceptibility ∼∂hMiV;c=∂c can be related to the inverse
of the curvature of the effective potential, 1=ð∂2φUÞ. Starting

FIG. 6. Magnetization and susceptibility in two spacetime dimensions as a function of the external field c, as obtained from lattice MC

(dots) and lattice fRG (solid lines) calculations, in panels (a.i) and (a.ii) for m2 ¼ −1.5, and in panels (b.i) and (b.ii) for m2 ¼ −0.5. The

vertical dashed lines indicate the values of c at which the magnetization and susceptibility for the corresponding values of m2 and Nσ

have been extracted for our analysis of the m2 dependence of these quantities in Fig. 8, see main text for details.

ZORBACH, KLINGER, PHILIPSEN, and BRAUN PHYS. REV. D 112, 076036 (2025)

076036-14



from large values of c, the rapid increase in the suscep-

tibility to large values, accompanied by the formation of a

plateau at small values of c, corresponds to a flattening of

the effective potential for field values smaller than the one

associated with the nontrivial minimum of the effective

potential in the thermodynamic limit. Since convexity

requires that the curvature of the effective potential must

be zero for jφj < hMi in the symmetry broken phase in the

thermodynamic limit, the plateau of the susceptibility at

small values of c must increase as Nσ increases. This is

exactly what we observe in Fig. 6(a.ii).

For values of m2 associated with a magnetization that

vanishes in the thermodynamic limit for c → 0, the

curvature of the corresponding effective potential is fi-

nite and positive for all field values. As c is decreased, we

therefore observe that the susceptibility only develops a

single plateau in this case, see Fig. 6(b.ii). The height of this

plateau determines the value of the susceptibility in the

thermodynamic limit.

Three dimensions. Now we turn to the three-dimensional

case which is most relevant from the standpoint of

an analysis of finite-temperature phase transitions in

3þ 1-dimensional spacetime.

In Fig. 7, the magnetization and the susceptibility are

shown as functions of the external field c for various values
of Nσ. As for the two-dimensional system, we show results

for two values of the parameter m2, one of which,

m2 ¼ −0.9, is associated with the symmetry broken phase

in the thermodynamic limit, while the other, m2 ¼ −0.5, is

associated with the symmetric phase in the thermodynamic

limit. Qualitatively, the magnetizations and susceptibilities

associated with the two phases behave as their analogs in

FIG. 7. Magnetization and susceptibility in three spacetime dimensions as a function of the external field c, as obtained from lattice

MC (dots) and lattice fRG (solid lines) calculations, in panels (a.i) and (a.ii) for m2 ¼ −0.9, and in panels (b.i) and (b.ii) for m2 ¼ −0.5.

The vertical dashed lines indicate the values of c at which the magnetization and susceptibility for the corresponding values of m2 and

Nσ have been extracted for our analysis of the m2 dependence of these quantities in Fig. 9, see main text for details.
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two dimensions. In fact, for m2 ¼ −0.9, we find the

formation of a plateau in the magnetization as a function

of the external field c. As we increaseNσ this plateau grows

continuously and is expected to extend to c ¼ 0 for

Nσ → ∞. This behavior signals that the magnetization

remains finite in the thermodynamic limit, even in the

absence of an external field. The susceptibility exhibits two

plateaus as also observed for the two-dimensional system:

one determining the susceptibility in the thermodynamic

limit for c → 0, and one indicating that the effective

potential in the thermodynamic limit becomes flat for field

values smaller than the one of the minimum. Again, we also

observe that the limits c → 0 and Nσ → ∞ do not commute

in the symmetry broken phase.

Let us now come to the case with m2 ¼ −0.5. Here, we

do not observe the formation of a plateau in the magneti-

zation as a function of the external field c as we increase

Nσ . In fact, as we increase Nσ, we find that the magneti-

zation converges to a continuous function which tends to

zero for vanishing c. The susceptibility exhibits a similar

convergent behavior and, as for the two-dimensional

system, develops only a single plateau and approaches a

finite value for c → 0. This behavior of the magnetization

and the susceptibility indicates that the Zð2Þ symmetry is

restored for m2 ¼ −0.5 in the thermodynamic limit.

Overall, we find that the lattice fRG and lattice MC

results are in remarkable agreement, given the fact that the

lattice fRG calculations are based on LPA. The reader may

note apparent deviations of the lattice fRG results from the

lattice MC results in the susceptibility for large values ofNσ

and those values of c associated with the regime between

the two plateaus. We emphasize that these deviations are

only numerical artifacts of the lattice fRG calculations,

which can in principle be removed by increasing the

resolution of the grid in field space. For details on the

numerical setup used for the lattice fRG calculations we

refer the reader to Appendix A.

Finally, looking at our results for the magnetization and

susceptibility in different numbers of spacetime dimen-

sions, we find that the results obtained from lattice fRG in

LPA and lattice MC are not only consistent on a qualitative

level, but also become successively more consistent on a

quantitative level as the number of dimensions increases.

Without presenting numerical results here, we add that this

is indeed confirmed by calculations of the magnetization

and susceptibility in four spacetime dimensions.

3. Phase transitions

Above, we have discussed precursors of SSB in finite

systems. In the following, we shall study the approach to

phase transitions in two and three dimensions in the

thermodynamic limit. This requires a calculation of the

magnetization and the susceptibility as a function of the

parameter m2, which mimics the temperature in a thermo-

dynamic system in one dimension higher.

However, before actually analyzing the transition from

the symmetry broken to the symmetric phase, it is neces-

sary to discuss briefly finite-volume effects which are

present for small values of the external field c. Such effects

become most pronounced for values of m2 close to the

phase transition (or crossover for finite c), as the correlation
length becomes large in this regime. For example, this is the

case for m2 ¼ −1.5 in two dimensions, see Figs. 6(a.i)

and 6(a.ii), and for m2 ¼ −0.9 in three dimensions, see

Figs. 7(a.i) and 7(a.ii).

To mimic properties of the system in the thermodynamic

limit, we need to suppress finite-volume effects. This can

be done by determining a specific value of the external

field, c⋆ðNσÞ, such that hMiV;c ≈ hMic and χV;c ≈ χc for all

c ≥ c⋆ðNσÞ for a given d. Here, hMic and χc are the values
of the magnetization and susceptibility in the thermody-

namic limit in the presence of the external field c.
Moreover, c⋆ðNσÞ should be chosen such that it is as

small as possible and vanishes in the limit Nσ →∞. With

this quantity at hand, we have

hMi ¼ lim
Nσ→∞

hMiV;c⋆ðNσÞ ð50Þ

for a given d. Note that we shall determine c⋆ such that it

does not depend on the bare parameters m2 and λ.

To find an estimate for c⋆, we consider the susceptibility
and determine the value of c at which finite-volume effects

set in. For d ¼ 2, we find that c⋆ðNσÞ ¼ 10=ðaNσÞ2 is an
appropriate choice. For illustration, we show the corre-

sponding values of c⋆ as vertical dashed lines in Figs. 6(a.i)

and 6(a.ii). For d ¼ 3, we obtain c⋆ðNσÞ ¼ 50=ðaNσÞ3, see
the vertical dashed lines in Figs. 7(a.i) and 7(a.ii).

With c⋆ðNσÞ for two and three spacetime dimensions at

hand, we can compute the magnetization and susceptibility

as a function of the squared bare mass parameter m2 to

detect the formation of phase transitions in the thermody-

namic limit. However, strictly speaking, phase transitions

cannot occur in a finite system. The search for the

emergence of nonanalyticities associated with phase tran-

sitions therefore requires an analysis of the scaling behavior

of the magnetization and susceptibility with Nσ .

A detailed scaling analysis is beyond the scope of the

present work. We shall only illustrate the scaling behavior

of the magnetization and susceptibility in Figs. 8 and 9 for

d ¼ 2 and d ¼ 3, respectively. In these figures, the mag-

netization hMiV;c and the susceptibility χV;c are shown as

functions of the squared (bare) mass m2 for various values

of Nσ. As explained above, the values of the external field c

have been chosen such that c ¼ c⋆ðNσÞ ¼ 10=ðaNσÞ2 for

d ¼ 2 and c ¼ c⋆ðNσÞ ¼ 50=ðaNσÞ3 for d ¼ 3. The ver-

tical lines in Figs. 8 and 9 represent the values m2

peak ≈

−1.295 for d ¼ 2 and m2

peak ≈ −0.682 for d ¼ 3, respec-

tively. These values correspond to the values of the bare

mass where the fRG-intrinsic analysis of the predictive
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power of LPA suggests the largest deviations from the exact

solution, see Sec. VA. Note that these values should not be

confused with the critical bare mass value associated with

the phase transition in the thermodynamic limit.

For d ¼ 2 and d ¼ 3, we observe a behavior of the

magnetization and susceptibility in Figs. 8 and 9, which is

indicative of a second-order phase transition: the magneti-

zation develops a pronounced kink as Nσ increases, and the

susceptibility increases withNσ , indicating the formation of

a divergence.

Comparing the results for the magnetization and sus-

ceptibility from our lattice fRG studies in LPA with those

from our lattice MC calculations, we find excellent agree-

ment for small Nσ. In the symmetric phase, this appears to

hold even for larger values of Nσ. However, for d ¼ 2,

significant deviations appear in the symmetry broken

phase, see Appendix B for a more detailed analysis.

This observation is in accordance with our fRG-intrinsic

analysis of the predictive power of LPA in Sec. VA. In fact,

this analysis already indicates that the deviations of the

lattice fRG results in LPA from the exact solution should

be expected to be larger in d ¼ 2 than in d ¼ 3. Note that

the deviations in the magnetization and susceptibility are

indeed maximal around m2 ¼ m2

peak, as predicted by our

FIG. 8. Magnetization (a) and susceptibility (b) in two spacetime dimensions as a function of the bare mass for a fixed explicit

symmetry breaking c, as obtained from lattice calculations (dots) and lattice-fRG calculations (solid lines). The vertical lines in the two

panels indicate the position where our fRG-intrinsic analysis of the predictive power of LPA suggests the largest deviations from the

exact solution, see Sec. VA.

FIG. 9. Magnetization (a) and susceptibility (b) in three spacetime dimensions as a function of the bare mass for a fixed explicit

symmetry breaking c, as obtained from lattice calculations (dots) and lattice-fRG calculations (solid lines). The vertical lines in the two

panels indicate the position where our fRG-intrinsic analysis of the predictive power of LPA suggests the largest deviations from the

exact solution, see Sec. VA.
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fRG-intrinsic analysis. Apparently, m2

peak is close to the

phase transition in both d ¼ 2 and d ¼ 3.

We conclude this section by adding that the good agree-

ment between the results of our lattice fRG calculations in

LPA and lattice MC studies in d ¼ 3 is also not unexpected

from a more general standpoint. In fact, the anomalous

dimension η, which can be viewed as a measure of the

relevance of nontrivial momentum dependences in correla-

tion functions, is small at the phase transition in d ¼ 3,

η ≈ 0.036, see, e.g., Refs. [61,64,65]. In LPA, we have η ¼ 0

by construction, regardless of the dimension of the system.

It is then also reasonable that the situation is different in two

spacetime dimensions. There, the anomalous dimension is

about an order of magnitude larger than in three spacetime

dimensions [61], indicating the relevance of nontrivial

momentum structures in, e.g., the propagator. From a more

phenomenological standpoint, the potential relevance of

nontrivial momentum dependences close to the phase

transition appears reasonable since the particles associated

with our quantum field become massless at the phase

transition. Away from the transition, both in the symmetry

broken and symmetric phase, the masses of these particles

are finite which suppresses momentum dependences in

correlation functions. This is indeed confirmed by the

particularly good agreement between our results of lattice

MC and lattice fRG in LPA away from the phase transition.

VI. CONCLUSION

In the present work, we have introduced a framework

for a direct comparison of lattice MC and lattice fRG

studies on finite volumes and at fixed lattice spacing, thus

avoiding any nontrivial parameter matching between the

two. In particular, this allows for a clear analysis of a wide

range of artifacts, such as cutoff, finite-volume, and

truncation effects.

As a first application of our framework, we have con-

sidered a scalar Zð2Þ theory in various spacetime dimensions

and provided detailed comparisons for the magnetization,

the susceptibility, and phase transitions. For a given size of

the spacetime lattice, and at fixed lattice spacing, the lattice

MC results contain only statistical errors, which for these

simple systems can be made arbitrarily small. In such a

situation, our framework is ideally suited to analyze the

predictive power of truncations entering the computations

within the fRG approach. In the present work, we have

demonstrated this by comparing lattice MC results with

results from lattice fRG calculations in LPA. Within the fRG

approach, this is the simplest approximation that already

takes into account fluctuation effects. Indeed, this approxi-

mation of the effective action at leading order in a derivative

expansion has been widely used in the past and is still

frequently used in various research fields.

For a small number of lattice sites, we have found that

the lattice fRG results in LPA are in excellent agreement

with our MC results, regardless of the number of spacetime

dimensions. We have shown that this follows from the fact

that LPA becomes exact in the limit of a lattice consisting of

only a single spacetime point. By increasing the number of

lattice sites, we have observed that the results for the

magnetization and susceptibility from the two methods start

to deviate in regimes associated with a small mass of the

field, e.g., close to the phase transition in two and three

spacetime dimensions, but still remain in agreement at a

qualitative level. The size of the aforementioned deviations

depends on the number of spacetime dimensions. In

general, however, our results indicate that the deviations

become smaller as the number of spacetime dimensions

increases, such that the lattice fRG results in LPA and the

lattice MC results become successively more consistent on

a quantitative level. In fact, while the deviations in the

magnetization and especially in the susceptibility are still

significant around the phase transition in two spacetime

dimensions, the lattice fRG and lattice MC results show

remarkable agreement in three spacetime dimensions, away

from the phase transition but also close to it. Given the

simplicity of LPA, this is indeed impressive. Our analysis

indicates that this can be traced back to the fact that

nontrivial momentum dependences in the correlation func-

tions become less relevant in higher dimensions, at least

with respect to calculations of the magnetization and

susceptibility. This observation is consistent with the

anomalous dimension at the phase transition being one

order of magnitude smaller in three spacetime dimensions

than in two spacetime dimensions.

In addition to testing the predictive power of fRG

approximation schemes, as exemplified in our present

work, it may be beneficial for lattice MC studies to exploit

the fact that lattice fRG calculations can be used to track the

scaling behavior of observables from very small lattices up

to the thermodynamic limit, as well as the approach to the

continuum limit. For example, provided that the results of

both methods are found to agree well over a range of lattice

sizes, our lattice fRG approach can be used to guide

extrapolations of lattice MC data. This may be relevant

for theories with fermions or for tests of methods developed

to surmount the sign problem at finite density. Conversely,

the very good agreement of our lattice fRG results in LPA

and lattice MC results over a wide range of lattice sizes

indicates that large lattices may be required to resolve the

effect of nontrivial momentum dependences of correlation

functions on observables, e.g., in the critical regime.

In general, the opportunity to make clear and meaningful

comparisons of lattice MC and fRG studies offers great

potential, as it may lead to cross-fertilization and improve-

ments on both sides in the future.
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APPENDIX A: NUMERICAL IMPLEMENTATION

OF THE FRG FLOW EQUATION OF THE

EFFECTIVE POTENTIAL

To solve the flow equation for the effective potential,

which is a highly nonlinear diffusion equation, we have

brought it into a conservative form by taking a field

derivative of it [56,69]. The resulting equation can then

be solved by using a so-called finite-volume method based

on the Kurganov-Tadmor scheme, see Ref. [70]. In the

present work, we have used the same semidiscrete imple-

mentation as described in Refs. [56,59]. For the numerical

time stepper, we have used SOLVE_IVP with LSODA and

atol ¼ rtol ¼ 10−14 for its absolute and relative tolerances,

respectively, if not stated otherwise. To obtain the numeri-

cal results shown in Figs. 1–4, we have moreover used an

equidistant grid in field space with spacing Δφ ¼ 0.001,

while we have used Δφ ¼ 0.0001 to obtain the results

shown in all other figures. For the maximal field value, we

have used φmax ¼ 3 for d ¼ 2, 3 and φmax ¼ 5 for d ¼ 1.

At the boundaries in field space, we have followed

Ref. [56] and employed a linear extrapolation at φ ¼ 0

and φ ¼ φmax. For the initial RG scale Λ, we have used

Λ ¼ 100=a in all numerical calculations, which effectively

removes the dependence of our results from this scale. This

is in accordance with our discussion in Sec. IV where we

show that the limit Λ → ∞ can be taken for a given finite

lattice spacing a. In the IR regime, we have always stopped

the RG flow at k=Λ ¼ kIR=Λ ¼ 10−12.

APPENDIX B: EXTERNAL FIELD DEPENDENCE

CLOSE TO THE PHASE TRANSITION IN TWO

SPACETIME DIMENSIONS

In Sec. V B 2, we have discussed the dependence of the

magnetization and susceptibility on the external field c for

two values of the squared (bare) mass parameter m2 in two

spacetime dimensions, see Fig. 6. The results in this figure

show that the lattice MC results and the lattice fRG results

in LPA agree well for both values of m2. Deviations in the

susceptibility emerge only for very large lattices close to

the phase transition. However, this observation is somewhat

misleading as suggested by Fig. 8. There, our results for the

magnetization and susceptibility are shown as a function of

m2. From this figure, we deduce that the results obtained

with the two methods do not agree in the vicinity of the

phase transition.

In Fig. 10, we show the magnetization and susceptibility

as a function of the external field c again, but now for

m2 ¼ m2

peak ≈ −1.295 (vertical dashed line in Fig. 8). At

this value ofm2, we have the greatest deviation of the lattice

fRG and lattice MC results in Fig. 8, in accordance with our

fRG-intrinsic analysis of the predictive power of LPA in

Sec. VA. We observe in Fig. 10 that the lattice fRG and

FIG. 10. Magnetization (a) and susceptibility (b) in two spacetime dimensions from lattice MC (dots) and lattice fRG (solid lines)

calculations as a function of the external field c at m2 ¼ m2

peak ≈ −1.295. At this value of m2, the greatest discrepancy of the lattice fRG

results in LPA and lattice MC results is observed, see vertical dashed line in Fig. 8. The vertical dashed lines again indicate the values of

c at which the magnetization and susceptibility for the corresponding values ofm2 and Nσ have been extracted for our analysis of them
2

dependence of these quantities in Fig. 8.
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lattice MC results for m2 ¼ m2

peak deviate from each other

over a wide range of external field values, down to smaller

and smaller values of c as Nσ increases. In particular, we

find that the deviations already appear on comparatively

small lattices. For sufficiently large values of c, the results
from the two methods are in good agreement. However,

this is not surprising: fluctuation effects and momentum

dependences in correlation functions are suppressed in this

regime since the mass of the scalar field increases with c.
Recall that the magnetization as a function of the external

field is directly related to the field derivative of the effective

potential as a function of the field, see Sec. V B 1. Thus, the

deviations of the lattice fRG results for the magnetization at

small c from the lattice MC results would translate into

corresponding deviations in the predictions for the effective

potential near its minimum and at small field values.

We emphasize that the deviations in the results from the

two methods are (strongly) suppressed (far) away from

the critical region in two spacetime dimensions, see, e.g.,

Fig. 8. In any case, the deviations are generally much

smaller in three spacetime dimensions, even near the phase

transition, see, e.g., Fig. 9.
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