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Abstract. Experimental results on the acceleration of protons and carbon

ions from ultra-thin polymer foils at intensities of up to 6 × 1019 W cm−2 are

presented revealing quasi-monoenergetic spectral characteristics for different

ion species at the same time. For carbon ions and protons, a linear correlation

between the cutoff energy and the peak energy is observed when the laser

intensity is increased. Particle-in-cell simulations supporting the experimental
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results imply an ion acceleration mechanism driven by the radiation pressure as

predicted for multi-component foils at these intensities.
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1. Introduction

After the first observation of megaelectronvolt (MeV) ions generated during the interaction of

high-intensity laser pulses with thin foils [1], laser ion acceleration has attracted a great deal of

attention. This all-optical approach capable of generating low-emittance and high-laminarity

ion pulses [2] of ultra-short duration [3] holds promise for numerous applications such as

hadron therapy [4], the fast ignitor concept for inertial confinement fusion [5] and the time-

resolved probing of transient electric and magnetic fields [6]. In most experimental studies

on laser ion acceleration so far, the mechanism of target-normal-sheath acceleration (TNSA)

[7, 8] has been dominant leading to a thermal distribution with a distinct maximum energy

of Ecutoff = 67 MeV for protons [9]. However, for many applications, this broad energy spread

is a major disadvantage as compared to conventional accelerators. Hence, various alternative

approaches based on TNSA have been explored experimentally generating ion pulses with

narrow, quasi-monoenergetic features in their spectrum. This can be achieved by confining a

multi-species ion source laterally or longitudinally. Lateral confinement can be realized using

micro-structured [10] or droplet targets [11, 12]. Longitudinal optimization was shown using

layered foils [13]. Moreover, peaked energy spectra have been observed in a staged acceleration

scenario [14, 15] or with a laser-driven micro lens [16].

A fundamentally different approach is the acceleration by the pressure exerted by the

radiation itself [17], initially discussed in the context of space vehicle propulsion [18]. In this

scenario, a high-power laser pulse focussed to the intensity IL onto a target exerts a pressure

p = (1 + R) IL/c, where R is the reflectivity of the target and c is the speed of light. The radiation

pressure created by a laser pulse with IL > 1019 W cm−2 can lead to the uniform acceleration of

a macroscopic target [19]. In this case, all particles reach the same velocity, in contrast to the

acceleration by the electric sheath field created by the hot electrons in the TNSA scheme. For

moderately relativistic intensities, it is predicted that the use of circular polarization significantly

reduces the electron heating and hence suppresses TNSA acceleration, such that radiation

pressure acceleration (RPA) becomes the dominant mechanism [20, 21]. Experimentally, even

for high-intensity laser pulses, circular polarization can be achieved using a quarter-wave plate

or a phase-shifting mirror (PSM) [22, 23]. The advantage of a PSM, which is a fully reflective

device to manipulate the phase of two orthogonally polarized linear components of the laser

pulse, is the high-damage threshold, as well as the low group-delay-dispersion which is induced.

When using PSM, unwanted nonlinear effects affecting the beam profile are negligible. With the
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rapid progress in laser technology, this might pave the way towards a considerable simplification

of accelerator technology.

A comparison between the pressure generated by the laser radiation and the pressure

from the electrostatic charge separation induced in the target of thickness d leads to a balance

condition a0

√
1 + R≈σ [24] between the amplitude of the normalized vector potential a0 =

√

ILλ
2
L/1.37 × 1018 W cm−2 µ m2 and the normalized target areal density σ = π(ne/nc d/λL).

Here, ne and λL are the electron density and laser wavelength, respectively, and nc = 1.1 ×
1021 cm−3[λL/µ m]−2 is the critical density. For λL = 800 nm and focused intensities of a few

1019 W cm−2 (equivalent to radiation pressures p ≈ 30 Gbar), this corresponds to an optimal

thickness d for a solid target (ne ≈ 1023 cm−3) of just a few nanometres. The use of such

ultra-thin targets, however, creates a stringent requirement on the laser pulse contrast. The

first experiments with 30 fs laser pulses in the RPA-regime revealed quasi-monoenergetic

features in the spectra of carbon ions [25] using nm-scale diamond-like carbon (DLC)

foils. For significantly longer laser pulses (τL = 500 fs) irradiating similar targets, a mixed

acceleration regime combining RPA in a first step followed by the generation of solitary ion

waves was inferred by the Los Alamos National Laboratory (LANL) group [26]. A total

of 20 MeV proton beams with 1% energy spread have been produced via hole-boring (HB)

with CO2 lasers in hydrogen gas jets [27]. Most recently, Kar et al [28] have reported RPA

signatures using the VULCAN laser to accelerate ions from a variety of sub-micrometre, multi-

species foil targets, demonstrating an energy scaling consistent with a combined HB/light-

sail (LS) theory [29]. Previous numerical simulations [30] indicate that high-Z low-Z target

combinations can stabilize the acceleration of the lower-Z components via charge transfer to the

low-Z component, suppressing transverse instabilities in the latter. At much higher intensities,

similar stabilization can be achieved through the higher mass of the substrate layer [31]. In this

paper, we report on radiation-pressure-assisted ion acceleration from multi-component foils at

moderate intensities and 30 fs pulse lengths, showing quasi-monoenergetic features of protons

and carbon ions at the same time.

2. Setup and experimental results

The experiments were carried out using the Jena Ti:Sapphire laser system (JETI) at the

University of Jena, the experimental setup is shown in figure 1. JETI delivers laser pulses with a

maximum energy of EL = 0.8 J and a pulse duration of τL = 27 fs. The peak intensity of the fully

amplified laser pulse is preceded by a ns-pedestal generated by amplified spontaneous emission

with a relative intensity contrast of 10−9 and several short prepulses of the order of 10−6 which

arrive on a timescale of a few 100 ps. In contrast, the maximum proton energy was achieved with

an optimal foil thickness of 100 nm when the target was positioned exactly in the focal plane. For

thinner foils, however, the peak proton energy was reduced in the focus, while it could be slightly

increased by moving the target out of the focal plane by a few Rayleigh lengths. This indicates

that the prepulse in the position of best focus was intense enough to partially destroy the thin foil

and deteriorate the ion acceleration. The prepulse contrast was then improved by three orders

of magnitude using a single-pass plasma mirror [32]. The suppression of the pre-plasma was

verified by measuring the highest proton energy from a 2 nm DLC foil which was positioned

exactly in the focal plane again. Hence, use of the plasma mirror sufficiently suppressed the

deterioration of the target. However, the total laser pulse energy was then reduced to EL = 0.5 J

by losses of the plasma mirror. Note that the effects which are reported below could only be
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Figure 1. Schematics of the experimental setup: high-intensity laser pulses with

variable ellipticity and ultra-high contrast were focused with an f/2 off-axis

parabolic mirror to an intensity of 6 × 1019 W cm−2 (full-width at half-maximum

(FWHM)) onto a nm-thick foil target. The target position and the status of the foil

were imaged immediately before each laser pulse. The ion spectra were recorded

using a Thomson parabola ion spectrometer.

observed using the plasma mirror delivering laser pulses with a contrast ratio below 10−8 until

10 ps before the peak intensity.

A remote-controlled, 70 mm diameter mica quarter-wave plate was used to vary the

ellipticity ǫ of the laser polarization achieving values between 06 ǫ 6 0.87. After that, the

pulses were focused with a gold-coated f/2 off-axis parabolic mirror onto a foil target of

several nm thickness under normal incidence. 30% of the pulse energy was contained within an

area of AFWHM = 6 µm2 leading to a maximum intensity of IL = 6 × 1019 W cm−2 (a0 = 5.3).

The ion spectra were recorded in target normal direction by a Thomson parabola covering

a solid angle of 2.9 × 10−6 sr. A double-stage micro-channel plate and a phosphor screen

were used as a detector which was imaged onto a 12-bit CCD camera. The ion spectrometer

was absolutely calibrated with CR39 detectors. In contrast to radiochromic film stacks, this

diagnostic guarantees a much higher energy resolution in the sub-MeV per nucleon range.

Due to the comparably small acceptance angle, special care was taken when analysing the

observed spectral variations, since they might also be caused by variations in the transverse

ion beam profile. This will be described below. Both DLC foils with density ρ = 2.7 g cm−3 and

thicknesses 2 nm 6 d 6 100 nm, or parylene foils as multi-component targets (C8H6F2)n with

ρ = 1.32 g cm−3 and thickness of (15 ± 1) or 100 nm were used in the experiment. The parylene

foils proved to be easy to handle and comparably resistant against mechanical stress. Parylene

is an especially suitable multi-component target in this context due to its high hydrogen content

combined with two other atomic species, thus giving a comparatively low density.
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Figure 2. (a) Typical ion energy spectra. The signal height for the carbon ions

is multiplied by a factor of 3. Quasi-monoenergetic signatures in the protons

and carbon C6+ and C5+ ion spectra are simultaneously observed on top of a

smooth thermal background. A typical energy spectrum obtained with a 100 nm

parylene foil irradiated by identical laser parameters is shown for comparison. In

this case, no modulation was observed. (b) Spectra from a single shot showing

more pronounced modulations in the proton trace, but no distinct features in the

other ion species.

For DLC foils, as well as for thicker parylene foils, we mainly observed thermal energy

spectra. In the case of 15 nm DLC foils, we observed broad spectra extending up to a cutoff

energy for accelerated protons of Ecutoff = 6.5 MeV and of Ecutoff = 0.8 MeV u−1 for C5+ and

C6+ ions. Only very few shots showed a modulation on top of this distribution as described

in [25]. In contrast, ion spectra from the multi-component parylene foils as shown in figure 2(b)

reproducibly exhibited quasi-monoenergetic ion peaks on top of the broad thermal distribution

which was present for these targets too. This is consistent with the theoretical predictions by

Qiao et al [30], which suggest that additional heavier ion species within the polymer foil

(in this case fluorine) will lead to a stabilization of the acceleration process. The maximum

ion energies were the same as compared to the DLC foil of the same thickness. For our

experimental conditions, the energy of the peaks Epeak was always lower than the respective

cutoff energy (protons: Epeak = 0.9, . . . , 2 MeV; carbon ions: Epeak = 0.3, . . . , 0.7 MeV u−1).

Besides the recorded energy spectra showing modulations in protons and carbon ions at the

same time, there are a number of shots for which only the proton spectra show a modulation,

see figure 2(a). In all these cases, the modulation depth is higher (up to 40%) as compared to

shots which show peaks in more than one atomic species.

An intensity scan in the range of IL = 0.2, . . . , 6 × 1019 W cm−2 was performed both

by moving the target in longitudinal direction and by reducing the laser pulse energy at the

optimum focus position. Peaks in the spectrum of carbon ions and protons were observed

simultaneously for a total number of nearly 300 out of around 700 recorded shots. To compare

a large number of shots and to account for shot-to-shot fluctuations which can also be caused

by variations in the surface flatness of the foil (leading to a different relative position of the foil

with respect to the laser focus), we plot the cutoff and peak energies of protons, C5+ and C6+

ions as a function of the cutoff energy of the C6+ ions, which is likely to have a monotonous

dependence on the deposited power, see figure 3. A linear dependence with Epeak = 0.6 ×Ecutoff
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Figure 3. Peak and cutoff energies for protons, C5+ and C6+ ions, plotted as a

function of the C6+ cutoff energy for a total number of 111 shot. This presentation

also implicitly includes the shot-to-shot variation of the peak intensity. The

lowest C6+ cutoff energy of 0.27 MeV u−1 corresponds to a calculated intensity

of 2 × 1018 W cm−2, the highest value of 1.13 MeV u−1 to the highest intensity

of 6 × 1019 W cm−2. A linear dependence is found for all species. Peak energies

for the C5+ and C6+ ions have the same dependence and are nearly identical.

The ellipticity of the laser pulses showed no effect on the appearance of

quasi-monoenergetic peaks even at moderate relativistic intensities, but linear

polarization led to higher energies compared to circular polarization. The error

bars are determined by the resolution of the spectrometer.

was found for each individual ion species. The C6+ and C5+ peaks reproducibly appeared at

nearly the same energy per nucleon, which is indicative for an acceleration driven by radiation

pressure, where constant ion velocities are expected. However, the peaks in the proton spectra

reproducibly appeared at higher energies. The proton cutoff energy Ecutoff is almost 6× higher

than the energy corresponding to the same velocity of C5+ and C6+ ions [33].

The 15 nm parylene foil, satisfying the balance condition a0 ≈ σ , was used to study the

acceleration process relevant for our experimental parameters in more detail. We found that

peaks in the ion spectra appeared independent of the polarization state of the incident laser

pulse, which is in agreement with the recent results by Kar et al [28]. However, the position of

the peak was affected by the polarization. When using linear polarization, the peaks generally

appeared at higher energies as compared to circular polarization, as shown in figure 3. This

also was observed in the simulations discussed below, and might hint at a combination of
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collective acceleration and TNSA. Using elliptically polarized light, the measured particle

energies appeared between the energies for pure linear polarization or the maximum ellipticity

which was available in the experiment of ǫmax = 0.87.

3. Numerical simulations and discussion

To gain more insight into the physical processes prevalent, in our experiment, two-dimensional

particle-in-cell (2D-PIC) simulations were carried out using the EPOCH code11. Here, the 15 nm

parylene foils were modelled with ion number densities nC : nH : nF = 4 : 3 : 1 matching their

actual composition. They were placed in the centre of a 30 × 12 µm2 large simulation box

with grid spacings of 1x = 1 nm (longitudinal) and 1y = 2.5 nm (transverse), respectively. For

simplicity sake, the ions were assumed to be fully ionized (C6+, H+, F9+), providing an electron

density ne = 4 × 1023 cm−3 ≈ 230nc. Around 6.5 million particles were used to represent all

three ion species and the electrons. Circularly or linearly polarized laser pulses with an FWHM

spot size of 6 µm2, a duration of 27 fs and intensities of 3, . . . , 6 × 1019 W cm−2 were simulated

to irradiate the target under normal incidence.

The numerical results reveal that the acceleration can be described as a two-stage process.

During the first stage when the laser pulse is still interacting with the target, initiating a

combination of HB and LS acceleration, as described by Kar et al [28], the initial HB velocity

of the shock front is given approximately by

vHB

c
≡ β0 =

√

me

mp

a2
0

ρ̃
, (1)

where me and mp are the electron and proton masses, respectively, and ρ̃ = ρ/mpnc is the

dimensionless target mass density. For the highest intensity considered (a0 = 5.3), and a 15 nm

parylene foil, we find β0 ≈ 4.4 × 10−3. This means that the HB shock front will pass through

the foil in 11 fs—well before the end of the pulse, implying that a LS phase will occur for

the remainder of the interaction. This is confirmed in figure 4(a), which shows the whole foil

already displaced by 100 nm by the time the laser has been reflected.

This situation can, in principle, be compared with the model presented in [28], which

predicts a final ion energy of

Epeak =
(E + Z0)

2

2(E + Z0 + 1)
mpc2 (2)

with

Z0 =
(

1 + β0

1 − β0

)1/2

− 1

and the normalized fluence

E =
2I0tL

ρdc2
= 2

me

mp

a2
0τL

ρ̃d/λL

= 2π
Zme

Amp

a2
0τL

σ
, (3)

where τL = ctL/λ (i.e. the number of optical cycles in the pulse). For the above example, we

find E ≈ 0.02 and Z0 ≈ β0, so that Epeak = 0.27 MeV u−1, which is actually consistent with the

values seen in figure 2(a) for the C5+ and C6+ ions. Note that since the exact laser intensities

11 http://ccpforge.cse.rl.ac.uk/gf/project/epoch
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Figure 4. Ion and electron density lineouts along the centre of the simulation

box (y = 6 µ m), time averaged over three laser cycles: (a) immediately after the

laser pulse reflection and (b) towards the end of the simulation.

were not monitored for each shot, a quantitative comparison between the measured peaks and

the above model should be treated with caution. On the other hand, the strong scaling Epeak ∼ E2

in this non-relativistic regime means that the expected peak values are sensitive to over or

underestimates of I0.

Nonetheless, support for this correlation can be found in the simulated energy spectra.

At this early time (60 fs), the ion bunches correspond to the peaks observed in the spectra of

figure 5, which for both C6+ and F9+ components (with a Z/A of 0.5 and 0.47, respectively) lie at

around 0.2 MeV u−1, later becoming washed out during the remainder of the simulation. Again,

this result is consistent with the 0.27 MeV u−1 predicted by the HB-LS model considering that

the HB velocity has been overestimated slightly by neglecting the finite risetime of the pulse.

On the other hand, the proton component lies at higher values 0.3–0.5 MeV and doubles by the

end of the simulation: features that cannot be accounted for by the above single-slab model.

After the laser pulse has been reflected, a second stage of acceleration starts which is not

described by the above model. Here, the electrons are no longer held at the rear side of the

foil, but start to oscillate about the (displaced) centre of the ion charge position. This means

that the faster-moving protons start to lose their neutralizing electrons in a time-averaged sense,

surrendering them back to the stronger positive charge generated by the heavier ions. Note that

this situation is almost the reverse of the mixed-ion scenario considered in [30] in which the

light protons are able to poach electrons from their heavier counterparts, thereby remaining in

a compact bunch while the heavier ions suffer a Coulomb-explosion-driven expansion. In the

present experiment, with short pulses at still moderate intensity, the pulse duration is too short

to keep the electrons piled up within the proton layer. As a result of this charge imbalance, the

leading protons experience an additional electrostatic acceleration, resulting in a final cutoff

energy many times higher than the RPA peak energy, see figure 5.

This behaviour is qualitatively similar to the results discussed in [34] or [35], but in our

case occurs for much lower intensity and so cannot be compared quantitatively. We therefore

conclude that for our experimental conditions, a slight increase in laser intensity results both in

New Journal of Physics 15 (2013) 033031 (http://www.njp.org/)
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Figure 5. Ion energy spectra simulated for IL = 6 × 1019 W cm−2, at t = 60 fs

(dashed lines) and at t = 420 fs (solid), showing a pronounced gap between the

proton peak and the high-energy cutoff as observed experimentally. RPA-like

peaks are also initially seen in the C and F spectra at t = 60 fs, but become

steadily less pronounced. The signal height of the carbon (fluorine) ions is

multiplied by a factor of 3 (9).

a boost of the RPA peak during the first acceleration stage as well as an increase in the cutoff

energy by the same amount. This could explain the nearly constant ratio of the peak energy and

the cutoff energy that are found in the (implicit) scan of the intensity as seen in figure 3. An

additional simulation was carried out using the laser parameters reached in this experiment with

linearly polarized light, also leading to a local peak in the proton spectrum. The energy position

of this peak and of the resulting cutoff energy of the different ion species is even higher than for

circular polarization which is in good agreement with the experimental observation. It is likely

that the additional energy is gained by a boost induced by field-induced acceleration (TNSA),

which is larger in the case of linearly polarized light than in the case of circularly polarized

light. Note that other mechanisms, such as rear-side sheath electrons or the ‘directed Coulomb

explosion’ described in [35] could, in principle, also account for a ‘post acceleration’ of a lighter

ion species, but we see no evidence for either of these processes in the simulations with the laser

and target parameters relevant to this experiment. The simulations also indicate that magnetic

fields up to a peak amplitude of 4 kT are generated within the foil, decaying to a quarter of this

value within 100 fs after the laser has been reflected. These fields should, in principle, lead to

a lateral deflection of accelerated ions away from the laser axis, but no evidence of such lateral

bunching is found in our simulations which might impact the far-field spectra as in [1]. As

mentioned above, an experimental measurement of the lateral distribution was not performed.

In addition to the 15 nm polymer, we also irradiated a 100 nm thick parylene foil with the

same laser parameters. In this case, we could not observe any peaked structure in the spectrum

similar to those in figure 2(a), as expected from the above model. In this case, the traversal time

of the HB shock across the foil is 73 fs—more than twice the pulse length, which means that the

LS phase is not reached. The peak energy here can be estimated as E f /A = 2mpc2β2
0 , which for

these parameters is just 36 keV u−1. This may well be reduced by collisional dissipation within

the foil and so will be hard to detect in the far field.
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4. Conclusion

In conclusion, we have investigated the acceleration of ions from a multi-component nanometre-

scale foil target using laser pulses of moderately relativistic intensities. We observed peaked

modulations in the energy spectra for several ion species (with differing Z/A) simultaneously.

For the carbon ions, the observed peaks in the spectrum are consistent with the fluence/areal

density (a2
0τL/ρd) scaling proposed by Kar et al [28], a finding also supported by 2D-PIC

simulations, which show that radiation pressure-dominated acceleration takes place as long as

the foil is driven by the laser pulse. After this phase, additional acceleration occurs in which

the maximum energy of the lightest ion species is further increased by a residual electrostatic

interaction. This process does not depend on the laser polarization, but on the maximum

electric field of the laser. We have demonstrated that the use of multi-component foils strongly

enhances the appearance of quasi-monoenergetic ion acceleration via RPA at 30 fs pulse lengths,

and unlike in the (long-pulse) HB regime, leads to a clear separation of heavy and light ion

components—an effect that the slab model of [29] does not account for. To this end, our results

should improve the understanding of the acceleration processes underlying the acceleration of

monoenergetic ion beams with high-intensity lasers.
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