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In this report, we present an overview of the development history of cavity beam position mon-
itors. The basic theory of interaction between the beam and the cavity, and beam position detection
principle is formulated in the beginning. Then the different instances of cavity adopted by differ-
ent accelerator facilities worldwide are described systematically. In the end, almost every reference
regarding cavity beam position monitors is collected and compiled carefully in order to provide a
comprehensive index and to facilitate further research in this subject.
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EM
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FRS
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RIKEN
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Argonne national laboratory

accelerator test facility

Budker institute of nuclear physics
Brookhaven national laboratory

beam position monitor

cavity beam position monitor

Saclay nuclear research centre

continuous electron beam accelerator facility
European organization for nuclear research
compact linear collider

collector ring

Chalk River laboratories

CLIC test facility

Deutsche Elektronen-Synchrotron

electron linac for beams with high brilliance and low emittance
electron stretcher accelerator

Elettra sincrotrone Trieste

electromagnetic

end station A

experimental storage ring

electron test accelerator

facility for antiproton and ion research
Fermi national accelerator laboratory

final focus test beam

free electron laser in Hamburg

fragment separator

Gesellschaft fiir Schwerionenforschung

high energy storage ring

Hefei light source

international linear collider

injector test stand

Thomas Jefferson national accelerator facility
Japan linear collider

high energy accelerator research organization
linac coherent light source

large hadron collider

Mainz microtron

new experimental storage ring

next linear collider

new muon lab

research and development

radio frequency

royal Holloway, university of London
institute of physical and chemical research
SPring-8 angstrom compact free electron laser
Shanghai deep ultraviolet free electron laser
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SINAP
SIS
SLAC
SPring-8
SPS
TESLA
TTF
TTX
UCL
UNILAC
USTC
VLEPP
XFEL

Shanghai institute of applied physics
Schwerionensynchrotron

Stanford linear accelerator center

super photon ring — 8 GeV

super proton synchrotron

TeV energy superconduction linear accelerator
TESLA test facility

Tsinghua Thomson scattering X-ray source
university college London

universal linear accelerator

university of science and technology of China
colliding linear electron-positron beams
X-ray free electron laser

1 Introduction

The Facility for Antiproton and Ion Research (FAIR) has been proposed by the international science
community more than a decade ago and started civil construction recently. This project aims at a multi-
faceted forefront science program, beams of stable and unstable nuclei as well as antiprotons in a wide

range of intensities and energies, with optimum beam qualities [1].

The facility (Fig.1) comprises a vital heart of superconducting double-synchrotron SIS100/300 with
magnetic rigidities of 100 T m and 300 T m, respectively. After an upgrade for high intensities, the existing
GSI accelerators UNILAC and SIS18 will serve as an injector. Adjacent to the large double-synchrotron
is a complex set of a superconducting nuclear fragment separator (Super-FRS), an antiproton production

target, cooling storage rings (CR, NESR and HESR) and experiment stations.
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Figure 1: Layout of the existing GSI facility on the left and the planned FAIR facility on the right.
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The Collector Ring (CR) is the first storage ring downstream of Super-FRS. It serves as a collector
and a pre-cooler of antiprotons and radioactive ion beams for the succeeding beam lines. In order to
maximize the beam transmission efficiency, a large acceptance is required as a main feature of the CR.
Moreover, CR can be adopted as an isochronous mass spectrometer, which allows for high precision
mass measurements of short-lived nuclides using an in-ring time-of-flight detector, when it operates in
the isochronous ion-optical mode.

The isochronous mode of the CR is a sophisticated state such that stored ions of the same species but
with different velocities revolve at almost the same period. The general principle is that, in simple words,
a fast particle flies along an outer track in the ring while an inner track is chosen by a slow particle, which
means that the lower speed is compensated by the shorter path. However due to the large acceptance of
the CR, this compensation is only valid within a small range of mass-to-charge ratios which is not broad
enough to cover all the injected fragments. For those ions falling out of the range, the peak widths of the
revolution times will expand, thus the resolving power will deteriorate. In order to improve the resolving
power of the CR, this non-isochronous effect has to be corrected for.

The measurement of magnetic rigidity of each particle could be one possible solution, as it can deter-
mine the velocity, which is sufficient to reduce the peak widths [2]. This actually means to measure the
transverse position of each particle, given the fact that field strength of steering magnet is well known. As
a contribution to the FAIR project, our task is to develop a position detector, in principle a beam position
monitor (BPM), that is sensitive to single ions.

As important beam diagnostic devices, BPMs are widely used in many accelerators all over the world,
such as linacs, cyclotrons, synchrotrons and storage rings. According to the different ways in which BPMs
monitor beams, they can be generally classified as intercepting or non-intercepting. In our case, it is
obvious to use non-intercepting BPMs, since the stored ions are expected to survive for a long time.

Even for non-intercepting BPMs, there also exist many types, e.g. capacitive linear-cut, button, stripline
and cavity [3]. Among all these types, the cavity BPM is no doubt a promising candidate, owing to its
high sensitivity of beam position and intensity detection, which we have chosen as the subject of theory
investigation for the beginning phase of R&D.

It is instructive to review the previous works on cavity beam position monitors (CBPMs), in order to
gain some guidelines and inspirations of designing a novel CBPM for the CR. But before that, we will
first present the general theory of working principle of CBPM, which applies to various cavities.

2 Theoretical Description

The word “cavity” is derived from the Latin “cavus” (hollow) and defined as, according to the Oxford
Dictionary, an empty space within a solid body. So when we talk about cavity, what we are truly interested
is the shape and size of the void space rather than the enclosure body. For accelerator physicists, the word
cavity, often together with radio frequency (RF), is referred to one type of components widely used in
accelerators. It is usually in rectangular or circular shape and enclosed by metallic plates or chunks to
confine the electromagnetic (EM) field in it.

The reason of using cavities in accelerators is to interact with charged particle beams so as to achieve
different purposes: accelerating, decelerating, bunching etc. In spite of all those mentioned before which
feed energy into the cavity, we can also extract energy out of it to gain the information about the beams
— the way how we use a cavity as a beam current/position monitor.

In the following sections we choose a circular cavity to exemplify the theory of working principle of
CBPM. The reader should note that the specific details may differ between various types of CBPM, but
the general concepts will certainly apply.



2.1 Ideal Model

Let’s first start with an ideal circular model, which means the hollow space is a cylinder with vacuum
inside and the confining material is the perfect conductor. The EM field distribution in the empty space
can be obtained by solving the Maxwell’s equations. For the reason of simplicity, let’s assume there
are no charge sources or current sources in the cavity, and the EM field has already been established'.
Additionally, since both relative permittivity and relative permeability of vacuum are unity, the Maxwell
equations take the reduced form:

V-E=0, (1a)
V-B=0, (1b)
VXE = —%, (1c)
ot

1 0F
VXB=——, 1d
c2 ot (1)

with the boundary conditions:

nXxE=0, (2a)
n-B=0, (2b)

where c is the speed of light in vacuum, and n is the normal vector of the boundary.
Then we take the curl of both sides of Eq. (1c), followed by using the identity:

VXVXA=V(V-A)-V?A, 3)
together with Eqgs. (1d) and (1a). We obtain:

1 0°E
V’E-==—=0. 4
c2 or? )
This is the wave equation of electric field in free space. Taking the curl of both sides of Eq. (1d) and
obeying the similar procedure, we get the same wave equation for magnetic field:
1 0°B
V:B-=—=0. 5
c2 or? ©)
Egs. (4) and (5) are second-order linear partial differential equations, which are typically solved by
means of separation of variables. Let’s take the electric field as an example:

E(x,y,z,t)= E, (x,y,z) e, 6)

Substituting Eq. (6) into Eq. (4), we obtain the Helmholtz equation of electric field:
w?
V2E, + =E, =0. (7
2

Benefiting from the linearity of Eq. (4), the superposition principle is valid, which means the sum of any
two solutions is also a solution. The physical interpretation of this property is that, the actual EM field
inside the cavity is a superposition of some fundamental fields, which are the solutions of Eq. (7). They
are named eigenmodes, because each of them has a certain angular frequency w and a certain field pattern
E,. The particular superposition coefficients of eigenmodes finally determine the actual EM field.

The reality is that the EM field can be excited by couplers, see Sec. 2.2.3.



Because the simple boundary in our case is cylindrical, the field pattern can be solved analytically.
It is convenient to use cylindrical coordinate. One set of solutions which will benefit to the succeeding
discussions are transcribed as follows [4]:

kz ’ . —iwt
E. = _Eok_Jn (k,r) cosnfsink,ze ", (8a)
r
nkZ : . —iwt
E,= EOkTJn (k,r) sinn@ sink ze™", (8b)
i
E, = EyJ, (k,r) cosnf cos k ze ", (8c)

where J,(x) is the Bessel function of order n and J,(x) is the derivative of J,(x), k, and k, are two
constants to be determined by the boundary conditions (2).

Due to the constraints set by the boundary conditions, E, and E, must vanish on the curved wall. If
the radius of the cylinder is R, then we require:

J, (k,R) = 0, which gives k, = p;,{m ) )

where p,,, is the mth zero of the nth order Bessel function J,(x). Besides, we also need E, = E, = 0 on
two flat walls, which are placed at z = 0 and z = L, respectively. L is the height of the cylinder. These
conditions are satisfied only if:

sink,L =0, therefore k, = lfn , (10)
where [ is an integer.

For the magnetic field, we can deduce the formulae from the solutions of electric field (8), using
relation (1c¢):

B, =iE, :Z; J, (k,r) sinnd cos k,ze ", (11a)
ckyr
N @ ’ —iwt
B, = 1E02—kJn (krr) cosnfcosk,ze ™, (11b)
¢ r
B.=0. (11c)

Note that the longitudinal component of magnetic field is zero, i.e. the magnetic field is purely transverse.
As a convention, we usually indicate such modes as TM together with three indices: n (azimuthal), m
(radial) and / (longitudinal) and denote them as TM,,,,,;. This class of eigenmodes are commonly used for
beam diagnostics, as we will explain later.

Combing Eq. (7) and Eqs. (8) gives the angular frequency ,,,,; of the mode TM,,,;:

Prm \2 Im\?2
a)nm,=m/k%+k§:C\/< ;’") +<f) . (12)

The eigenfrequencies of a cavity are the most important parameters, which are only determined by the
geometry of the cavity, as seen from Eq. (12).

2.2 Pillbox Cavity with Pipe

The case that we consider before is a purely mathematical model, but it still lay the foundation of
the following discussions. In reality, the cylinder is not a entirely closed space, since the beam pipe
has to be taken into account for the traveling path of the beams. Second, the enclosure material of the
cavity has finite electric conductivity, thus the EM energy will be eventually converted to heat on the
walls. Fortunately in practice, the size of the beam pipe is small compared to the wavelength of employed
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(a) front view (b) side view

Figure 2: Sketch of a pillbox cavity with pipe.

eigenmode, and the highly conductive metals — oxygen-free high conductivity copper, for example —
are adopted in the manufacture. As a consequence, these two effects can be treated as perturbations to the
ideal model, which makes the solved EM field pattern is still valid to a great extent. With the improved
model of pillbox cavity with pipe shown in Fig. 2, we will bring out some other important characteristics
of a cavity.

2.2.1 Quality Factor

Since the EM waves can disperse through the beam pipe and dissipate on the walls via heat conversion,
the cavity is no longer a lossless system. We shall modify the solutions to Maxwell’s equations slightly
by introducing imaginary parts to the frequencies to describe damped oscillations of EM waves. Hence
each mode will be characterized by its frequency w/2x and its decay rate a. The field amplitude of a
mode will decay exponentially as « e, and the stored energy W in the cavity will decay as  e™>%.
The quality factor Q is defined as the ratio of the stored energy per oscillation cycle to the power loss
P, [5]. The subscript 0 is to stress that this factor is merely determined by the cavity itself. According to

the definition: W
Q="r=20 =2 (13)

P() _daw 2u ’
dt

Q) describes the lossy character of the cavity. From Eq. (13), it is clear to see that the larger Qy is, the
slower the EM waves are damped, and thus the smaller will become the power necessary to compensate
for the energy losses. For the cavity design, we can tune the cavity to operate around one of its eigenfre-
quencies and take advantage of high O, by using the resonance phenomenon that will lead to strong EM
field.

2.2.2 Shunt Impedance

Because the beam will lose energy when it passes through a cavity, the cavity owns some characters
of being a resistor in a circuit. The quantity shut impedance R, is thus to describe the strength that the
cavity obstructs the beam. We take the “Linac-ohms” definition of R, [5]:

= |VaCC|2 — |/OL Ezdz|2

Ry P, P,
0 0

, (14)

where the accelerating voltage V...
along the beam direction.

The shunt impedance is related to the geometry of the cavity, as well as the EM properties of the
material. However, the ratio R-over-Q is independent of material, only determined by the geometry and
the specific eigenmode. This can be proven by substituting Eq. (14) into Eq. (13):

is the integral of the longitudinal component (8c) of electric field

R, _ |Vac‘6|2

QO_ oW

. 5)
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The material-related dissipation power F, is cancelled after calculating the ratio.

In fact, R,/Qy is more often used than R, because it allows to separate the material effects in the first
place. Due to the same reason, R,/Q, is regarded as a more fundamental characteristics of a cavity and
used more often.

2.2.3 Coupler

Sometimes we need to actively feed energy into the cavity, like the case of acceleration cavities, or
extract energy out of the cavity, as in the case of CBPM. This is realized by couplers to couple the EM
field inside the cavity with the external circuit. According to different kinds of field they couple, couplers
(Fig. 3) can be classified to three common types [6]:

Magnetic the coupler is a loop which acts like a magnetic dipole. It interacts with magnetic field in the
loop area;

Electric the coupler is an antenna which acts like an electric dipole. It interacts with electric fields on
the surface of antenna;

Electromagnetic the coupler is a slot connecting the cavity with a waveguide. It acts like a magnetic
and/or electric dipole, depending on which field(s) will leak out through the slot.

) ) )
Q. _
_ _ _
(a) a loop (b) an antenna (c) aslot

Figure 3: Sketch of different kinds of couplers to couple the stored energy of a cavity with external
circuits. The red region indicates the cavity, whereas the outside is in blue block.

When the cavity is implanted a coupler, the stored energy is dissipated into not only the cavity wall
but also the external circuit. We can define the external quality factor Q,,, to take external loss power

P, , into account.
oW
==, 16
Qex[ Pe)“ ( )
The loaded quality factor Q; is naturally defined as:
oW
O,=5——, (17)
t PO + Pext
which leads to the relation of three kinds of Q values:
1 1 1
—=—+ . (18)
QL QO Qext

2.2.4 Coupling Coefficient

It is meaningful to evaluate how strong the coupler couples with the EM field. Hence we introduce
the coupling coefficient  defined as [6]:

Pext QO
ﬂ PO Qext ( )



The reflection coefficient I' seen by the signal source under the assumption of zero-electric-length trans-
mission line, is related to § by:
Loo_b-t
WO=W,.¢ ﬁ + 1 ’

where o = w,,,, means Eq. (20) is only valid when the cavity is at resonances.

The coupling coefficient plays an important role in the design of a cavity, since it determines the
reflection coefficient, and the ratio between the power dissipated into the walls and the external loads. It
is possible, in general, to change it by altering the geometry of the coupler.

The particular case of f§ = 1 is of great interest, because under this condition, we don’t get reflected
power at the input port. This is called critical coupling, being contrary to under-coupling and over-
coupling for § < 1 and g > 1, respectively. It is usual to set the coupling to be critical.

(20)

2.3 Beam Position Detection

P - :
y . o '_ T .
ar”
Pe - 3 ~
e
5 " ¢'¢ ‘L o
- - x & zr g
i - o W W
4 f‘, = «” L4
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(2) TMg, (b) TM; 4

Figure 4: The electric field patterns of eigenmodes TM,,;, and TM,,, in a circular cavity.

For beam diagnostics, the two lowest eigenmodes of the circular cavity, namely TM;, and TM (), are
frequently utilized to measure intensity and position of the beam. Because of the electric field patterns,
which are depicted in Fig. 4, they are normally called monopole mode and dipole mode, respectively.

It is a fact that, the electric field of monopole mode mostly concentrates around the center (Fig. 4a),
where the field changes steeply for the dipole mode (Fig. 4b). As a consequence, the beam will not feel
too much difference if it offsets in the neighborhood of center when the cavity resonates in the monopole
mode. However for the dipole mode, the interaction between the beam and the cavity will severely change
in the same region. In other words, the dipole mode is sensitive to the beam transverse position, whereas
the monopole mode is not. Therefore a CBPM usually operates in the dipole mode, rather than monopole
mode to determine beam positions.

Nevertheless, it is worthwhile to mention that the dipole mode is actually degenerated, due to the rota-
tional symmetry of the pillbox. The two degrees of freedom on the transverse plane permit two possible
polarizations of dipole mode, whose polarized axes are mutually orthogonal. They are conventionally
named as X-polarization and Y-polarization. Since the frequencies of both polarizations are the same, we
can not separate them with normal signal processing scheme. To reduce the potential systematic errors
introduced by “cross talk” between two polarizations, special techniques must be taken into the cavity
design, by deforming the cavity a bit, intruding some obstacles into the cavity, attaching some coupling
waveguides, and so forth.

2.3.1 Beam Loading

When a bunch of charged beam enters into the cavity, it will excite EM field inside the hollow space.
Meanwhile, the beam will also feel the EM force exerted by the existing EM field, even including the



field excited by itself. This phenomenon is called beam loading [7].

The energy flow from beam to cavity, or the other way around, can be presented mathematically in
respect of shunt impedance of the cavity. First, let’s consider a charged particle that is about to enter a
cavity. At this moment, there is no EM field trapped in the cavity yet. After the particle enters, it will
excite EM field which is decomposable to the eigenmodes of the cavity. From now on, we will focus on
one particular mode to calculate the excited voltage of such mode. The voltages of other modes can be
obtained in the same way [8].

Let’s assume the charge of the particle is g, the excited voltage of that mode is V,, ., at the same time,
the particle feels decelerating voltage V,,.. V,,. should be related to V,, . proportionally:

Vdec = yVexc' (21)

Next, the second particle comes in and excites its own EM field in the cavity. Since the cavity has already
trapped EM field excited by the first particle, the second particle feels stronger decelerating voltage:

V,.e°+ V.., (22)

exc

where the phase 6 indicates the oscillation of the EM field during the time interval between two particles.
From beam’s point of view, it loses energy of W, ...

I/I/vbeam = qm {Vdec} + qm {I/excei(S + Vdec} = 2qy1/exc + qI/exCCOS 0. (23)
The accelerating voltage V.., after two particles have passed, is the sum of the voltage excited by both
particles: _
VaCC = I/EXC616 + I/EXC ° (24)
Using Eq. (15), the stored energy W,,,;, can be written as:
Viee? 2V2. (1 +cos 5)
cavity = = . (25)
@ (R,/Qy)  (Ry/Qy)
Under assumption of lossless system, which requires energy conservation, W, and W_,,,;,, must be
equivalent. As a consequence, we have:
2V (1 4 cosd)
2qyV, ..+ qV,. .cos 6 = —=5 ) (26)
exc exc @ (RS/QO)
Because of the arbitrary phase 6, Eq. (26) is actually a couple of equations:
2V
207 Vese = ———— - (27a)
exe w (RS/Q())
v 5 2Veiccos 0 (27b)
qV,,C086 = ————,
exc w (RS/Q())
which lead to: R
qow
Vexe = 5 <Q—0> : (28)

and y = 1/2. The interpretation is quite interesting: for any eigenmode of a cavity, a charged particle only
feels half of its exited field. This was originally proven by P. B. Wilson in one of his reports [9], where
he called it the Fundamental Theorem of Beam Loading.
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2.3.2 OQOutput Signal

Eq. (28) shows the exited voltage of one eigenmode is proportional to the eigenfrequency and shunt
impedance of that mode. Combining Eq. (28) and Eq. (15) gives the stored energy in the cavity:

W Ve =‘12_‘°<§> , (29)
w (RS/Q()) 4 QO
From the definition of Q,,, (16), the power extracted out of the cavity is:
2.2 R
et = (—) (30)
4Qext QO

If we dissipate this power by an impedance Z, the voltage of output signal will be:

R
Vo=\/ZPex,=?\/QZ <Q—> 31
ext 0

In practice, the decay rate a should be taken into account, as well as the oscillation effect. Thus the output
signal is actually presented as:

V = Ve ¥cos (ot + @) , (32)

shown in Fig. 5.

Figure 5: The typical output signal from a cavity.

It is interesting to notice that, from Eq. (31), ¥, is determined by three characteristics of a cavity, i.e.
w, Q,,; and R,/Q,. When a cavity has been built, w and Q,,, both are fixed and barely change. Yet R,/Q,,
allows for flexibilities, since it also depends on transverse positions of beams.

Recalling the expression of longitudinal component of electric field in a cylinder (8c), for monopole
and dipole modes, E, take the forms:

r .
E%° = E,J, <p0_1;> emior (33a)

E' = EyJ, (%) cos e, (33b)

For the small beam offset from the center, we can expand Bessel functions to the first order as fairly good
approximations:

EN0 ~ Ejemior, (34a)

r . E .
EN ~ E, (1)21—11{> cosfe ¥ = x%e_“‘”, (34b)

11



where x = rcos 6 is the projection of beam offset with respect to X-axis.
Substituting Egs. (34) into Eq. (15), we obtain [8]:

<Rs> k (35a)
= = K010 a
Qo /010

R
<—S) ~ kypox?, (35b)
QO 110

where kg, and k are constants to be determined by the geometry of the cavity. From Egs. (35), Eq. (31)
and Eq. (32), it is obvious to notice that the output signal is independent of beam offset in a small range for
the monopole mode, whereas linearly related to the offset for the dipole mode. As a result, the monopole
mode is suitable for beam intensity detection but the dipole mode is better for beam position detection.

2.3.3 Signal Contamination

For a CBPM, the ideal signal we want to finally get is Eq. (32), where the amplitude ¥, is proportional
to the beam offset x. Thus by measuring the voltage of the signal, we can detect the beam position.
However in reality, the situation is more complicated, as the signal is usually contaminated by other
sources: monopole mode, beam angle and bunch tilt. In the following, each source will be covered
concisely.

Monopole Mode As can be seen from Eqgs. (35), for small beam offset x, the shunt impedance of dipole
mode is almost zero, which is much smaller than that of monopole mode. This directly results that
the signal strength of dipole mode is much weaker. If looking at the resonant spectrum in frequency
domain, even though two resonant peaks are spaced apart from each other, the signal tail of the
monopole mode extending to the dipole frequency still causes inevitable background. To reduce
such effect, two general methods, namely symmetry discrimination and frequency discrimination,
are adopted in practice [10]. The former is taking the subtraction of two signals from oppositely
placed couplers, and the latter is using a band pass filter centered at dipole frequency.

Beam Angle If the beam travels in a small angle ¢ with respect to the symmetry axis of the cavity, the
output signal will get another contribution from this effect. It can be modelled as the sum of two
halves offset beams, shown in Fig. 6. One half enters the cavity with offset — L¢/4 and phase L/4c,
while the other half leaves the cavity with offset L¢/4 and phase —L/4c, where we have already
adopted the approximation tan ¢ ~ ¢. The sum effect is calculated as:

L L L
Vangle & —T¢Cosw <t + f—c) + Td)cosco (t - i) = Td)sin (CZ—(I:) sinwt . (36)
Note that the signal caused by beam angle is in quadrature phase with respect to the beam offset

signal.

Bunch Tilt It is sometimes possible that the bunch orientates off the trajectory direction by a small angle
v, even if the beam travels along the longitudinal axis. When the bunch size is comparable to
the wavelength of dipole mode, this effect must be taken into account. A new contamination with
regarding to the bunch tilt thus appears. We may model this effect by considering two point charges
separated by s in longitudinal direction, as shown in Fig. 7. The sum signal V};;, is expressed as:

sy

Vi %cosw (t + i) - cosw (t - %) = —sysin (i) sinwt . (37)

Again, the signal caused by bunch tilt is also in quadrature phase with respect to the beam offset
signal. Therefore, to reduce the effects by beam angle and bunch tilt, a phase detection module
is essential for a CBPM system. That is why we usually use a reference cavity working in the
monopole mode to calibrate the charge and phase of the beam, together with a position cavity
working in the dipole mode.

12



Figure 6: Modelling of a beam passing through a cavity with a small angle.

j
j

l

Figure 7: modelling of a tilted bunch passing through a cavity.

3 Diversity of CBPMs

The idea of embracing cavity concept into BPM design to enhance the signal-to-nose ratio was orig-
inally brought up by Bergere et al. in 1962 [11]. It was an improvement of traditional BPM used in the
linear electron accelerator in CEA Saclay”. The former one had four loops mounted in the beam pipe and
evenly spaced by 90° around the circumference of the cavity. To optimize the sensitivity, a novel design
using four resonant cavities instead of loops was proposed. Later in 1963, Neal at SLAC also came up
with a similar idea which was reported in [12].

Itis visible in Fig. 8 that four identical cavities are mounted on a mechanical support to allow centering
around the beam on the transverse plane. On one side of each cavity is a slot used as a magnetic coupler.
The induced power in these cavities is picked up by four loops before rectification and further processes.
The cavity resonates in monopole mode and is tuned to 3 GHz, which is the acceleration frequency of
linac. The unloaded quality factor of the cavity is about 500. This assembly carries an advantage of better
sensitivity, which is however traded off by more stringent construction demands, as the cavities must be
exactly the same to eliminate systematic errors.

Following the pioneer work at CEA Saclay, more and more CBPMs have come out worldwide in
different laboratories. In general, they can be categorized into four major families, namely rectangular,
circular, re-entrant and choke mode. In the subsequent sections, each family will be elaborated by existent
instances taken from literatures starting from 1960s.

2CEA is the acronym for the French research organization: commissariat a I’énergie atomique. CEA Saclay is one of its
research centre on the Saclay plateau.
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Figure 8: Front cut view (left) and side cut view (right) of the resonant CBPM designed at CEA Saclay
in 1962. Taken from [11].

3.1 Rectangular Cavity

Back to 1961 when SLAC was approved by the Congress, physicists were awaiting the commission
of Standford two-mile linear accelerator. For this complex facility, BPM system is of crucial importance.
Several designs have been proposed by Brunet ef al. in 1964 [13], including traveling wave monitor,
resonant ring, shorted waveguide and cavity. Finally a rectangular cavity was adopted and later published
by Farinholt et al. in 1967 [14]. This is the world’s first rectangular cavity used for monitoring beam
positions in an accelerator, which marks the beginning of history of CBPMs.

The monitoring system was installed at the beam switch yard of beam line. Each monitor assembly
comprised two perpendicularly placed rectangular cavities operating in TM mode’, and one circular
cavity operating in TM; mode. The position cavities operated at frequency of 2856 MHz — equal to
the acceleration frequency of linac. The loaded quality factor is 325 [13]. According to the performance
report by Farkas et al. [15], the CBPM achieved position resolution of 10 um at beam intensity of 100 pA,
I mm at 100 nA.

In 1987, almost 20 years later, Goldberg et al. also built a rectangular CBPM for the Tevatron at
Fermilab [16]. The rounded corner cavity worked in dipole mode at frequency of 2044.5 MHz. This
frequency was chosen to be a half-integer multiple of the RF frequency to minimize possible coherent
signal contamination in multibunch operation. Besides, the actual resonant frequencies of X- and Y-
cavities were intentionally displaced by +2 MHz from the calculated frequency. The splitting should be
low enough to allow for reasonably narrow bandwidth of signal processing electronics, yet high enough
to avoid incidental coupling between the two cavities. The Q, was chosen to be 10000 at design stage,
then tested to be 9500 and 9200 for each cavity after fabrication.

As an example of next generation of accelerators, the proposed International Linear Collider (ILC)
has been catching physicists’ more and more attentions since 1990s. To achieve high luminosity collision,
ILC requires beam size of a few nanometers and beam stability of the same scale. For this purpose, Inoue
et al. at KEK* developed a high resolution CBPM (Fig. 9) and tested it at the focal point of ATF2 [17].
The system demonstrated 8.7 nm position resolution over a dynamic range of 5 um with beam intensity
of ~10'° e/bunch. The rectangular cavity was designed to have different length and width, in order to
well isolate X and Y position signals. As a result, the eigenfrequencies of X and Y dipole modes are

3The notation TM,,,; of a rectangular cavity is similar to that of circular one. n, m and I indicate the number of extremes of
electric field counted along axis x, y and z, respectively.
4KEK is the acronym for the Japanese organization kd-enerugt kasokuki kenkyi kiko. It focuses on high energy research.
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Figure 9: Structure of CBPM block designed at KEK in 2008. Taken from [17].

5.712 GHz and 6.426 GHz, respectively. The signals are coupled out through slots located in the cavity’s
end plate. The coupling coefficient was carefully set to 1.4 for X-ports and 2.0 for Y-ports, since higher
coupling increases sensitivity, yet reduces dynamic range by saturating the electronics. The waveguides
can resonate dipole mode, as well as reject monopole mode by setting the cutoff frequency of waveguide
between frequencies of monopole and dipole.

Another example of rectangular CBPM was made by Su ef al. at Tsinghua University [18]. The
cavity was installed in TTX to monitor beam transverse positions. The configuration is very similar to
the above Japanese one, using four waveguides to extract beam induced signals. The cold test frequencies
are 5.6618 GHz and 5.7794 GHz respectively for X- and Y-cavities. And measured Qy, is about 6500
while the required value is 9700. However after welding, the value increases to ~8000, which nearly
satisfies the requirement.

3.2 Circular Cavity

Among all types, the circular one is the most widely used, not just because the RF properties can
be precisely understood by analytic methods, but also it can be easily manufactured. The world’s first
circular CBPM was developed by McKeown at CRL in 1979 [19]. The cavity was tuned to 2.415 GHz —
the third harmonic of acceleration frequency. As shown in Fig. 10, it was constructed to meet quadrupole
symmetry by introducing tuning plungers at radial positions near the electric field maximum. This sym-
metry was maintained by four magnetic coupling loops on the circumference. After the cavity was
built, the beam tests were carried out in the beam line of ETA. The electron beam was held steady at
about 1 mA, while the cavity moved horizontally and vertically. The position sensitivity was obtained as
0.35mW"?> mm~' mA~!. As a continuation of McKeown’s work, Chan ef al. developed another CBPM
with small modifications 2 years later [20]. Fist the resonant frequency was set to the fourth harmonic of
acceleration frequency. Second the electric probes were used as coupler instead of magnetic loops.

Similar to ILC, the compact linear collider (CLIC) is also a proposed electron-positron collider in the
post-LHC era for physics up to multi TeV center-of-mass colliding beam energy range. A big collabora-
tion based at CERN? have been working on this project since early 1990s. In 1992, Schnell ez al. reported
the development of CBPM to be used in CLIC [21]. The successful operation of CLIC will demand um
precision measurements of transverse beam position along the full length of the main linac. The resonant
frequency of CBPM was tuned to 33 GHz, slightly above the acceleration frequency of 30 GHz, so as to

SCERN is the acronym for the French conseil europen pour la recherche nuclaire. At that time when it was founded, the
most frontier of physics was to study the inside of the atom, hence the world nuclear. Today, CERN has become the world’s
centre of particle physics, dedicated to the study of the fundamental constituents of matter and the forces acting between them.
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Figure 10: Bimodal CBPM designed at CRL in 1979. X- and Y-dipole mode can be switched by tuning
plungers. Taken from [19].

reduce the risk of interference by the power pulse. A prototype was tested in CTF using 50 MeV, 1 nC
single bunch beam. The test setup consisted of a reference cavity and two position cavities, which were
mounted on 0.1 pm resolution micro-movers for displacement calibration. The upper limit on CBPM res-
olution derived from measurement results was 4 um, as reported by Sladen ef al. in 1996 [22]. However,
the authors also pointed out, ““...the true BPM resolution is almost certainly in the nanometer range and
these results are probably an artifact of specific beam conditions.”

Almost at the same time, Euteneuer ef al. at University of Mainz presented beam monitors at MAMI
[23]. The design goal of position monitoring was to distinguish beam deviations of 0.05 mm at current
of 1nA, corresponding to cavity power around 10~'® W. To increase the sensitivity, the mode stabilizers
in the circular cavities were built as capacitive cylinders, drawing the electric field maxima inwards. By
the steeper gradient of the electric field, the shunt impedance can be enhanced by up to a factor of 5. To
achieve high time resolution of 12 ns, low Q; ~ 30 was chosen.

Inspired by the CBPM idea of Hayano and Shintake, which was originally designed for JLC [24],
Lorenz and Yezza at Technical University of Berlin built a circular cavity for TESLA in 1993 [25].
Because the theoretical resolution of CBPM is limited by monopole mode excitation, a ring combiner
was attached to the cavity to reject such mode (Fig. 11). A symmetry rejection of more than 30 dB for
monopole mode was expected. A selective coupler located at the point where the magnetic field of dipole
mode is zero was also adopted in the design. The CBPM was installed in TTF, and tested at room tem-
perature. The resonant frequency was 1.517 GHz, coupling coefficient was 0.95, and unloaded quality

factor was 3025 [26].
; TMji9-cavity

555;,%-_..—_______

1 Ring-Combiner

Figure 11: Sketch of CBPM with a coaxial ring combiner designed for TESLA in 1993. Taken from [25].

Another group led by Balakin at BINP also demonstrated a CBPM system with sub-micron position
resolution in 1994 [27]. The designed CBPM was expected to be sensitive to about 0.1 um to meet the
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requirement of VLEPP® project. In fact the obtained sensitivity being able to detect signal in order of
107" W corresponds to a few nanometers of VLEPP beam’s offset. The prototype is very similar to the
above one, which also connects with a ring combiner by two symmetric coupling slots. Output power
is extracted from the ring combiner through coaxial plug. Additional coaxial cavity with very low Q,
(loaded by ferrite) is mounted nearby and used for damping of parasitic modes. On the bench top, the
resolution of this system was measured as 0.05 um. Five years later, the CBPM was installed in ATF at
BNL, and tested with 0.25 nC bunch charge beam. A position resolution of 0.15 um was obtained [28].

Due to some financial problems happened to BINP, unfortunately VLEPP could not be realized. Then
the Russian group joined ILC collaboration, and developed another CBPM operating at 6429 MHz [29].
According to a paper published in 2007 by Walston et al. [30], the position resolution of such cavity was
15.6 nm and the tilt resolution was 2.1 urad over a dynamic range of almost +20 um. The dipole mode
excited in the cavity was selectively coupled out by two orthogonal slots. These slots — one each for X
and Y directions — exploited the difference in the field pattern of monopole and dipole modes to reject
the tails of monopole signal with frequency at dipole resonance.

In 1997, Ursic et al. at JLab developed a CBPM system to measure transverse position of very low
current beams delivered to the experimental hall B of CEBAF [31]. In the heart of such system was a
position cavity operating at 1.497 GHz, which was the third harmonic of bunch frequency. The loaded
quality factor was 3500, and the sensitivity was 70 pV/um at beam current of 1 nA. The system was
capable of handling wide dynamic range of beam currents from nA to pA with an expected resolution
better than 100 um. The position cavity is equipped with field perturbing rods, which draw the electric
field maxima of dipole mode closer to the center. As a consequence, the rods increase the resolution by
a factor of 2.5, reject cross talks between X and Y polarizations, and introduce loss, deteriorate quality
factor. The resulting broader resonance peak is then beneficial in reducing drifts for improved long term
measurement stability.

Figure 12: 3D model of a dipole selective cavity coupled with four waveguides.

One particular configuration of circular CBPM, which is shown schematically in Fig. 12, is more
and more frequently used in various accelerators. The resonant dipole field in the cavity is coupled with
four symmetrically placed rectangular waveguides. This special design takes advantage of difference
in EM field distributions of monopole mode and dipole mode. In the intersecting area of cavity and
waveguides, the magnetic field lines of monopole mode and dipole mode are almost perpendicular to
each other. Because the dipole field points to the preferred propagating direction of waveguide, it can
easily enter the waveguide, whereas the monopole field is rejected outside. By installing antennas in the
waveguides, a considerable suppression of monopole signal with respect to dipole can be achieved. As a

SVLEPP is the acronym for the Russian vstrechniye lineyniye electron-positronniye puchki, or ecmpeunvie auneiinbie
anexmpon-nozumponnwie nyuku in Cyrillic script.
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consequence, this configuration of CBPM is often named as “dipole selective” cavity. In 2002, Johnson
et al. at SLAC first built such cavity resonating at 11.424 GHz to fulfill requirements of proposed NLC
[32]. The measured Q, was 590, and dipole frequency was 11.45 GHz [33].

Liapine at Technical University of Berlin adopted the same idea as Johnson’s to design a cavity for the
energy spectrometer in TESLA [34]. The operating frequency was chosen to be 1.518 GHz, a compromise
between cavity size and prices of electronic components. The cavity dimensions were carefully selected
such that the shunt impedance has the highest possible value and the monopole eigenfrequency is far
from acceleration frequency to avoid resonance. The position resolution was tested to be 470 um for X
direction and 203 um for Y direction in the dynamic range of +1 mm [35].

Ever since Liapine got his doctoral degree, he moved to UCL in 2005 and has used Lyapin as an
alternative spelling. Two years later together with his colleagues, Lyapin presented a new design of
CBPM for ESA at SLAC [36]. The CBPM system consisted of three circular cavities designed for use
in the cryogenic regions of the ILC linac [37]. The coupler using combination of slots and waveguides
provided very good suppression of parasitic monopole mode. These cavities have a low Q; ~ 500
and therefore a short decay time of dipole signal to provide bunch-to-bunch position measurements in
ILC without the need to exclude the contaminations from previous bunches. The measured resolution
of X-cavity was 0.53(5) um and that of Y-cavity was 0.46(2) um. They were significantly worse than
predictions, but in reasonable agreement with the amount of vibration recorded by the interferometer,
which indicated that the resolutions were limited by mechanical motions.

In 2009, Lyapin et al. developed two CBPMs working at different frequencies for ATF at KEK [38,
39]. All the design details and test results of the CBPMs were published by Kim ez al. three years later
[40]. The C-band cavity worked at 6.423 GHz with Q; of 6000. The position resolutions were measured
to be 248 nm for X direction and 254 nm for Y direction. The S-band cavity worked at 2.888 GHz with
Q; of 1800. The position resolutions were measured to be 1.48 um for X direction and 0.92 pym for Y
direction.

Then in 2012, the same UK group contributed another CBPM system for CLIC, and tested it in CTF
[41, 42]. The dipole frequency of 14.99 GHz is close to 14 GHz which will be used for RF acceleration
in CLIC. As a result, the signals from consecutive bunches add up constructively and dominate signals
among other parasitic modes excited by beams. The unloaded quality factor was designed to be 450 such
that the signal from any bunch has decayed by a factor of order 10 within the time resolution. The signals
were extracted via feedthrough antennas at the end of waveguides connected with the cavity.

As a member of both collaborations CLIC and ILC, Fermilab also developed CBPM systems accord-
ing to the particular requirements of these two projects [43]. The proposed CBPM design is based on a
selective mode coupling idea realized in X-band. This schema provides a high spatial resolution while
keeping in compact dimensions. In order to measure the beam trajectory within 50 ns time scale, the
stainless steel material was used to lower quality factor. The designed dipole frequency was 14 GHz and
0, =465.5.

The CBPM that Fermilab designed for ILC operating in L-band at 1.3 GHz and in cryogenic temper-
atures [44]. The resonant frequency was chosen in a way that signals will be maximized in multi-bunch
operation scenario. However this frequency is the same as the acceleration frequency, therefore efficient
shielding is mendatory. The cavity is coupled with four waveguides via slots to damp monopole mode.
Besides, four antennas are plugged in one flat end of the cavity to directly extract monopole signal, saving
an extra reference cavity [45]. After test, Q; was about 600 and the sensitivity was 0.24 V nC~' mm™!
[46].

Meanwhile, an independent group at ANL designed a high resolution X-band CBPM system for LCLS
in 2006 [47]. The resonant frequency was 11.384 GHz, Q; was 3550. The dipole selective CBPM was
mounted on a precise 2-axis translation stage, and tested in ITS. With beams of 1 nC single bunch charge
and 3 ps bunch length, the sensitivity was measured to be 1.22mV um~' nC~".

In Japan, Maesaka et al. at RIKEN' published an article recently, reporting a sub-micron resolution

TRIKEN is the acronym for the Japanese rikagaku kenkyfijo. It is a large nature science research institute in Japan.

18



CBPM system developed for the SACLA XFEL facility [48]. The resonant frequency is 4.76 GHz for both
position cavity and reference cavity. This frequency is intentionally shifted from acceleration frequency
so as to reject any backgrounds owing to dark current synchronized with RF field. A low Q, of 642(32)
is due to the stainless steel material used for construction. Nevertheless, this value is adequate since the
coupling coefficient is much greater than unity, thus most of stored energy in the cavity is extracted from
the coupling slots. Besides, there are also other advantages for a low Q, cavity: the RF phase shift due
to temperature drift is small, and the pulse response is relatively fast. The CBPM has been tested with
electron beams of 0.1 nC bunch charge and 7 GeV beam energy. The position resolution in the undulator
section is less than 0.6 um. For the low charge operation of beam line, say 0.01 nC, the resolution of 6 um
is obtained.

In collaboration with the Japanese group, Lipka et al. at DESY also built some CBPM prototypes for
the European XFEL [49]. The design was originally based on the Japanese cavity, then changed according
to the boundary conditions of the European XFEL. Two generation of prototypes were constructed. The
first one worked at 4.4 GHz, while the second one operated at 3.3 GHz. The lower resonant frequency
was later chosen to adapt to the larger beam pipe. Both types were installed in FLASH.

In 2012, a highly sensitive CBPM system that can monitor pA electron beams was developed by
Pusch et al. at University of Bonn [50]. It was designed for the fixed target experimental setup in ELSA,
especially when polarized beams were used. The operation frequency was chosen to be at the third
harmonic of bunch frequency of 499.67 MHz. To extract the position signal, two coupling antennas
were installed somewhere in the top cap of the cavity. The locations where the electric field of dipole
mode reaches its maximum were chosen, based on the analytic evaluation of an ideal cylinder. On the
bottom of the cavity, exactly opposite to the coupling antennas, small capacitive cylinders were mounted
in order to concentrate the field in their vicinities. The position resolution of 50 um was achieved.

In the same year, Dal Forno et al. at Elettra published their work on CBPM for the XFEL facil-
ity in Italy [51]. The dipole mode resonates at 6.5 GHz. The position signals are selectively extracted
by four rectangular waveguides, which are magnetically coupled to the cavity. The system has been
tested with electron beams with bunch charge of 270 pC and pulse duration of 10 ps. The sensitivity of
0.33VnC~! mm™! for X-cavity and 0.3 VnC~! mm~! for Y-cavity were obtained.

Figure 13: Photo of a prototype CBPM developed at SINAP in 2008. Taken from [52].

In Shanghai, China, SDUVFEL facility has been approved by Chinese government. As a result, a new
BPM system is needed for the beam alignment. Chu et al. at SINAP described bench top measurements
of a C-band CBPM in 2008 [53]. For monopole mode rejection, a different coupling scheme was used, as
shown in Fig. 13. The two polarizations of dipole mode are coupled magnetically with four waveguides
spaced by 90° around the circumference of the cavity. The propagating eigenmodes of the waveguide
do not have azimuthal magnetic field in the region of coupling slot, hence the monopole mode is barely
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coupled. Via test, O, was measured to be 10377, close to the designed value of 11 035. The position
resolution of the cavity was 2.8 um.

Finally we would like to mention a group at Technical University of Darmstadt who are working on
a similar topic to ours. Their objective is to develop a BPM system for the proposed CR at FAIR. Based
on the conference proceeding lately presented by Hansli et al. [54], the main structure of the cavity is a
pillbox. On its circumference, two selective coupling waveguides are connected oppositely to the cavity
(Fig. 14). This particular configuration is able to extract monopole signal and dipole signal simultaneously
with specially placed couplers. A magnetic coupling loop at the zero-plane of the dipole mode is used to
exclusively couple with the monopole mode, while the attached waveguides are utilized to extract dipole
mode. To verify this idea, they have built a simplified demonstrator, and measured its RF properties. The
monopole frequency is 1.86 GHz and the dipole frequency is 2.77 GHz for the demonstrator.
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Figure 14: 3D model of a CBPM designed at TU Darmstadt in 2013. The dipole signal is extracted by
waveguides, while the monopole signal is couple with a loop (position 3). Taken from [54].

3.3 Re-entrant Cavity

coaxial cavity circular

beam pipe E,

re-entrant

nose cone

(a) Side cut view of a re-entrant cavity. (b) comparison of electric field distributions
inside a circular cavity and a re-entrant cavity.
Redrawn from [55].

Figure 15: Schematic plots of a re-entrant cavity and its electric field distribution.

Back to 1964, Altenmueller and Brunet at SLAC first introduced re-entrant shape of cavity when
they discussed its EM field distribution [55]. The cavity is a modification of circular one by pushing the
margin of one cap outside, the residual portion — called “nose cone” — is thus re-entrant. The structure
consists of three distinct regions (Fig. 15a): beam pipe, gap and coaxial cavity [56]. As can be seen from
Fig. 15b, the electric field is prominently concentrated in the vicinity of beam pipe by the nose cone [55].
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Therefore this special structure will considerably increase the shunt impedance, thus the sensitivity, of
the cavity in the central region. Because of such advantage, re-entrant cavities have been often used as
beam current monitors to measure intensities, and in klystron tube amplifiers for beam modulations.

The first re-entrant cavity used as beam position monitor was presented by Bossart at CERN in 1994
[57]. For the SPS, eight CBPMs of re-entrant shape working at 200 MHz have been deployed since 1975.
During operations, the beam bunches will excite an evanescent dipole mode TE; in the coaxial cavity
proportional to the transverse beam displacement off the central axis. For the beam monitoring over a
broad bandwidth, typically ~ 100 MHz, the evanescent field is used taking advantage of bandwidth which
is a half of the resonant frequency.

Later in 1998, another re-entrant CBPM was built by Magne et al. at CEA Saclay and tested in TTF
[58, 59]. The position signals were extracted by four symmetrically arranged feedthroughs at the end of
coaxial cavity. The measured resolution was 10 um for a low current beam of bunch charge 1 nC, and the
expected resolution was 700 nm for a high current beam. The sensitivity of 0.26 mV mm~' mA~! was
obtained.

Several years later, the same group led by Simon published an article on CBPM, in which design, fab-
rication and beam test of a new re-entrant cavity for the European XFEL was described [60]. This CBPM
was designed to be inserted in a cryomodule, working at cryogenic temperatures in a clean room envi-
ronment. The prototype was installed in FLASH, tested with beam, and the resolution of approximately
4 um over a dynamic range +5 mm in single bunch, resonant frequency of 1724 MHz was obtained.

In 2003, Lorenz et al. designed a re-entrant cavity to measure beam alignments at the undulator section
of TTF at DESY [61]. The configuration of CBPM system is sketched in Fig. 16. Each cavity is connected
to beam pipe via a nose cone, which is benefit to reducing interference between the EM field inside the
cavity and that of subsequent bunches. The combination of two independent cavities eliminates incidental
cross talks. To each cavity connect two waveguides on the circumference in the opposite directions. The
coupling irises between the cavity and the waveguides are designed such that f§ is 2.5, and Q, is about
1000. The dynamic range of this system was tested linearly for bunch charges from 0.5 nC to 3 nC.

waveguide

cavity

beam pipe

nose conec

Figure 16: Sketch of CBPM system designed for TESLA in 2003. The system consists of two identical
parts which are perpendicular to each other. Taken from [61].

In China an S-band re-entrant CBPM system has been designed for a new high brightness injector at
HLS by Luo et al. at USTC [62]. Coupling waveguides and coaxial probes are installed to extract dipole
signals. Through a bench top measurement, the resonant frequency is 2448 MHz and loaded quality factor
is 146. The position resolutions are 1.91 um in X direction and 2.05 um in Y direction.
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3.4 Choke Mode Cavity

As already explained in the theoretical part of this report, the EM field inside a cavity excited by
a charged particle can be decomposed into infinite eigenmodes. Each mode interacts with the particle
distinctively. One major problem in the RF cavity design that we have always been facing to is how to
suppress or damp parasitic modes which are not helpful or even harmful to the cavity operation. According
to the application of a cavity, the parasitic modes differ from case to case. For instance, the monopole
mode is parasitic for beam position monitors, whereas the dipole mode is parasitic for beam current
monitors. The configuration of a cavity should be adapted to the design purpose, in order to feature the
desired mode.

In 1992, Shintake at KEK came up with an exceptional idea and proposed a novel design of cavity,
namely choke mode cavity, to trap the desired mode and damp the parasitic modes [63]. The geometry
of such cavity is shown in Fig. 17. The choke structure is serially mounted on the radial line at a quarter
wavelength of the desired mode from the cavity. This special shape will efficiently damp high order
modes while keep the desired mode trapped in the cavity. The imaginary part of impedance there becomes
infinitely large at the frequency of trapped mode, and thus the real part becomes negligibly small. As a
consequence, the RF power of that mode is reflected back to the cavity without losing its energy.

coupling antenna
ping ' choke
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—IJ_L ! : \’ microwave absorber
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Figure 17: Side cut view of a model choke mode cavity designed at KEK in 1992. The beam pipe is
omitted. Modified from [63].

Three years later, Shintake’s idea was successfully implemented by a CBPM system installed in FFTB
[64-66]. The dipole frequency was designed to be 5712 MHz and loaded quality factor was measured
to be 130. Using the 47 GeV electron beam provided by FFTB, the choke mode CBPM was tested with
single bunch charge of 1 nC. The sensitivity was 25 uV nC~! nm~!, and the resolution was 25 nm.

4 Summary

Beam position monitoring is crucial for the routine operation of any accelerator. Among all the
types of BPM systems, cavity beam position monitor is of great importance, owing to its advantages
of high sensitivity and sharp resolution. These specifications make it a promising candidate to satisfy
strict requirements on beam monitoring and detection demanded by accelerators. Therefore the CBPM
system has been investigated and implemented widely since early 1960s. The structures of cavities can
be classified as rectangular, circular, re-entrant and choke mode. The circular type is exemplified with
great effort, meanwhile the other three are also covered thoroughly. In order to present a comprehensive
overview of the evolution history of CBPM during the last half century, various implementations of
CBPM are tabulated in Tab. 1, sorted by year. For more information, a complete set of cited references
is listed in the last column.
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5 Outlook

The purpose of this report is to offer some inspirations for the design of our cavity, whose main
challenge is being able to identify the transverse position of each stored ion in the CR. This requires
our cavity must be sensitive to the beam intensity down to single ions, and the beam position down to
millimeters.

Although most of the CBPM that we have reviewed own the capability of sub-um position resolution,
unfortunately they are all dealing with the bunched beam in a section of linac. Due to a huge amount
of particles in one beam bunch, the intensity sensitivity is no longer a issue in their cases. However on
the contrary in our case, the stored ions are coasting in the ring during the mass measurement experi-
ment, which makes the ions separately passing through the cavity. As a trade-off, we have to loose the
requirement on the position sensitivity in order to gain the sensitivity on the beam intensity.

But still, we do learn some lessons from the history, helping with our exploring direction. Among
those four families of CBPM, the choke mode cavity seems to be the least favorite one. It damps almost
all the eigenmodes except the desired dipole mode, which is acceptable for the beam acceleration since
the energy is fed by the external. Whereas in our case, we need to extract the induced signal from the
cavity. If the most energy is damped by the structure, the residual will be buried deeply under the noise.
Thus no useful information can be obtained.

The re-entrant cavity is not suitable to our case either, because it is designed for the broadband oper-
ation, which is not our original intention. In order to have a high sensitivity, the cavity needs a quite high
QO-value, preventing the attenuation of the induced signal. As a direct consequence of high O-value, the
resonant peak is remarkably narrow, recalling that the quality factor is calculated as the ratio of resonant
frequency to the width of the resonant peak.

After ruling out the improper ones, we are now facing the choice out of two: rectangular or circular.
Based on a whole consideration of manufacturing difficulty and cost efficiency, we prefer the concept of
circular cavity as our R&D scheme. According to the actual specifications of the CR, we have already
proposed several designs, and simulated their RF properties with a commercial software CST STUDIO
SUITE®. Then we have manufactured the first model cavity through an external company, rooted in the
most promising design. Meanwhile we have also constructed a computer-controlled testing platform for
the cavity bench top measurements. However all of these progresses are beyond the scope of this report,
but will be documented elsewhere.

Acknowledgments

This report could not be finished without the strong supports from my colleagues at GSI. In particular,
I would like to express my gratitudes to M. S. Sanjari, Yu. A. Litvinov and M. Steck for their invaluable
advices and assistances. Moreover, their numerous enthusiasms for the research influence me a lot, which
I appreciate very much. This work is funded by the European Commission under contract number PITN-
GA-2011-289485.

25



References

[1] H. H. Gutbrod, I. Augustin et al. (editors), “FAIR — baseline technical report: Executive sum-
mary”, vol. 1. GSI, Darmstadt (2006).

[2] F. Bosch, Yu. A. Litvinov et al., “Nuclear physics with unstable ions at storage rings”. Prog. Part.
Nucl. Phys., 73 (2013) 84.

[3] P. Forck, P. Kowina et al., “Beam position monitors”. Proceedings of CAS 08: Beam Diagnostics,
Dourdan, France (2008) 187.

[4] A. Wolski, “Theory of electromagnetic fields”. Proceedings of CAS ’10: RF for Accelerators,
Ebeltoft, Denmark (2010) 15.

[5] E. Jensen, “Cavity basics”. Proceedings of CAS ’'10: RF for Accelerators, Ebeltoft, Denmark
(2010) 259.

[6] D. Alesini, “Power coupling”. Proceedings of CAS ’10: RF for Accelerators, Ebeltoft, Denmark
(2010) 125.

[7] M. S. Sanjari, “Resonant pickups for non-destructive single-particle detection in heavy-ion storage
rings and first experimental results”. Thesis, Johann Wolfgang Goethe-Universitit Frankfurt am
Main (2013).

[8] T. Nakamura, “Development of beam-position monitors with high position resolution”. Thesis,
University of Tokyo (2008).

[9] P. B. Wilson, “Transient beam loading in electron-positron storage rings”. CERN-ISR-TH-78-23-
rev, CERN, Geneva (1978).

[10] W. Schnell, “Common-mode rejection in resonant microwave position monitors for linear collid-
ers”. CLIC-Note-70, CERN, Geneva (1988).

[11] R. Bergere, A. Veyssiere et al., “Linac beam position monitor”. Rev. Sci. Instrum., 33 (1962) 1441.

[12] R. B. Neal, “An alternate design of a microwave beam position monitor”. TN-63-87, SLAC, Stan-
ford (1963).

[13] P. Brunet, J. Dobson et al., “Microwave beam position monitors”. TN-64-45, SLAC, Stanford
(1964).

[14] E. V. Farinholt, Z. D. Farkas et al., “Microwave beam position monitors at SLAC”. IEEE Trans.
Nucl. Sci., 14 (1967) 1127.

[15] Z.Farkas, H. Hogg et al., “Recent developments in microwave beam-position monitors at SLAC”.
Proceedings of LINAC ’76, Chalk River, Ontario, Canada (1976) 300.

[16] D. Goldberg, W. Barry et al., “A high-frequency schottky detector for use in the Tevatron”. Pro-
ceedings of PAC ’87, Washington, DC, USA (1987) 547.

[17] Y. Inoue, H. Hayano et al., “Development of a high-resolution cavity-beam position monitor”.
Phys. Rev. ST Accel. Beams, 11 (2008) 062801.

[18] J. Su, Y. Du et al., “Design and cold test of a rectangular cavity beam position monitor”. Chinese
Phys. C, 37 (2013) 017002.

[19] J. McKeown, “Beam position monitor using a single cavity”. IEEE Trans. Nucl. Sci., 26 (1979)
3423.

26



[20] K. C. D. Chan, R. T. F. Bird et al., “Experiments with beam position sensors”. IEEE Trans. Nucl.
Sci., 28 (1981) 2328.

[21] W. Schnell, J. P. H. Sladen et al., “CLIC beam position monitor developments”. Proceedings of
HEACC 92, Hamburg, Germany (1992) 263.

[22] J. P. H. Sladen, I. H. Wilson et al., “CLIC beam position monitor tests”. Proceedings of EPAC ’96,
Sitges, Barcelona, Spain (1996) 1609.

[23] H. Euteneuer, H. Herminghaus et al., “Beam monitors at the mainz microtron”. Proceedings of
LINAC ’92, Ottawa, Ontario, Canada (1992) 356.

[24] H. Hayano and T. Shintake, “Submicron beam position monitors for japan linear collider”. Pro-
ceedings of LINAC ’92, Ottawa, Ontario, Canada (1992) 106.

[25] R. Lorenz and K. Yezza, “Beam position monitors for the TESLA test facility”. TESLA-1993-34,
DESY, Hamburg (1993).

[26] R. Lorenz, M. Sachwitz et al., “First operating experiences of beam position monitors in the
TESLA test facility linac”. Proceedings of PAC ’97, Vancouver, Canada (1997) 2137.

[27] V. E. Balakin, A. Bazhan et al., “Beam position monitor with nanometer resolution for linear
collider”. Proceedings of EPAC ’94, London, UK (1994) 1539.

[28] V. Balakin, A. Bazhan et al., “Experimental results from a microwave cavity beam position moni-
tor”. Proceedings of PAC ’99, New York, USA (1999) 461.

[29] M. Ross, J. Frisch et al., “Very high resolution RF cavity BPM”. Proceedings of PAC "03, Portland,
Oregon, USA (2003) 2545.

[30] S. Walston, S. Boogert et al., “Performance of a high resolution cavity beam position monitor
system”. Nucl. Instrum. Meth. A, 578 (2007) 1.

[31] R. Ursic, R. Flood et al., “1 nA beam position monitoring system”. Proceedings of PAC 97, Van-
couver, Canada (1997) 2131.

[32] R. Johnson, Z. Li et al., “Cavity BPMs for the NLC”. Proceedings of BIW 02, Upton, New York,
USA (2002) 321.

[33] R. Johnson, Z. Li et al., “An X-band cavity for a high precision beam position monitor”. Proceed-
ings of DIPAC 03, Mainz, Germany (2003) 196.

[34] A. Liapine, “Beam position monitor for the TESLA energy spectrometer”. Proceedings of EPAC
’02, Paris, France (2002) 1921.

[35] V. Sargsyan, H. Schreiber et al., “Test measurements of a new TESLA cavity beam position mon-
itor at the ELBE linac”. TESLA-2004-14, DESY, Hamburg (2004).

[36] A. Lyapin, F. Gournaris et al., “A prototype energy spectrometer for the ILC at end station A in
SLAC”. Proceedings of PAC ’07, Albuquerque, New Mexico, USA (2007) 4285.

[37] M. Slater, C. Adolphsen et al., “Cavity BPM system tests for the ILC energy spectrometer”. Nucl.
Instrum. Meth. A, 592 (2008) 201.

[38] A. Lyapin, B. Maiheu et al., “Development of the C-band BPM system for ATF2”. Proceedings of
PAC ’09, Vancouver, Canada (2009) 4009.

27



[39] A. Lyapin, B. Maiheu et al., “Development of the S-band BPM system for ATF2”. Proceedings of
PAC ’09, Vancouver, Canada (2009) 4003.

[40] Y.I. Kim, R. Ainsworth ez al., “Cavity beam position monitor system for the accelerator test facility
2”. Phys. Rev. ST Accel. Beams, 15 (2012) 042801.

[41] F. Cullinan, S. T. Boogert et al., “A prototype cavity beam position monitor for the CLIC main
beam”. Proceedings of IBIC ’12, Tsukuba, Japan (2012) 95.

[42] F. Cullinan, S. T. Boogert et al., “Development of a cavity beam position monitor for CLIC”.
Proceedings of IPAC ’12, New Orleans, Louisiana, USA (2012) 915.

[43] A. Lunin, N. Solyak et al., “Design of a submicron resolution cavity BPM for the CLIC main
linac”. TD-Note-TD-09-028, Fermilab, Batavia (2009).

[44] S. Shin and M. Wendt, “Design studies for a high resolution cold cavity beam position monitor”.
IEEE Trans. Nucl. Sci., 57 (2010) 2159.

[45] M. Wendt, “Cold cavity BPM R&D for the ILC”. Proceedings of CARE-HHH-ABI *06, Liineburg,
Germany (2006) 39.

[46] A. Lunin, G. Romanov et al., “Design of a submicron cavity BPM for the ILC main linac”. Pro-
ceedings of DIPAC ’07, Venice, Italy (2007) 192.

[47] R. Lill, G. Waldschmidt et al., “Linac coherent light source undulator RF BPM system”. Proceed-
ings of FEL 06, Berlin, Germany (2006) 706.

[48] H. Maesaka, H. Ego et al., “Sub-micron resolution RF cavity beam position monitor system at the
SACLA XFEL facility”. Nucl. Instrum. Meth. A, 696 (2012) 66.

[49] D. Lipka, D. Noélle et al., “Orthogonal coupling in cavity BPM with slots”. Proceedings of DIPAC
'09, Basel, Switzerland (2009) 44.

[50] T.R. Pusch, F. Frommberger et al., “Measuring the intensity and position of a pA electron beam
with resonant cavities”. Phys. Rev. ST Accel. Beams, 15 (2012) 112801.

[51] M. Dal Forno, P. Craievich et al., “A novel electromagnetic design and a new manufacturing pro-
cess for the cavity BPM (beam position monitor)”. Nucl. Instrum. Meth. A, 662 (2012) 1.

[52] X.Liand S. Zheng, “Simulation and experiments for the Q,,, of a cavity beam position monitor”.
Chinese Phys. C, 34 (2010) 405.

[53] J. Chu, D. Tong et al., “RF measurements of a C-band cavity beam position monitor”. Chinese
Phys. C, 32 (2008) 385.

[54] M. Hansli, R. Jakoby et al., “Current status of the schottky cavity sensor for the CR at FAIR”.
Proceedings of IBIC ’13, Oxford, UK (2013) 907.

[55] O. Altenmueller and P. Brunet, “Some RF characteristics of the beam phase reference cavity”.
TN-64-51, SLAC, Stanford (1964).

[56] R. Bossart, “Microwave beam position monitor using a re-entrant coaxial cavity”. CERN-PS-91-
59-LP, CERN, Geneva (1992).

[57] R. Bossart, “High precision beam position monitor using a re-entrant coaxial cavity”. Proceedings
of LINAC 94, Tsukuba, Japan (1994) 851.

28



[58] C. Magne, M. Juillard et al., “High resolution BPM for future colliders”. Proceedings of LINAC
’98, Chicago, Illinois, USA (1998) 323.

[59] C. Magne and M. Wendt, “Beam position monitors for the TESLA accelerator complex”. TESLA-
2000-41, DESY, Hamburg (2000).

[60] C.Simon, M. Luong et al., “Performance of a reentrant cavity beam position monitor”. Phys. Rev.
ST Accel. Beams, 11 (2008) 082802.

[61] R. Lorenz, S. Sabah et al., “Cavity-type beam position monitors for the SASE FEL at the TESLA
test facility”. TESLA-FEL-2003-03, DESY, Hamburg (2003).

[62] Q. Luo, B. Sun et al., “Cold test of S-band re-entrant cavity BPM for HLS”. Proceedings of IPAC
’10, Kyoto, Japan (2010) 1032.

[63] T. Shintake, “The choke mode cavity”. KEK-Preprint-92-51, KEK, Tsukuba (1992).

[64] S.C.Hartman, T. Shintake et al., “Nanometer resolution BPM using damped slot resonator”. Pro-
ceedings of PAC ’95, Dallas, Texas, USA (1995) 2655.

[65] T. Shintake, “Development of nanometer resolution RF-BPMs”. Proceedings of HEACC 98,
Dubna, Russia (1998) 341.

[66] T. Slaton, G. Mazaheri et al., “Development of nanometer resolution C-band radio frequency beam
position monitors in the final focus test beam”. Proceedings of LINAC ’98, Chicago, Illinois, USA
(1998) 911.

[67] M.J.Lee, “The effect of rotation of a TM 5 cavity on the amplitude and phase of the beam induced
signal”. TN-64-66, SLAC, Stanford (1964).

[68] J. P. H. Sladen and W. Wuensch, “Loss of precision in resonant beam position monitors due to
finite Q™. Proceedings of PAC *93, Washington, DC, USA (1993) 2346.

[69] J.P.H. Sladen, “Receiver for CLIC resonant microwave position monitors”. CLIC-Note-86, CERN,
Geneva (1989).

[70] J. P. H. Sladen, I. H. Wilson e? al., “Measurement of the precision of a CLIC beam position mon-
itor”. CLIC-Note-189, CERN, Geneva (1993).

[71] J. P. H. Sladen and W. Wuensch, “The effect of finite Q on the precision of resonant beam position
monitors”. CLIC-Note-185, CERN, Geneva (1993).

[72] J. Sladen, “Signal processing for the CLIC beam position monitor”. Proceedings of EPAC ’90,
Nice, France (1990) 735.

[73] R. Lorenz, “RF beam position monitors for the TESLA test facility”. Proceedings of PAC ’93,
Washington, DC, USA (1993) 2325.

[74] R. Lorenz and K. Yezza, “Test results on a beam position monitor prototype for the TTF”. Pro-
ceedings of EPAC ’94, London, UK (1994) 1536.

[75] R. Lorenz, S. Sabah et al., “Electronics for the TTFL cavity-type beam position monitor”. Pro-
ceedings of EPAC ’98, Stockholm, Sweden (1998) 1553.

[76] R. Lorenz, “Beam position monitors in the TESLA test facility linac”. Proceedings of PAC ’95,
Dallas, Texas, USA (1995) 2631.

29



[77] R.Lorenz, M. Sachwitz et al., “Measurement of the beam position in the TESLA test facility linac”.
Proceedings of LINAC 96, Geneva, Switzerland (1996) 527.

[78] H. Dong, A. Freyberger et al., “Digital beam position monitor for the HAPPEX experiment”. Pro-
ceedings of PAC ’05, Knoxville, Tennessee, USA (2005) 3841.

[79] S. Smith, “Cavity beam position monitors for the next linear collider” (2002).

[80] Z. Li, R. Johnson et al., “Cavity BPM with dipole-mode-selective coupler”. Proceedings of PAC
'03, Portland, Oregon, USA (2003).

[81] Z.Li, “S-band cavity BPM for ILC” (2005).

[82] A. Liapine, “Cavity beam position monitor for the TESLA energy spectrometer”. Proceedings of
DIPAC °03, Mainz, Germany (2003) 184.

[83] A. Liapine and H. Henke, “High precision cavity beam position monitor”. Proceedings of EPAC
"04, Lucerne, Switzerland (2004) 2535.

[84] V. Sargsyan, “Cross-talk problem in pill-box cavity”. TESLA-2003-01, DESY, Hamburg (2003).

[85] M. Ross, J. Frisch et al., “RF cavity BPM’s as beam angle and beam correlation monitors”. Pro-
ceedings of PAC ’03, Portland, Oregon, USA (2003) 2548.

[86] V. Vogel, H. Hayano et al., “Performance of a nanometer resolution beam position monitor system”.
UCRL-CONF-216283, LLNL, Livermore (2005).

[87] S. Walston, C. Chung et al., “Resolution of a high performance cavity beam position monitor
system”. Proceedings of PAC ’07, Albuquerque, New Mexico, USA (2007) 4090.

[88] S. Walston, S. Boogert et al., “A metrology system for a high resolution cavity beam position
monitor system”. Nucl. Instrum. Meth. A, 728 (2013) 53.

[89] P. Krejcik, Z. Li et al., “Cavity beam position monitors in the LCLS” (2006).

[90] R.Lill, W. Norum et al., “Design and performance of the LCLS cavity BPM system”. Proceedings
of PAC 07, Albuquerque, New Mexico, USA (2007) 4366.

[91] G. Waldschmidt, R. Lill et al., “Electromagnetic design of the RF cavity beam position monitor
for the LCLS”. Proceedings of PAC "07, Albuquerque, New Mexico, USA (2007) 1153.

[92] S. Smith, S. Hoobler ef al., “LLCLS cavity beam position monitor”. Proceedings of DIPAC ’09,
Basel, Switzerland (2009) 285.

[93] A. Lyapin, B. Maiheu et al., “A prototype S-band BPM system for the ILC energy spectrometer”.
EUROTeV-Report-2008-072, UCL, London (2009).

[94] S. H. Shin, E. S. Kim et al., “The design study for low-Q IP-BPM”. Proceedings of PAC ’07,
Albuquerque, New Mexico, USA (2007) 4120.

[95] A. Heo, E. S. Kim et al., “Nanometer resolution beam position monitor for the ATF2 interaction
point region”. Proceedings of PAC 09, Vancouver, Canada (2009) 3603.

[96] S.Jang, E. S. Kim et al., “Development of a cavity-type beam position monitors with high resolu-
tion for ATF2”. Proceedings of IPAC ’13, Shanghai, China (2013) 604.

[97] A. Lyapin and S. T. Boogert, “A proposal of a single coupler cavity beam position monitor”. Pro-
ceedings of PAC ’09, Vancouver, Canada (2009) 4000.

30



[98] C. Simon, S. Chel et al., “High resolution BPM for linear colliders”. Proceedings of BIW ’06,
Batavia, Illinois, USA (2006) 488.

[99] C.Simon, S. Chel et al., “Beam position monitors using a re-entrant cavity”. Proceedings of DIPAC
'07, Venice, Italy (2007) 93.

[100] C. Simon, S. Chel et al., “High resolution BPM for linear colliders”. Proceedings of EPAC "06,
Edinburgh, Scotland (2006) 1004.

[101] C. Simon, O. Napoly et al., “Status of the re-entrant cavity beam position monitor for the european
XFEL project”. Proceedings of BIW ’10, Santa Fe, New Mexico, USA (2010) 210.

[102] B. Wang, Y. Leng ef al., “Study of the signal processing system for cavity beam position monitor”.
Proceedings of IPAC "12, New Orleans, Louisiana, USA (2012) 855.

[103] A. Lyapin, R. Ainsworth et al., “Cavity BPM system for ATF2”. Proceedings of DIPAC ’11, Ham-
burg, Germany (2011) 23.

[104] S.T. Boogert, R. Ainsworth et al., “Cavity beam position monitor system for ATF2”. Proceedings
of IPAC ’10, Kyoto, Japan (2010) 1140.

[105] S. T. Boogert, G. Boorman et al., “Cavity beam position monitor system for ATF2”. Proceedings
of IPAC ’11, San Sebastian, Spain (2011) 1410.

[106] F. Cullinan, S. T. Boogert et al., “Calibration errors in the cavity beam position monitor system at
the ATF2”. Proceedings of IPAC 11, San Sebastian, Spain (2011) 1051.

[107] S. Shin, E. S. Kim et al., “Design of a low-Q S-band cavity beam position monitor”. J. Korean
Phys. Soc., 52 (2008) 992.

[108] A. Heo, E. S. Kim et al., “Development of an S-band cavity beam position monitor for ATF2”. J.
Inst., 8 (2013) PO4011.

[109] D. Lipka, “Cavity BPM designs, related electronics and measured performances”. Proceedings of
DIPAC 09, Basel, Switzerland (2009) 280.

[110] H. Schmickler, L. Soby et al., “Submicron multi-bunch BPM for CLIC”. Proceedings of IPAC ’10,
Kyoto, Japan (2010) 1185.

[111] A. Lunin, “High resolution RF cavity BPM design for linear collider” (2012).

[112] Q. Luo, B. Sun et al., “Design of cavity beam monitor at HLS”. Proceedings of IPAC ’11, San
Sebastian, Spain (2011) 1278.

[113] Q. Luo, B. Sun et al., “Design of racetrack cavity beam position monitor”. Proceedings of PAC
’09, Vancouver, Canada (2009) 4084.

[114] Q. Luo, B. Sun et al., “Design and cold test of re-entrant cavity BPM for HLS”. Proceedings of
PAC ’11, New York, USA (2011) 420.

[115] M. Hansli, A. Angelovski et al., “Coupling methods for the highly sensitive cavity sensor for longi-
tudinal and transverse schottky measurements”. Proceedings of BIW ’12, Newport News, Virginia,
USA (2012) 149.

[116] M. Hansli, A. Angelovski et al., “Investigations on high sensitive sensor cavity for longitudinal and
transversal schottky for the CR at FAIR”. Proceedings of IPAC ’11, San Sebastiin, Spain (2011)
1180.

31



[117] M. Hansli, A. Penirschke et al., “Conceptual design of a high sensitive versatile schottky sensor
for the collector ring at FAIR”. Proceedings of DIPAC ’11, Hamburg, Germany (2011) 470.

[118] H.Maesaka, Y. Otake et al., “Beam position monitor at the SCSS prototype accelerator”. Proceed-
ings of APAC °07, Indore, India (2007) 387.

[119] H. Maesaka, S. Inoue et al., “Development of the RF cavity BPM of XFEL/SPring-8”. Proceedings
of DIPAC ’09, Basel, Switzerland (2009) 56.

[120] P. Craievich, D. Castronovo et al., “Design of the cavity BPM for FERMI@Elettra”. Proceedings
of FEL 06, Berlin, Germany (2006) 613.

[121] P. Craievich, C. Bontoiu et al., “Design of the cavity BPM system for FERMI@Elettra”. Proceed-
ings of DIPAC "07, Venice, Italy (2007) 165.

32



	Seite 1
	INNENreport_x_chen.pdf
	Abbreviations
	Introduction
	Theoretical Description
	Ideal Model
	Pillbox Cavity with Pipe
	Quality Factor
	Shunt Impedance
	Coupler
	Coupling Coefficient

	Beam Position Detection
	Beam Loading
	Output Signal
	Signal Contamination


	Diversity of CBPMs
	Rectangular Cavity
	Circular Cavity
	Re-entrant Cavity
	Choke Mode Cavity

	Summary
	Outlook
	Acknowledgments
	References


