

J/ ψ production in Pb-Pb collisions measured with ALICE*

I.C. Arsene^{1,6}, A. Andronic¹, C. Blume², J. Book², P. Braun-Munzinger^{1,3}, A. Maire^{4,7}, J. Stachel⁴, S. Weber¹, J. Wiechula⁵, M. Winn⁴ for the ALICE Collaboration

¹EMMI & GSI Darmstadt; ²Universität Frankfurt; ³Technische Universität Darmstadt; ⁴Universität Heidelberg;

⁵Universität Tübingen; ⁶University of Oslo; ⁷Université de Strasbourg

Heavy quarkonium production is a prime probe for the investigation of the deconfined nuclear medium created during ultra-relativistic nuclear collisions, also dubbed quark-gluon plasma. Early predictions assumed that, depending on their binding energy, some of the quarkonium states melt in such a hot and dense medium due to colour screening [1]. At the LHC energies, and to a smaller extent at the RHIC top energy, the large number of charm quark pairs produced in the initial partonic interactions open the possibility for creating charmonium by combining $c\bar{c}$ pairs during the lifetime of the fireball [2] or at its phase boundary (chemical freeze-out) [3].

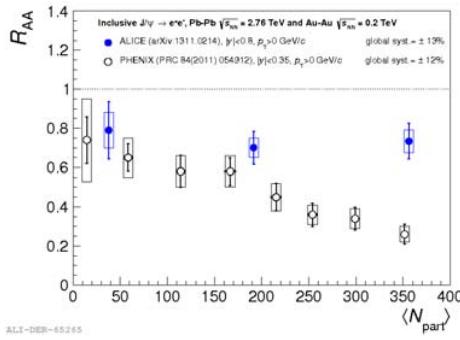


Figure 1: Centrality dependence of the R_{AA} for inclusive J/ψ measured by ALICE and PHENIX.

ALICE is a very well suited detector to measure J/ψ mesons via their di-leptonic decay channels [4] in a wide range of rapidity and down to zero transverse momentum. The nuclear effects on the J/ψ production are quantified using the nuclear modification factor, R_{AA} , which is the ratio between the yields obtained in nuclear collisions and the yield in pp collisions scaled by the number of binary nucleon-nucleon collisions corresponding to a given collision centrality.

Figure 1 shows the inclusive $J/\psi R_{AA}$ at mid-rapidity as a function of the number of nucleons participating in the collision. The ALICE results [5] are obtained for Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV while the PHENIX [6] ones come from Au-Au collisions at $\sqrt{s_{NN}} = 0.2$ TeV. The lower energy data shows an increasing suppression of the J/ψ yield with increasing the collision centrality, being very suggestive of the colour screening effect predicted in [1]. The ALICE results indicate a much smaller suppression for larger system sizes and, within the uncertainties, no

centrality dependence. The striking difference in R_{AA} in central collisions indicates that a new mechanism, namely charm quarks (re)combination, is at play at LHC energies.

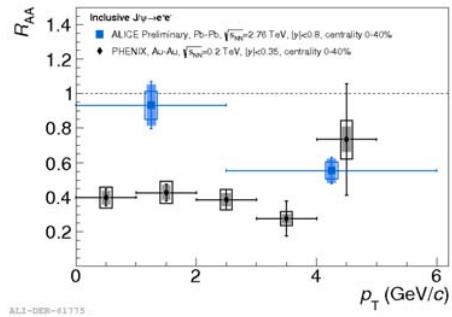


Figure 2: Transverse momentum dependence of the R_{AA} for inclusive J/ψ measured by ALICE and PHENIX.

In figure 2, we show the p_T dependence of the $J/\psi R_{AA}$ for the 40% most central collisions from both ALICE and PHENIX. Our data is compatible with no suppression in the low p_T region ($p_T < 2.5$ GeV/c), opposite to the strong suppression seen at the RHIC top energy. At higher p_T , the $J/\psi R_{AA}$ obtained by ALICE drops to ≈ 0.5 and is compatible with the one observed by PHENIX. If J/ψ mesons would be formed via the coalescence or statistical hadronisation of charm quarks, it is expected from phase space considerations that these mechanisms contribute especially in the low p_T region, as observed in our data.

These results, together with the ones obtained at forward rapidity in the di-muon channel [5], provide important evidence for deconfinement and for a new mechanism of charmonium creation. Further studies on understanding the cold nuclear matter effects using p-Pb collisions are currently ongoing [7].

References

- [1] T. Matsui and H. Satz, Phys. Lett. B **178** (1986) 416
- [2] R. L. Thews, M. Schroedter and J. Rafelski, Phys. Rev. C **63** (2001) 054905
- [3] P. Braun-Munzinger and J. Stachel, Phys. Lett. B **490** (2000) 196
- [4] ALICE Collaboration, arXiv:1402.4476
- [5] ALICE Collaboration, arXiv:1311.0214
- [6] PHENIX Collaboration, Phys. Rev. C **84** (2011) 054912
- [7] M. Winn *et al.*, this Report

* Work supported by GSI, BMBF, Helmholtz Alliance HA216/EMMI, HQM, HGSFP, HGS-HIRE and the Studienstiftung des deutschen Volkes