Journal Article GSI-2024-01291

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Physics-informed neural networks for predicting the asymptotic outcome of fast neutrino flavor conversions

 ;  ;

2024
American Physical Society Ridge, NY

Physical review / D 109(4), 043024 () [10.1103/PhysRevD.109.043024]

This record in other databases:

Please use a persistent id in citations: doi:  doi:

Classification:

Note: "Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI. Open access publication funded by the Max Planck Society."

Contributing Institute(s):
  1. Nukleare Astrophysik & Struktur (KNA)
Research Program(s):
  1. 899 - ohne Topic (POF4-899) (POF4-899)
  2. KILONOVA - Probing r-process nucleosynthesis through its electromagnetic signatures (885281) (885281)
  3. DFG project G:(GEPRIS)390783311 - EXC 2094: ORIGINS: Vom Ursprung des Universums bis zu den ersten Bausteinen des Lebens (390783311) (390783311)
  4. DFG project G:(GEPRIS)283604770 - SFB 1258: Neutrinos und Dunkle Materie in der Astro- und Teilchenphysik (NDM) (283604770) (283604770)
Experiment(s):
  1. no experiment theory work (theory)

Appears in the scientific report 2024
Database coverage:
Medline ; Creative Commons Attribution CC BY 4.0 ; OpenAccess ; Clarivate Analytics Master Journal List ; Current Contents - Electronics and Telecommunications Collection ; Current Contents - Physical, Chemical and Earth Sciences ; Ebsco Academic Search ; Essential Science Indicators ; IF >= 5 ; JCR ; SCOAP3 sponsored Journal ; SCOPUS ; Science Citation Index Expanded ; Web of Science Core Collection
Click to display QR Code for this record

The record appears in these collections:
Private Institute collections > >WGF > >RED > >THE > KNA
Document types > Articles > Journal Article
Workflow collections > Public records
Publications database
Open Access

 Record created 2024-12-21, last modified 2025-02-04